

Version May 2014

Add-on Module

RF-STABILITY

Critical Load Factors, Effective Lengths, Eigenvectors

Program Description

All rights, including those of translations, are reserved. No portion of this book may be reproduced – mechanically, electronically, or by any other means, including photocopying – without written permission of DLUBAL SOFTWARE, INC.

© Dlubal Software GmbH 2014 Am Zellweg 2 D-93464 Tiefenbach Germany

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com Web: www.dlubal.com ∠ Diuba

Contents

Contents

1.	Introduction 2
1.1	Add-on Module RF-STABILITY
1.2	Using the Manual
1.3	Opening the RF-STABILITY Module
2.	Input Data
2.1	General Data
3.	Calculation
3.1	Check
3.2	Start Calculation
4.	Results
4.1	Critical Load Factors
4.2	Effective Lengths and Critical Loads
4.3	Eigenvectors by Node
4.4	Eigenvectors by Member
4.5	Eigenvector by Surface
5.	Evaluation of Results
5.1	Results Windows
5.2	Results on the RFEM Model
5.3	Filter for Results
6.	Printout
6.1	Printout Report
6.2	Graphic Printout
7.	General Functions
7.1	RF-STABILITY Analysis Cases
7.2	Units and Decimal Places
7.3	Exporting Results
8.	Worked Examples
8.1	Rectangular Plate
8.2	Circular Plate
8.3	Tapered Cantilever
A.	Literature
B.	Index

1.1 Add-on Module RF-STABILITY

The add-on module RF-STABILITY of the main program RFEM performs eigenvalue analyses for member and surface models to determine critical load factors and eigenvectors (buckling modes). The critical load factor (critical buckling load factor of the global system) allows you to evaluate the stability behavior of the structural system. The corresponding eigenvector indicates the region in the model that is prone to buckling. This analysis also considers solid elements.

RF-STABILITY allows you to analyze several eigenvectors at once. After the calculation, the governing eigenvectors of the RFEM model are listed by the critical load factor. The corresponding effective lengths and critical loads are required for further stability analyses that need to be carried out for members in compression.

In the graphical representation of the eigenvectors, you can localize the regions prone to buckling and take constructive measures regarding the eigenvectors, if necessary. This makes RF-STABILITY a very useful tool for the analysis of structures prone to buckling, for example, slender beams and thin-walled shells. Based on the critical load factor, you can evaluate whether the model is generally prone to buckling (flexural buckling, flexural-torsional buckling as well as lateral-torsional buckling and plate buckling for 2D objects). Furthermore, you can apply imperfections under consideration of eigenvectors and use them for the analysis in RFEM.

Features of RF-STABILITY:

- Determination of several eigenvectors in one calculation run
- Import of axial forces from RFEM load cases or combinations
- Option to take into account favorable effects due to tension
- Option to take into account stiffness modifications from RFEM
- Eigenvalue analysis under consideration of user-defined load increments
- Determination of eigenvectors allowing you to resolve problems of instability
- Powerful solver using different eigenvalue methods with user-defined parameters
- Option to normalize eigenvectors
- Tabular display of the critical load factors and corresponding eigenvectors
- Visualization of eigenvectors including option for animation in the RFEM graphic window
- Printout in RFEM report including automatic update for changes
- Preparation of eigenvectors for the add-on modules RF-IMP, RF-KAPPA, RF-STEEL EC3, RF-STEEL AISC/AS/BS/CS/GB/IS/NTC-DF/SANS/SIA/SP, RF-ALUMINIUM, and RF-TIMBER Pro
- Data export to MS Excel, OpenOffice Calc, or the CSV file format

We hope you enjoy working with RF-STABILITY.

Your team from DLUBAL SOFTWARE, INC.

1.2 Using the Manual

Topics like installation, graphical user interface, evaluation of results, and printout are described in detail in the manual of the main program RFEM. The present manual focuses on typical features of the RF-STABILITY add-on module.

1

The sequence and structure of the manual follows the input and results windows of the module. In the text, the **buttons** are given in square brackets, for example [Edit]. At the same time, they are pictured on the left. The **Expressions** that appear in dialog boxes, windows, and menus are set in *italics* making the connection between the explanations in the manual and the program clearer.

At the end of the manual, you find the index. If you still cannot find what you are looking for, check our website https://www.dlubal.com/en, where you can go through the FAQ pages and use various filter criteria.

1.3 Opening the RF-STABILITY Module

In RFEM, you have the following possibilities to start the add-on module RF-STABILITY.

Menu

To open the add-on module, you can select on the RFEM menu

```
\textbf{Add-on Modules} \rightarrow \textbf{Stability} \rightarrow \textbf{RF-STABILITY}
```

Add	I-on Modules Window	Help
4 0	Current Module	is 🔹 🗢 🔌 🎦 🏋 🔗 🏧 🚳 🛱 🕅
	Design - Steel	🔸 - 🦉 🦉 🦉 🗇 🔐 🛱 📆 🛣
	Design - Concrete	>
	Design - Timber	F
	Design - Aluminium	F
	Dynamic	F
	Connections	F
	Foundations	F
	Stability	RF-STABILITY Stability analysis
	Towers	4
	Others	>
	External Modules	•
	Stand-Alone Programs	•

Navigator

Alternatively, you can open the add-on module in the Data navigator by clicking

Add-on Modules \rightarrow RF-STABILITY.

Figure 1.2: Data navigator: Add-on Modules \rightarrow RF-STABILITY

Panel

CO1 - 1.35*LC1 + 1.5*LC2
LC1 - Self-weight LC2 - Imposed load
CO1 - 1.35°LC1 + 1.5°LC2 RF-STABILITY CA1 - Stability analysis linear RF-STABILITY CA2 - Stability analysis poplinea
()

If results from RF-STABILITY are already available in the RFEM model, you can also open the design module from the panel:

First, set the relevant RF-STABILITY case in the load case list of the RFEM toolbar. Then, click the [Show Results] button to graphically display the eigenvector.

In the panel, you can click [RF-STABILITY] to open the module.

i u	SINDICITY	

DE CTADILITY

Panel Eigenvector u [·] 1.0 - 0.9 0.8 0.7 0.6 0.5 0.5 0.4 - 0.3 0.2 0.1 0.0 1.0 Max Min : 0.0 **RF-STABILITY** 📕 🕾 🔺

Figure 1.3: Panel button [RF-STABILITY]

2 Input Data

When you start the add-on module, a new window opens. In this window, a navigator is displayed on the left that manages the available input and output windows. The drop-down list above the navigator contains the analysis cases (see Chapter 7.1, page 28).

When you open RF-STABILITY for the first time, the created load cases and combinations are imported automatically.

4

Cancel

To select a module window, click the corresponding entry in the navigator. To go to the previous or next input window, use the buttons shown on the left. You can also use the function keys to select the next [F2] or previous [F3] window.

To save the results, click [OK]. Thus, you exit RF-STABILITY and return to the main program. To exit the module without saving the new data, click [Cancel].

2.1 General Data

In the 1.1 *General Data* window, you select the members, sets of members, and actions that you want to analyze. It is the only input window of the module.

RF-STABILITY - [RFEM-Example-06	6]		×
File Settings Help			
CA1 - Stability analysis 🔹	1.1 General Data		
CA1 - Stability analysis + Input Data General Data	1.1 General Data General Number of lowest eigenvalues (eigenvectors for bucking) to be calculated Find eigenvectors beyond critical load factor: for complexity of the second critical load factor: Constant factors from Defines Ø Activate division also for straight members Ø Activate stiffness modifications from RFEM Activate stiffness modifications from RFEM Activate signmeetor for Load case / combination: LC1-Eigengewicht und Aufbau © Calculate eigenvector for unstable model so that causes of matability can be checked graphically	Calculation Method Stability analysis: Bigenvalue analysis Increase load until structural failure Eigenvalue method: S Method by Lancos Roots of the characteristic polynomial Subspace iteration method ItCG iteration method Vipe of matrix: S standard Unit matrix (for checking and determination of precision) Normalization of Eigenvectors Such that u = 1 Such that max (uxy; uy; uz) = 1 Such that max (uy; uy; uz) = 1	RFSTABILITY Analysis of stability Atability Analysis by Eigenvalue Method
	Comment	•	4
	Calculate Check	Graphics	OK Cancel

Figure 2.1: Window 1.1: General Data

General

- .

General	
Number of nearest eigenvalues (eigenvectors for buckling) to be calculated	8 🌲
✓ Find eigenvectors beyond critical load factor: f0: 10.0 ★ [-]	
Import axial forces, nonlinear effects and initial deformations from Load case / combination:	
CO1 - 1.35*LC1 + 1.5*LC2 + LC4	·

Figure 2.2: Definition of eigenvectors and axial forces

OK

Number of smallest (or next) eigenvalues

RF-STABILITY determines the most unfavorable eigenvalues of the model, whose number you specify in this text box. The upper limit is 1,000 eigenvalues (and thus eigenvectors) – that is, if the number of degrees of freedom and the RAM allow it.

If negative critical load factors are shown after running the analysis, you should increase the number of the eigenvectors to be determined. For a small number, it is not possible to hide the negative eigenvalues in order to show only positive, realistic results. Alternatively, you can use the ICG (incomplete conjugate gradient) method (see below) to exclude the negative critical load factors.

Find eigenvectors beyond critical load factor

By using this function, RF-STABILITY can show you only those eigenvectors that exceed a certain eigenvalue. To do this, select the corresponding check box, and then specify the minimum load increment f_0 in the text box.

Import axial forces, nonlinear actions, and initial deformations from load case / combination

The list contains all load cases and load combinations of the model. Select an entry. The axial forces and, if necessary, the stiffnesses of these actions are taken into account when determining the eigenvector. This load case or this combination should be calculated in RFEM by linear static analysis without stiffness reductions (material, cross-section, member, surface).

Result combinations are not available in the list, because due to the max/min extreme values they don't show unambiguous distributions of axial forces.

In addition to the axial forces, the stiffness conditions are also imported from RFEM. This means: The module imports the structural system after the load case or the load combination is calculated in RFEM. This system is the starting point of the eigenvalue analysis. In this way, you can approximately consider nonlinear effects as, for example, failing members, supports, and releases, or member nonlinearities in the linear eigenvalue analysis in RF-STABILITY.

If no results exist for the load case or load combination, the internal forces are automatically determined before the RF-STABILITY analysis.

When calculating the eigenvector of a beam structure and the effective lengths, the loading is of decisive importance, because the buckling values depend not only on the structural model, but also on the ratio of the axial forces to the total critical buckling load N_{cr}. Therefore it is recommended to specify a load case with a full vertical loading (without wind) so that most of the members are subjected to compressive forces.

Options

Options	
☑ Consider favorable effects due to tension	
☑ Activate division also for straight members	P
Activate minimum initial prestress for cables and membranes	
Activate stiffness modifications from RFEM	
Add initial axial forces from	
Load case / combination:	
LC2 - Prestress	•
Calculate eigenvector for unstable model so that causes instability can be checked graphically	of

Figure 2.3: Options

Consider favorable effects due to tension

If the check box is selected, the tensile forces in the model are taken into account during the determination of the eigenvalue. Usually, they stabilize the model.

Activate division also for straight members

For better approximation solutions, it can be necessary to refine the member division, in particular for tapers and members with elastic foundations.

To To

To adjust the member division, click [Edit]. The FE Mesh Settings dialog box from RFEM appears.

FE Mesh Settings		X
FE Mesh Settings General Target length of finite elements Maximum distance between a node and a line to integrate it into the line Maximum number of mesh nodes (in thousands) Members Number of divisions for special types of members (cable, elastic foundation, taper, nonlinearty): Activate divisions for straight members, which are not integrated in surfaces, with concrete material category group (necessary for nonlinear calculation)	Surfaces Maximum ratio of FE rectangle diagonals ΔD: Maximum out-of-plane inclination of two finite elements α: IFE mesh refinement along lines (with type 'Plate XY only) Relationship Δb:	$\Delta_{D} = \frac{D_{1}}{D_{2}} \qquad D_{1} \ge D_{2}$
Curves divisions to stability members, mich ale hot megleted in suffaces, with concrete material category group (necessary for nonlinear calculation) Minimum number of member divisions Activate member divisions for large deformation or post-ortical analysis Use division for straight members, which are not integrated in suffaces, with Target length IFE of finite elements Set length IFE : Minimum number of member divisions:	Intergrees only I	$\Delta_{D} = \frac{1}{D_{2}} \qquad D_{1} \ge D_{2}$ Option $\square \text{ Regenerate FE mesh on [OK]}$
Use division for members with nodes lying on them		OK Cancel

Figure 2.4: Dialog box FE Mesh Settings

Activate minimum initial prestress for cables and membranes

By selecting this check box, cable members and membrane surfaces get a very small prestress that prevents the failure of these elements before the start of the calculation. In this way, you can also stabilize the model.

To specify the magnitude and type of the prestress, click [Edit].

Settings for Cables and Membranes	X
Minimum Initial Prestress	
Minimum initial strain ε _{min} : 0.00001 💽 [-]	
Type: ff ε _{min} is larger than ε from load case or combination Always use ε _{min}	
	OK Cancel

Figure 2.5: Dialog box Settings for Cables and Membranes

Activate stiffness modifications from RFEM

This check box controls whether the adjustment factors defined in RFEM for the material, member, support, release, and cross-section stiffnesses are taken into account during the eigenvalue analysis. These factors are described in the corresponding chapters of the RFEM manual. If you select this check box, all stiffness factors of the load case or the load combination are used under consideration of the failure criteria during the calculation in RF-STABILITY.

This control option in RF-STABILITY allows you to apply the stiffness modifications independent of the settings in RFEM. In this way, you can, for example, calculate the axial forces of a load combination in RFEM <u>without</u> reduction and then determine the critical loads in RF-STABILITY with the reduced material, member, and cross-section stiffnesses.

If, however, the stiffness change for the load case or the load combination is active, this check box is unavailable: In this way, the program ensures that the eigenvalues correspond to the model assumptions.

If the eigenvalues are determined as "characteristic" properties of the model, the stiffness changes need not be considered.

Add initial axial forces from load case / combination

LC6 - Wind in Y
LC1 - Self-weight and finishes
LC2 - Imposed load, total
LC3 - Imposed load, left
LC4 - Imposed load, right
LC5 - Wind in X
LC6 - Wind in Y
CO1 - 1.35*LC1 + 1.5*LC2
CO2 - 1.35*LC2 + 1.5*LC3
CO3 - 1.35*LC1 + 1.5*LC4

After selecting this check box, you can choose a load case or load combination whose axial forces you want to use for an initial deformation. You can use this option to, for example, take into account the stabilizing effect of another load case (that is, a different one from the load case selected in the *General* section above) for the eigenvalue analysis.

Result combinations are also missing in this list, because they don't show unambiguous axial force distributions.

Calculate eigenvector of unstable model

This function allows you to find modeling errors in your structural system. For models determined to be unstable, the program runs a load-independent eigenvalue analysis. In the graphical evaluation of the results, you can easily find, for example, unconnected members or members with too many open degrees of freedom.

However, that function cannot detect calculation terminations due to overloading.

For an example of that function, see this DLUBAL blog: https://www.dlubal.com/blog/7907

Calculation Method

Calculation Method
Stability analysis:
eigenvalue analysis
Increase load until structural failure
Eigenvalue method:
Method by Lanczos
Roots of the characteristic polynomial
Subspace iteration method
ICG iteration method
Type of matrix:
 Standard
O Unit matrix (for checking and determination of precision)

Figure 2.6: Method of Calculation

Stability analysis

When using the default setting *Eigenvalue analysis*, the eigenvectors are determined by the purely linear method. The properties of nonlinearly acting elements, for example, tension members or supports with failure criteria, are not taken into account. The stiffnesses of such elements are applied in the matrix as permanently acting.

The *Load increased to structural failure* option allows you to take into account all nonlinearities in the eigenvalue analysis. During the incremental increase of the load, failure criteria and nonlinear effects of members, supports, releases, materials, etc. are taken into account. The calculation is run iteratively and, therefore, needs more time. Due to the underlying principle, this procedure allows you to reliably determine only the lowest eigenvalue.

1

To specify the iteration parameters, click [Edit].

Settings		Options	Precision and Tolerance
Maxim <u>u</u> m number of iterations: Number of load increments for	50 🌲	Activate shear stiffness of members (cross-sectional areas Ay, A ₂)	Change standard settings Precision of convergence (0.01 100)
- Load cases:	10 🌲	 Activate member divisions for large deformation or post-critical analysis 	calculation:
- Load combinations:	10 ≑	Modify stiffness (material, cross-sections, members, load cases and combinations)	Tolerance for detection of instability:
Number of divisions of members for		Consider extra options	
<u>R</u> esult diagrams:	10 🌲	(load cases and combinations)	
Special types of members (cable, elastic foundation, taper, nonlinearity):	6 🚔	Check of critical forces of members	
Determination of max/min values:	10 🌲		
Subdivisions of FE mesh for graphical results:	3 🚔	Method for system of equations:	
Percentage of iterations of Newton-Raphson method in combination	5 [2]	Plate bending theory: <u>Mindlin</u> <u>Kirchhoff</u> <u>Schwarzening</u> <u>Plate bending theory</u> <u>Plate bending theory <u>Plate bending theory <u>Plate bending theory <u>Plate bending theory </u> <u>Plate bending theory <u>Plate bending theory <u>Plate bending theory <u>Plate bending theory </u> <u>Plate bending theory </u> <u>Plate bending theory <u>Plate bending theory </u> <u>Plate bending theory </u> <u>Plate bending theory <u>Plate bending theory </u> <u>Plate bending theory <u>Plate bending theory </u> <u>Plate bending theory </u> <u>Plate bending theory </u> <u>Plate bending theory <u>Plate bending theory </u> <u>P</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	
with reals.	J 🔍 [/0]	Solver Version: 0 32-bit 64-bit	
Nonlinearities		Reactivation of Failing Members	Method for Solving System of
Activate:		Check deformation of failing members and reactivate where appropriate	e Nonlinear algebraic equations:
Members due to member type		Maximum number of reactivations: 3+	Newton-Banbson combined with Picard
Member end releases			Picard
Member nonlinearities		 Exceptional handling Failing members to be removed individually during 	Newton-Raphson with constant stiffness matrix
Solids of type 'Contact'		successive iterations	9
Materials with nonlinear model		Assign reduced stiffness to failing members	
isotropic thermal-elastic material model		Reduction factor of stiffness: 1000	

Figure 2.7: Dialog box Calculation Parameters

The *Calculation Parameters* dialog box is described in the RFEM manual, Chapter 7.3.3. The calculation is run automatically according to the direct solver method.

If, as shown in Figure 2.7, you specify 10 load increments, the program applies 10 %, then 20 %, then 30 %, ...100 %, 110 % ...480 %, etc. of the load: The load is increased in 10 % steps until the system is determined to be unstable. Thus the critical load factor is found.

The duration of calculation can be reduced by the following settings of the *Calculation Parameters* (suggestions in brackets):

- Maximum number of iteration shouldn't be too great (50)
- Number of load increments shouldn't be too fine (5)
- Reactivation of failing members should be deactivated

Eigenvalue method

There are different calculation methods available in RF-STABILITY:

• Method by Lanczos

The eigenvalues are determined according to the direct method. In most cases, this algorithm allows you to reach a quick convergence. Because the Lanczos method is faster than the subspace method (see below), it is the default option in RF-STABILITY.

For further information, see https://en.wikipedia.org/wiki/Lanczos_algorithm

Roots of the characteristic polynomial

This method is also based on a direct calculation method. For larger structural systems, this method can be faster than the Lanczos method. The main advantage of this method is the precision of higher eigenvalues.

For more information, see https:/en.wikipedia.org/wiki/Characteristic_polynomial

Subspace iteration method

In this method, all eigenvalues are determined in one step. The spectrum of the stiffness matrix has a great influence on the duration of calculation in this method.

The stiffness matrix is stored in the operating memory. As soon as this memory is insufficient, Windows stores files on the hard drive. This considerably slows down the computer. The subspace method is therefore not suitable for complex systems.

In the subspace method, negative critical load factors cannot be excluded.

For more information, see https:/en.wikipedia.org/wiki/Krylov_subspace

ICG iteration method

The ICG (*Incomplete Conjugate Gradient*) iteration method needs little operating memory. Only those coefficients of the stiffness matrix not equal to zero are saved. A disadvantage is that the eigenvalues are determined one after the other. The spectrum, however, has no influence on the calculation duration.

The ICG method is suited to analyze very large systems with few eigenvalues. This method also does not yield any negative critical load factors. The procedure continues until the number of specified positive eigenvalues is reached.

The ICG method sometimes doesn't find all of the lowest eigenvalues.

For more information, see https:/en.wikipedia.org/wiki/Conjugate_gradient_method

Type of matrix

With the default option *Standard*, RF-STABILITY uses the geometric stiffness matrix of the linear equation system.

The *Unit matrix* is a quadratic matrix with the value one on the main diagonal. This "mathematic" approach should be used only for numerical and kinematic analyses. Loads and axial forces are of no importance when solving the general eigenvalue problem.

The matrix types for eigenvalue solutions are described in more detail in [1], Chapter 7.

Normalization of Eigenvectors

```
Normalization of Eigenvectors

\textcircled{Such} that |u| = 1

\bigcirc Such that max \{u_{3}; u_{7}; u_{2}\} = 1

\bigcirc Such that max \{u_{3}; u_{7}; u_{2}; \varphi_{3}; \varphi_{7}; \varphi_{2}\} = \underline{1}

\bigcirc Erom geometric stiffness such that \{u_{j}\}^{T} [KG] \{u_{j}\} = 1
```

Figure 2.8: Normalization of the Eigenvectors

The eigenvectors can be normalized ("norm one") differently:

- Maximum displacement |u| = 1
- Maximum global displacement (max from $u_X, u_Y, u_Z) = 1$
- Maximum global deformation (max from $u_X, u_Y, u_Z, \varphi_X, \varphi_Y, \varphi_Z) = 1$
- Maximum value of the product $\{u_j\}^T \cdot [K_G] \cdot \{u_j\} = 1$ where:
 - $\{u_i\}^T$: Transposed eigenvector
 - [K_G] : Geometric stiffness
 - $\{u_i\}$: Eigenvector

Depending on the specification, the greater displacement or deformation represents the reference value one, to which the other results are scaled.

Setting for Graphic

```
Setting for Graphic

      Image: Setting for Graphic

      Display local torsional rotations of members from

      \phi_x:
      0.200

      Image: Graphic form

      [-]
```

Figure 2.9: Setting for Graphic

Use this check box to display the *torsional rotation of members* in the results graphic of the eigenvectors (see figure on the left).

By default, only torsional rotations φ_x with normalized values greater than 0.2 are displayed. This ensures a clear representation in the graphic.

Comment

In this text box, you can type user-defined notes describing, for example, the current analysis case.

3 Calculation

3.1 Check

Before starting the calculation, check if the input data is correct. To do this, click [Check] in the bottom part of the module.

If the module finds an inconsistency, a warning appears showing the corresponding information.

Incorrect entry!
Incorrect number of eigenvalues. Possible: <1,1000>
OK

Figure 3.1: Result of check

3.2 Start Calculation

Calculate

Check

To start the calculation, click the [Calculation] button.

RF-STABILITY searches for the axial forces to be taken into account in the stability analysis. If no results are available for the load case or load combination, the RFEM calculation starts to determine the internal forces.

You can also start the calculation in the RFEM user interface. The *To Calculate* dialog box (menu **Calculate** \rightarrow **To Calculate**) lists the add-on module cases as well as load cases and load combinations.

To Calculate						×
Load Case	/ Combinations / Module Cases Result Tables					
Not Calcul	ted			Selected for C	Calculation	
No.	Description	-		No.	Description	_
G LC1	Self-weight Imposed load			CA1	RF-STABILITY - Stability analysis linear	
Imp LC3	Imperfections					
CO1	Design values					
CO2	Characteristic values					
CA1	RF-STEEL Members - General stress analysis of steel members					
			>>			
		-	_			
		=	4			
			4			
		-				-
AI	-	Q				
2 6						OK Cancel

Figure 3.2: Dialog box To Calculate

If the RF-STABILITY cases are missing in the *Not Calculated* list, select *All* or *Add-on Modules* in the drop-down list at the end of the section.

To transfer the selected RF-STABILITY cases to the list on the right, use the button. Click [OK] to start the calculation.

2

To calculate an analysis case directly, use the list in the RFEM toolbar. Select the relevant RF-STA-BILITY case in the list, and then click [Show Results].

Figure 3.3: Direct calculation of an RF-STABILITY case in RFEM

You then can observe the stability analysis process in a separate dialog box.

FE-Calculation		×
FE-SOLVER	Running RFEM - Calculation by FEM RF-STABILITY - Analysis of Stability Partial Steps RF-STABILITY - Analysis of Stability Partial Steps RF-STABILITY - Analysis of Stability Processing Input Data Creating 3D-Bement Stiffness Matrices Creating 2D-Bement Stiffness Matrices Creating 1D-Bement Stiffness Matrices Creating Global Stiffness Matrices Creating Global Stiffness Matrices Lanczos method Stum Sequence Check Determining 2D-Bement Internal Forces Determining 1D-Bement Internal Forces	0 0 883 843 5058 333
4	[u] [9] 🖉 Cancel	√ Graph

Figure 3.4: RF-STABILITY calculation

In the eigenvalue analysis according to one of the direct calculation methods, the so-called *Sturm Sequence Check* is run. It checks whether all eigenvalues are found in a certain interval. The diagonal matrix from the GAUSS decomposition is used, whose number of negative diagonal elements corresponds to the number of eigenvalues below the corresponding interval boundary. The Sturm check is carried out for the given interval limits. From this, the difference is determined.

4 Results

The results are shown in the tables of the results windows 2.1 through 2.5.

Immediately after the calculation, the 2.1 *Design by Load Case* window appears. The Windows 2.2 through 2.5 show the effective lengths and critical loads as well as the eigenvectors sorted by certain criteria.

OK

To go to a window, click the corresponding entry in the navigator. To go to the previous or next input window, use the buttons shown on the left. Alternatively, you can use the function keys to go the next [F2] or previous [F3] window.

Click [OK] to save the results. Thus you exit RF-STABILITY and return to the main program.

Chapter 4 *Results* describes the different results windows one by one. Evaluating and checking results is described in Chapter 5 on page 21.

4.1 Critical Load Factors

The first results window provides information on the critical load factors of the model.

RF-STABILITY - [RFEM-Example-06]	1					X
File Settings Help						
CA1 - Stability analysis 👻 2	2.1 Critica	I Load Factors				
Input Data		А	В		С	
General Data	E-Value	Critical Load Factor	Magnification Factor			
Results	No.	f [-]	α [-]		Message	
Critical Load Factors	1	31.757	1.033			
Effective Lengths and Critical L	2	33.648	1.031			
Eigenvectors by Node	3	43.927	1.023			
Eigenvectors by Member	4	152.180	1.007			
Ligenvectors by barrace	5	1/3.829	1.006			
	7	224.626	1.004			
	8	227.200	1.004			
	0	233.003	1.004			
				Infinity norm of stiffness matrix:	0.000e+000 [-]	🎱 🖪 🖪
< <u> </u>						
			Gr	aphics		OK Cancel
	_					

Figure 4.1: Window 2.1 Critical Load Factors

E-Value No.

For each eigenvalue, the table shows the critical load and magnification factors. The result rows are sorted by numbers of the eigenvectors.

Critical Load Factor f

The table shows the critical load factor for each eigenvalue. If the factor is less than 1.00, this means that the structural system is unstable. A factor higher than 1.00 means that the loading from the given axial forces multiplied with this factor results in system failure due to buckling.

4 Results

According to [2], clause 5.2.1(3), critical load factors less than 10 for elastic calculations require a second-order analysis.

If the table output contains a negative critical load factor, no stability failure occurs because of the tension forces. No conclusion about the expected buckling behavior is possible.

Magnification Factor α

The magnification factor is determined as follows:

$$\alpha = \frac{1}{1 - 1/f} \tag{4.1}$$

The magnification factor describes the relation between the moments according to the geometrically linear static and the second-order analysis.

$$M'' = \alpha \cdot M' \tag{4.2}$$

where

- M^I: Moment according to geometrically linear static analysis, but taking into account the equivalent loading for the deformation
- M^{II} : Second-order moment

Equation 4.2, however, applies only if the bending line due to the loading of the eigenvector is similar, and if the critical load factor f is greater than 1.00.

Message

In column C, a message about a negative critical load factor might appear. This means a reversed direction of action of the given loading (inverse signs) would result in buckling failure.

You can avoid negative critical load factors by increasing the eigenvectors to be calculated or by using the ICG iteration method.

Infinity norm of stiffness matrix: 5.053E+10 [-]

At the lower end of the table, the *Infinity norm of stiffness matrix* is given. With this mathematical norm, you can estimate the magnitude of the highest eigenvalue. This value is important for, e.g., the precision of the solution (see [1], Chapter 3, 2.2.3 and Chapter 7).

4.2 Effective Lengths and Critical Loads

2.2 Effective Lengths and Critical Loads

	A	B	С	D	F	F	G	H		
Member	Node	No.	Length	E-vector	Effective	Length [m]	Effective Len	gth Factor [-]	Critical Load	
No.	Start	End	L [m]	No.	L _{cr,y}	Lor,z	k _{or,y}	k _{or,z}	N _{or} [kN]	
73	43	46	2.071	3	108.553	49.498	52.427	23.906	3.122	
				4	100.129	45.657	48.359	22.051	3.669	
74	45	29	2.500	1	82.792	19.530	33.117	7.812	85.187	
				2	82.680	19.504	33.072	7.802	85.417	
				3	65.909	15.548	26.364	6.219	134.419	
				4	60.795	14.341	24.318	5.737	157.987	
75	48	49	4.000	1	40.339	10.864	10.085	2.716	71.992	
				2	40.285	10.850	10.071	2.712	72.186	
				3	32.113	8.649	8.028	2.162	113.598	
				4	29.621	7.978	7.405	1.994	133.516	
76	49	24	4.000	1	40.354	10.868	10.088	2.717	71.940	
				2	40.299	10.854	10.075	2.713	72.134	
				3	32.125	8.652	8.031	2.163	113.515	
				4	29.632	7.981	7.408	1.995	133.418	
77	50	49	3.000	1	7.297	4.108	2.432	1.369	184.677	
				2	7.287	4.102	2.429	1.367	185.175	
				3	5.809	3.270	1.936	1.090	291.406	
				4	5.358	3.016	1.786	1.005	342.499	
78	45	48	4.141	1		Tensile forc	e in member ->	No calculation		
				2		Tensile forc	e in member ->	No calculation		
				3		Tensile forc	e in member ->	No calculation		
				4		Tensile forc	e in member ->	No calculation		
79	46	49	2.071	1	339.093	154.621	163.769	74.676	0.320	
				2	338.637	154.413	163.549	74.576	0.321	
				3	269.946	123.091	130.374	59.448	0.505	
				4	248.998	113.539	120.257	54.835	0.593	
80	48	32	2.500	1	86.779	20.471	34.712	8.188	77.539	
				2	86.662	20.443	34.665	8.177	77.748	
				3	69.083	16.297	27.633	6.519	122.350	
				4	63.722	15.032	25.489	6.013	143.803	
81	4	21	6.408	1		Fail	ure -> No calcu	ation		
				2		Fail	ure -> No calcu	ation		
				3		Fail	ure -> No calcu	ation		
				4		Fail	ure -> No calcu	ation		

Figure 4.2: Window 2.2 Effective Lengths and Critical Loads

Sort according to:
 Members
 Eigenvectors

This results window is displayed if the model contains members. You can sort the effective lengths and critical loads according to *Members* or *Eigenvectors*.

Member No.

The results of the stability analysis are shown for all members of the model. Members subject to tension forces and failed members are indicated accordingly.

Node No. Start / End

Every member is defined by a start and end node. The numbers are shown in these two columns A and B, respectively.

Length L

This column shows the geometric length of each member.

E-vector No.

If the table is sorted by members, this column shows you the numbers of eigenvectors.

Effective Length $L_{cr,y}/L_{cr,z}$

The effective length $L_{cr,v}$ (or $L_{cr,u}$) describes the buckling behavior perpendicular to the major member y axis (or u for unsymmetric cross-sections). Accordingly, $L_{cr,z}$ or $L_{cr,v}$ describe the deflection perpendicular to the minor member z axis (or v).

The effective lengths L_{cr} are based on the member-specific critical loads shown in column I. These loads are relative to the critical load of the total model. This means that the effective lengths need to be evaluated in the context of the relation of the member axial forces to the total critical load. For simple cases, the effective lengths are known as the EULER buckling modes 1 through 4.

In some cases, the most unfavorable critical load of the system can be the critical load of an isolated, that is, an individual member that is connected by a hinge (see Chapter 8.3, page 38). This can be seen in the graphic of the corresponding eigenvectors, because a sinusoidal wave is available only on this member. In this case, the structure shows a so-called local instability. The effective lengths of all other members cannot be used for this buckling mode. Therefore, they must be taken from a "higher" eigenvector. The total model fails only there.

Effective Length Factor $k_{cr,y}/k_{cr,z}$

The effective length factors relating to the local member axes y and z (or u and v) describe the ratio of effective and member length.

Effective length factor k_{cr}:

$$k_{cr} = \frac{L_{cr}}{L} \tag{4.3}$$

Critical Load N_{cr}

This table column shows for each member the critical axial force N_{cr} that was determined relative to the respective eigenvector. Therefore, the individual critical loads and the corresponding effective lengths must always be seen in the context of the corresponding critical load of the total system.

4.3 Eigenvectors by Node

2.3 Eigenvectors by Node

	A	В	С	D	E	F	G	
Node	E-vector	Normal	ized Displacem	ents [-]	Nom	nalized Rotation	ns [-]	
No.	No.	ux	uγ	uz	φx	ΦY	φz	
14	1	0.00065	-0.00015	0.00000	0.00014	-0.00005	0.00000	
	2	0.00361	-0.00057	0.00000	0.00054	-0.00052	-0.00002	
	3	0.25062	-0.03569	-0.00003	0.03669	-0.03811	-0.00110	
	4	-0.00900	0.00089	0.00000	-0.00100	0.00137	0.00004	
15	1	0.00064	-0.00009	0.00001	0.00000	0.00003	0.00000	
	2	0.00359	-0.00030	0.00002	-0.00014	-0.00020	-0.00001	
	3	0.24975	-0.01709	0.00038	0.00261	-0.01717	-0.00073	
	4	-0.00897	0.00032	-0.00001	-0.00005	0.00063	0.00002	
16	1	-0.00002	-0.00006	0.00000	0.00000	0.00000	-0.00001	
	2	-0.00010	-0.00015	-0.00001	0.0000	0.00000	-0.00004	_
	3	-0.00712	-0.00728	-0.00109	0.00036	-0.00025	-0.00252	
	4	0.00023	0.00004	0.00004	-0.00003	0.00001	0.00007	
17	1	0.00065	-0.00006	0.00016	-0.00003	0.00001	-0.00001	
	2	0.00364	-0.00016	0.00086	-0.00020	0.00007	-0.00003	
	3	0.25362	-0.00765	0.05984	-0.00780	0.00491	-0.00206	
	4	-0.00911	0.00004	-0.00215	0.00029	-0.00018	0.00005	
18	1	-0.00002	-0.00012	0.00001	-0.00001	0.00000	0.00000	
	2	-0.00009	-0.00042	0.00003	-0.00005	0.00000	-0.00002	
	3	-0.00704	-0.02512	0.00213	-0.00331	-0.00005	-0.00161	
	4	0.00023	0.00057	-0.00006	0.00008	0.00000	0.00005	
19	1	0.00065	-0.00012	-0.00007	0.00008	0.00001	0.00000	
	2	0.00364	-0.00043	-0.00077	0.00033	0.00007	-0.00001	
	3	0.25376	-0.02600	-0.05716	0.02875	0.00483	-0.00031	
	4	-0.00911	0.00059	0.00204	-0.00085	-0.00017	0.00001	
20	1	0.00002	-0.00006	0.00000	-0.00001	0.00000	-0.00001	
	2	0.00007	-0.00016	0.00001	-0.00001	0.00000	-0.00004	
	3	0.00384	-0.00773	0.00057	-0.00037	0.00013	-0.00256	
	4	-0.00009	0.00005	-0.00001	-0.00001	0.00000	0.00007	
21	1	0.00002	-0.00012	0.00000	-0.00002	0.00000	-0.00001	
	2	0.00007	-0.00042	-0.00002	-0.00006	0.00000	-0.00003	
	3	0.00377	-0.02539	-0.00090	-0.00346	0.00000	-0.00210	
	4	-0.00008	0.00057	0.00002	0.00008	0.00000	0.00007	
22	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
Sort acc	ording to:	Node	es (Eigenvectors				🔊 🎒 🖺

Figure 4.3: Window 2.3 Eigenvectors by Node

Sort according to: NodesEigenvectors

For each eigenvector, the table shows the normalized displacements and rotations of the nodes in the model. You can sort the window according to *Nodes* or *Eigenvectors*.

Node No.

The eigenvectors are listed for the objects defined in the RFEM Table 1.1 *Nodes*. Results in the FE nodes or in the member division points are not shown in the table.

E-vector No.

The deformations are listed for each calculated eigenvector.

Normalized displacements $u_{\chi} / u_{\gamma} / u_{Z}$

The displacements listed in columns B through D are relative to the axes of the global coordinate system. They are normalized to the extreme value 1 of the total displacement or the maximum given in Window 1.1 *General Data* (see Figure 2.8, page 11).

Normalized rotations $\varphi_X / \varphi_Y / \varphi_Z$

The columns E through G list the values of the normalized nodal rotations.

If the table shows only zero values for the normalized displacements of a member model, the reason is often to be found in large torsions within the members (see the figure below). These effects do not influence the displacements of the member ends. Therefore, the displayed effective lengths and critical loads are not very conclusive for these members.

Figure 4.4: Torsion of a thin-walled rectangular column

4.4 Eigenvectors by Member

This results window is shown only if the model contains members.

	A	В	C	D	E	F	G	H		
lember	Node	Location	E-vector	Normaliz	ed Displacem	ents [-]	Norm	alized Rotations	[-]	
No.	No.	x [m]	No.	ux	uy	Uz	φx	φy	φz	
1	1	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
			2	0.00000	0.00000	0.00000	0.00000	0.00002	0.00000	
			3	0.00000	0.00000	0.00000	0.00000	0.00165	0.00066	
			4	0.00000	0.00000	0.00000	0.00000	-0.00005	-0.00005	
	2	5.000	1	0.00000	-0.00002	-0.00002	0.00001	0.00000	0.00000	
			2	0.00000	0.00001	-0.00009	0.00004	0.00001	0.00000	
			3	0.00003	0.00318	-0.00705	0.00270	0.00093	0.00062	
			4	0.00000	-0.00022	0.00023	-0.00007	-0.00003	-0.00004	
2	3	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	-0.00002	
			2	0.00000	0.00000	0.00000	0.00000	0.00002	-0.00009	
			3	0.00000	0.00000	0.00000	0.00000	0.00157	-0.00578	
			4	0.00000	0.00000	0.00000	0.00000	-0.00005	0.00014	
	4	5.000	1	0.00000	-0.00012	-0.00002	0.00000	0.00000	-0.00002	
			2	-0.00001	-0.00045	-0.00009	0.00001	0.00001	-0.00009	
			3	-0.00040	-0.02825	-0.00694	0.00074	0.00101	-0.00551	
			4	0.00001	0.00071	0.00023	-0.00003	-0.00003	0.00014	
4	2	0.000	1	-0.00002	-0.00002	0.00000	0.00000	0.00000	-0.00001	
			2	-0.00009	0.00001	-0.00001	0.00001	0.00001	-0.00004	
			3	-0.00703	0.00318	-0.00047	0.00079	0.00093	-0.00266	
			4	0.00023	-0.00022	0.00002	-0.00005	-0.00003	0.00007	
	16	4.008	1	-0.00002	-0.00006	0.00000	0.00000	0.00000	-0.00001	
			2	-0.00009	-0.00015	-0.00002	0.00000	0.00000	-0.00004	
			3	-0.00704	-0.00728	-0.00154	0.00052	-0.00025	-0.00249	
			4	0.00023	0.00004	0.00006	-0.00003	0.00001	0.00007	
5	5	0.000	1	-0.00002	-0.00009	0.00001	-0.00001	0.00000	-0.00001	
			2	-0.00009	-0.00030	0.00002	-0.00002	-0.00001	-0.00003	
			3	-0.00692	-0.01693	0.00121	-0.00086	-0.00053	-0.00231	
			4	0.00023	0.00032	-0.00003	0.00001	0.00002	0.00007	
	18	4.008	1	-0.00002	-0.00012	0.00001	-0.00001	0.00000	0.00000	
			2	-0.00009	-0.00042	0.00004	-0.00006	0.00000	-0.00002	
	1		3	-0.00690	-0.02512	0.00256	-0.00340	-0.00005	-0.00140	
			4	0.00023	0.00057	-0.00008	0.00008	0.00000	0.00005	
6	6	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
			2	0.00000	0.00000	0.00000	0.00000	-0.00002	0.00000	

Figure 4.5: Window 2.4 *Eigenvectors by Member*

The columns are described in detail in Chapter 4.3. In addition, the *Location* x is given for the start and end node of the corresponding member.

Sort according to:
Members
Eigenvectors

You can sort this window according to Members or Eigenvectors.

4.5 Eigenvector by Surface

This Window is shown only if the model contains surfaces.

	A	B	C	D	E	F	G	H		J	K	
face	Point		Location [m]		E-vector	Normaliz	ed Displaceme	nts [-]	Norm	alized Rotation	is [-]	
No.	No.	X	Y	Z	No.	ux	uy	uz	φx	ΦY	φz	
1	2	9.500	0.000	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	
					3	0.00217	-0.00244	0.00140	-0.00964	-0.00251	-0.00079	
					4	-0.00087	0.00022	-0.00569	0.05515	0.01261	0.00443	
	3	9.500	6.000	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	
					3	0.00150	-0.00145	0.00110	0.00111	0.01003	0.00169	
					4	-0.00016	-0.00234	-0.00070	-0.03336	0.00965	-0.00294	
	5	11.500	3.000	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					3	0.00292	-0.00138	0.00051	-0.00008	-0.00395	0.00017	
					4	-0.00142	-0.00144	-0.00058	-0.00057	0.01468	0.00002	
	20	11.465	2.524	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					3	0.00298	-0.00151	0.00052	-0.00056	-0.00399	0.00014	
					4	-0.00143	-0.00152	-0.00015	0.00088	0.01349	-0.00012	
	21	9.500	4.500	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					3	0.00274	-0.00182	-0.00817	0.00912	-0.00751	0.00125	
					4	-0.00084	-0.00205	0.06400	-0.04463	0.06007	-0.00205	
	22	11.465	3.476	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					3	0.00283	-0.00126	0.00044	0.00037	-0.00368	0.00021	
					4	-0.00145	-0.00149	-0.00075	-0.00240	0.01487	0.00006	
	23	11.361	3.942	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					3	0.00270	-0.00117	0.00032	0.00072	-0.00322	0.00024	
					4	-0.00147	-0.00165	-0.00078	-0.00442	0.01454	0.00000	
	24	11.189	4.387	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					3	0.00256	-0.00113	0.00016	0.00092	-0.00263	0.00027	
					4	-0.00142	-0.00187	-0.00079	-0.00670	0.01415	-0.00010	
	25	10.954	4.803	0.000	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
					2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	

Figure 4.6: Window 2.5 Eigenvectors by Surface

Sort according to:
 Surfaces
 Eigenvectors

You can sort the list according to Surfaces or Eigenvectors.

Point No.

The results are shown for each grid point of the surface.

You can control the grid points in RFEM, because user-defined result grids are possible for surfaces. This function is described in Chapter 8.12 of the RFEM manual. By default, the result grid has a mesh size of 50 cm.

Location X / Y / Z

The columns B through D (or C through E) indicate the location of the grid points in the global coordinate system.

Normalized Displacements $u_X / u_Y / u_Z$

The displacements given in the columns F through H refer to the axes of the global coordinate system. They are normalized to the maximum specified in the 1.1 *General Data* Window (see Figure 2.8, page 11).

Normalized Rotations $\varphi_{\rm X}$ / $\varphi_{\rm Y}$ / $\varphi_{\rm Z}$

The column I through K show the values of the normalized nodal rotations.

5 Evaluation of Results

You can evaluate the eigenvalue analysis in various ways. To evaluate the results graphically, use the RFEM work window.

5.1 Results Windows

First you should check the Critical Load Factors given in Window 2.1.

Negative Critical Load Factor

If a negative critical load factor is shown, this means that no buckling failure due to tension forces could be found. That is, if the load were to act in the opposite direction (inverse signs), the model would buckle. Negative critical load factors can often be avoided by increasing the eigenvectors to be determined or using the ICG iteration method.

Critical load factor < 1

Critical load factors less than 1.00 indicate that the system is unstable.

2.1 Critica	al Load Factors		
	A		В
E-Value	Critical Load Facto	r	Magnification Factor
No.	f [-]		α[-]
1		0.822	1
2		1.510	2.961
3		1.510	2.961
4		1.979	2.022

Figure 5.1: Unstable system

Only a positive critical load factor that is higher than 1.00 permits to say that the loading due to the specified axial forces multiplied with this factor results in the buckling of the stable structural system.

Effective Lengths

For members, in Window 2.2 the effective length factors k_{cr} are shown for each eigenvector. They describe the buckling behavior perpendicular to the respective axes.

2.2 Effecti	ve Lengtł	ns and Cr	itical Loads						
	A	В	С	D	E	F	G	Н	
Member	Member Node No.			E-vector	Effective	Length [m]	Effective Len	Critical Load	
No.	Start	End	L [m]	No.	L _{or.y}	L _{or,z}	k _{or,y}	k _{or,z}	N _{cr} [kN]
1	1	2	5.000	1	69.309	14.611	13.862	2.922	203.013
				2	69.216	14.591	13.843	2.918	203.560
				3	55.175	11.631	11.035	2.326	320.338
				4	50.894	10.729	10.179	2.146	376.504
2	3	4	5.000	1	69.188	14.585	13.838	2.917	203.725

Figure 5.2: Effective length factors k_{cr} of members

During the analysis, the program increases the axial forces iteratively until the critical load case occurs. From this critical load factor, RF-STABILITY determines the critical load. In turn, the critical load allows the determination of the effective lengths and effective length factors.

If you want to show, for example, the governing effective length factor $k_{cr,y}$ for the deflection perpendicular to the major member y-axis, you normally have to calculate several eigenvectors. For square sections, you obtain the same effective lengths and effective length factors in both axis directions.

The effective length factors for continuous members cannot be determined directly by RF-STA-BILITY. It is only possible to evaluate the results of the individual members. The member with the lowest critical load N_{cr} can be considered as governing for the entire set of members. Then, the

 $k_{\rm cr}$ values can be determined from the effective length of this member and the total length of the set of members.

5.2 Results on the RFEM Model

You can also evaluate the results in the RFEM work window.

RFEM background graphic

The RFEM work window in the background is useful for finding the position of a surface or member in the model. The member selected in the results window of RF-STABILITY is marked in the background graphic with the selection color. Furthermore, an arrow indicates the member x-location selected in the currently chosen table row. To locate the member, move the RF-STABILITY window.

Figure 5.3: Indication of the member in the current eigenvector of the RFEM model

If you cannot improve the display by moving the RF-STABILITY window, click 🔝 to select the object graphically. The window is now hidden so that you can select the surface or member by clicking it. If necessary, you can also change the view. You can use the functions of the *View* menu, for example zooming, moving, or rotating the display. The indication arrow remains visible.

The buttons in the results windows have the following functions:

Button	Description	Function
₹ \$	Select objects in RFEM graphic	Allows you to graphically select an object (member, node, surface) to display its results in the table
Y	Graphic of the current eigenvector	Shows or hides the eigenvector of the current table row in the RFEM graphic
	Color bars	Shows or hides the color reference scales in the results windows
	Excel export	Exports the table to MS Excel / OpenOffice \rightarrow Chapter 7.3, page 31

Table 5.1: Buttons in the results windows 2.1 through 2.5

RFEM work window

Graphics

The graphical evaluation of the individual eigenvectors is a good way to evaluate the stability behavior of the model: First, click [Graphic] to exit the RF-STABILITY module. Now, the eigenvectors are displayed graphically on the model in the work window of RFEM similar to the deformations of a load case.

CO1 - 1.35*LC1 + 1.5*LC2 > LC1 - Self-weight LC2 - Imposed load RF-STABILITY CA1 - Stability analysis linear RF-STABILITY CA2 - Stability analysis nonline

The current RF-STABILITY case is preset. The Results navigator controls which displacements or rotations are graphically displayed as an Eigenvector.

Figure 5.4: Results navigator for RF-STABILITY

In addition to the total vector u, you can specifically display the displacement and rotation components in each of the global directions.

The options Sections and Values on Surfaces can also be used for the graphical evaluation of eigenvectors. These functions are described in Chapter 9.6 and 9.4 of the RFEM manual.

Similar to the display of deformations, the [Show Results] button switches on or off the display of the eigenvectors. To show or hide the result values in the graphic, click the [Show Values] button to the right.

You may deactivate the RFEM tables, because they are of no relevance for the evaluation of the stability analysis.

The panel is adjusted to RF-STABILITY. Chapter 3.4.6 of the RFEM manual describes the standard functions in detail.

In the Factors tab of the panel, you can select the eigenvectors.

Panel
Display Factors
Eigenvector No .:
3 - 14.76
1-8.48
2 - 10.16 3 - 14.76
4 - 16.54
5 - 18.34 6 - 23.60
7 - 24.86
9 - 25.83
10 - 27.20
RF-STABILITY
1 🖉 🖉

Figure 5.5: Selection of eigenvector in the Factors

1

If the members or surfaces that are prone to buckling are difficult to find, increase the *Factor* of the deformation in the *Factors* tab of the panel. The animation of deformations is also a useful function. To activate it, click the button shown on the left.

You can control the results display of the members in the *Display* navigator by selecting **Results** \rightarrow **Deformation** \rightarrow **Members**. By default, the eigenvectors are shown as *Lines*. The two other options can also be used to represent the buckling behavior.

Figure 5.6: *Display* navigator: Results \rightarrow Deformation \rightarrow Members \rightarrow Cross-Sections Colored

You can transfer the graphics of the eigenvectors to the printout report (see Chapter 6.2, page 26). To return to the add-on module, click [RF-STABILITY] in the panel.

RF-STABILITY

5.3 Filter for Results

The results windows in RF-STABILITY allow for a selection by various criteria. In addition to this, you can use the filter options described in the RFEM manual, Chapter 9.9. The options allow you to graphically evaluate the results of the stability analysis.

In RF-STABILITY, you can also use the options of the *Visibilities* (see RFEM manual, Chapter 9.9.1) to filter the members in order to evaluate them.

Filtering eigenvectors

Graphics

The normalized deformations can be used as filter criterion in the RFEM work window. To go to the RFEM window, click [Graphics]. To apply this filter function, the panel must be displayed. If it is not, select in the RFEM menu

$\textbf{View} \rightarrow \textbf{Control Panel}$

1

or use the toolbar button shown on the left.

The panel is described in the RFEM manual, Chapter 3.4.6. You define the filter settings for the results in the first tab of the panel (Color Spectrum). This tab is not available for the line or cross-section display. Therefore, you have to select the *Cross-Sections Colored* option in the *Display* navigator (see Figure 5.6).

In the panel you can specify, for example, that only normalized deformations greater than 0.55 are shown. This option makes it easier to locate the areas prone to buckling.

Filtering members and surfaces

In the *Filter* tab of the control panel, you can specify the numbers of selected members or surfaces to filter the display of the eigenvectors. This function is described in the RFEM manual, Chapter 9.9.3. In contrast to the visibility function, the model is displayed, too.

Figure 5.7: Member filter for eigenvectors of a frame beam

6 Printout

6.1 Printout Report

Like in RFEM, the program generates a printout report for the RF-STABILITY results, to which you can add graphics and descriptions. In the printout report, you can select which data of the stability analysis will finally appear in the printout.

The printout report is described in the RFEM manual. In particular, Chapter 10.1.3.4 *Selecting Data of Add-on Modules* describes how to select input and output data from add-on modules for the printout report.

6.2 Graphic Printout

In RFEM, you can add every picture displayed in the work window to the printout report or send it directly to a printer. In this way, you can also prepare the eigenvectors displayed on the RFEM model for the printout.

Printing graphics is described in the RFEM manual, Chapter 10.2.

To print the current eigenvector, click

 $\mathbf{File}
ightarrow \mathbf{Print}$

or use the toolbar button shown on the left.

ß	R	FEM 5	5.03.111	.1 (64bi	t) - [Stee	el Constructi	on, LC1]
i z	5	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Insert	<u>C</u> alculate	<u>R</u> esults
ł		2	9 8		1 💦 🖻		🔏 🔇
	9	- 9	· ½ ·	- 4 7 -	Print	Graphic 🛃	- <u>9××</u> 🖭

Figure 6.1: Button [Print Graphic] in RFEM toolbar

The result distributions of sections or members can also be transferred to the report or printed directly by using the [Print] button.

Figure 6.2: Button Print in the toolbar of the results diagram window

The Printout Report dialog box appears (see the following figure).

6 Printout

iraphic Printout					
General Options Color Scale Factors Borde	der and Stretch Factors				
Graphic Picture ○ Directly to a printer ⑧ To a printout report: PR1 ▼ ○ To the Clipboard ○ To 3D PDF	Window To Print Graphic Size © Current only © As screen view More @ Window filling Mass print © To scale 1:				
Graphic Picture Size and Rotation Image: Use whole page width Use whole page height Image: Height: 49 Image: The second sec	Options Show results for selected x-location in result diagram Lock graphic picture (without update) Show printout report on [OK]				
Header of Graphic Picture RF-STABILITY - Eigenvector u, CA1, Isometric					
\mathfrak{D}	OK Cancel				

Figure 6.3: Dialog box Graphic Printout, tab General

This dialog box is described in the RFEM manual, Chapter 10.2. The manual also describes the *Options* and *Color Scale* tab.

To move a graphic within the printout report, use the drag-and-drop function.

Remove from Printout Report Start with New Page Selection... Properties... To adjust a graphic in the printout report after the fact, right-click the corresponding entry in the navigator of the printout report. The *Properties* option in the context menu return you to the *Graphic Printout* dialog box, offering various options for adjustment.

iraphic Printout					
General Options Color Scale Fac	tors Border and Stretch	Factors			
Script	Symbols	Frame			
Proportional	Proportional	None			
 Constant 	Constant	Framed			
Factor: 1	Factor: 1	Title box			
Print Quality		Color			
Standard (max 1000 x 1000 Pixels))	◎ Grayscale			
Maximum (max 5000 x 5000 Pixels))	Texts and lines in black			
O User-defined		All colored			
Max number of pixels:	1000				
٦		OK	xel		

Figure 6.4: Dialog box Graphic Printout, tab Options

7 General Functions

This chapter describes useful menu functions and export options for the results of the stability analysis.

7.1 **RF-STABILITY Analysis Cases**

Analysis cases (or RF-STABILITY cases) allow you to evaluate different aspects of stability. For example, you can analyze the influence of the axial force from different load cases or load combinations with or without the consideration of tensile forces.

To select the analysis cases of RF-STABILITY, you can also use the load case list in the RFEM toolbar.

Creating a new analysis case

To create a new analysis case, select on the RF-STABILITY menu

File ightarrow New Case.

The following dialog box appears:

New RF-ST	ABILITY Case	x
No.	Description Stability analysis	
		OK Cancel

Figure 7.1: Dialog box New RF-STABILITY Case

Enter a *Number* (one that is still available) for the new RF-STABILITY case. Define an appropriate *Description* to make the selection in the load case list easier later on.

Click [OK] to display the RF-STABILITY Window 1.1 *General Data*, where you can enter the new calculation parameters.

Renaming an analysis case

To change the description of an analysis case, select on the RF-STABILITY menu

$\textbf{File} \rightarrow \textbf{Rename Case}.$

The following dialog box appears:

Rename RF-STABILITY Case				
No.	Description New Description	•		
Ø		OK Cancel		

Figure 7.2: Dialog box Rename RF-STABILITY Case

In this dialog box, you can specify a different *Description* as well as a different *Number* for the analysis case.

Copying an analysis case

To copy the input data of the current analysis case, select on the RF-STABILITY menu

File ightarrow Copy Case.

The following dialog box appears:

Copy RF-S	Copy RF-STABILITY Case			
Copy from	n Case			
CA2 - Ne	ew Description	▼		
New Cas	e			
No.:	Description:			
3	Load incement	· · · · · · · · · · · · · · · · · · ·		
D		OK Cancel		

Figure 7.3: Dialog box Copy RF-STABILITY Case

Define the No. and, if necessary, a Description for the new case.

Deleting an analysis case

To delete an analysis case, select on the RF-STABILITY menu

 $\textbf{File} \rightarrow \textbf{Delete Case}.$

The following dialog box appears:

Del	Delete Cases					
A	vailable	e Cases				
1	vo.	Description 🔺				
1		Stability analysis				
2		New Description				
3		Load incement				
		<u> </u>				
6	9)					
b	\mathcal{O}	OK Cancel				

Figure 7.4: Dialog box Delete Cases

You can select the analysis case in the Available Cases list. To delete the selected case, click [OK].

7.2 Units and Decimal Places

Units and decimal places for RFEM and the add-on modules are managed in one common dialog box. In the add-on module RF-STABILITY, you can use the menu to define the units.

To open the corresponding dialog box, select

Settings \rightarrow Units and Decimal Places.

The dialog box known from RFEM appears. RF-STABILITY is preset in the list *Program / Module*.

Units and Decimal Places	Units and Decimal Places				
Units and Decimal Places Program / Module PLATE-BUCKLING RF-CONCRETE Surfac RF-CONCRETE Columi RF-PUNCH RF-TIMBER Pro RF-TIMBER AWC RF-TIMBER AWC RF-TIMBER CSA RF-TIMBER RF-DYNAM RF-ON PLATE	RF-STABILITY Input and Output Data Unit Lengths: m Sim Forces: kN Sim Coefficients: m Sim Eigenvectors:				
RF-GLASS - RF-LAMINATE - RF-TOWER Structure - RF-TOWER Equipment - RF-TOWER Loading	ОК Сапсе				

Figure 7.5: Dialog box Units and Decimal Places

🖹 (ک

To reuse the settings in other models, save them as a user-profile. These functions are described in the RFEM manual, Chapter 11.1.3.

7.3 Exporting Results

The results of RF-STABILITY can also be used in other programs.

Clipboard

To copy cells selected in the results windows to the Clipboard, press the keys [Ctrl]+[C]. To insert the cells, for example in a word processor, press [Ctrl]+[V]. The headers of the table columns are not transferred.

Printout report

You can print the data of the RF-STABILITY add-on module into the global printout report (see Chapter 6.1, page 26) to export them subsequently. Then, in the printout report, click

```
\textbf{File} \rightarrow \textbf{Export in RTF}.
```

This function is described in the RFEM manual, Chapter 10.1.11.

Excel / OpenOffice

RF-STABILITY provides a function for the direct data export to MS Excel, OpenOffice Calc, or the CSV file format. To open the corresponding dialog box, select on the menu of the module

$\textbf{File} \rightarrow \textbf{Export Tables}.$

The following dialog box appears.

Export - MS Excel	×
Table Parameters	Application
☑ With table header	Microsoft Excel
Only marked rows	OpenOffice.org Calc
	CSV file format
Transfer Parameters	
Export table to active workbook	
Export table to active workshee	t
Rewrite existing worksheet	
Selected Tables	
Active table	Export hidden columns
All tables	Export tables with details
✓ Input tables	
Result tables	
2	OK Cancel

Figure 7.6: Dialog box Export - MS Excel

Having selected the relevant options, you can start the export by clicking [OK]. Excel or OpenOffice are started automatically; that is, you do not need to open the programs beforehand.

	🖹 🚽 🔊 🛪 🔍 👻 🔽 Table1.xlsx [Read-Only] - Microsoft Excel				
F	ile Ho	ome Insert Page Layout	Formulas Data Re	eview View Add-Ins S	2 🖷 🗕 🕄 🗸
	B1	$\mathbf{v} = \mathbf{f}_{\mathbf{x}}$	Critical Load Factor		~
	А	В	С	D	
1	E-Value	Critical Load Factor	Magnification Factor		
2	No.	f[-]	α[-]	Message	≡
3	1	9,890	1,112		
4	2	16,376	1,065		
5	3	16,376	1,065		
6	4	30,789	1,034		
7	5	30,791	1,034		
8	6	51,996	1,020		-
14 -	K ◀ ► ► 2.1 Critical Load Factors / 🔁 / 🛛 🕴 👘 🕨				
Rea	Ready 🔲 🔲 100% 🔵 💎 🕂				

Figure 7.7: Results in *Excel*

RF-IMP

If you want to use a buckling mode (eigenvector) from RF-STABILITY in the add-on module RF-IMP to generate equivalent imperfections or a pre-deformed initial model, you do not need to export the data. RF-IMP allows you to select the relevant eigenvector *No.* as well as the RF-STABILITY *Case* directly in the corresponding lists.

CA1	▼ 1.1 General Data	
Input Data	Generate Imperfections According to Deformation from RFEM Load Case, CO or RC: LC1 - g Buckling mode from module RF-STABILITY Natural vibration from module RF-DYNAM No.: Case: 2 CA1-Stability analysis Cenerated Imperfection L and Case	n f members for RFEM httial model tate of
	Export created imperfections to LC No: 6 Load case description: Imperfection in +X Comment Import buckling mode (eigenvector) No. 2 from RF-STABILITY	Ceneration of Equivalent Geometric Imperfections and Pre-deformed Initial Structures

Figure 7.8: Importing the eigenvector in the module RF-IMP

RF-STEEL EC3 / RF-ALUMINIUM / RF-KAPPA / RF-TIMBER Pro

The modules RF-STEEL ISC/AS/BS/CS/EC3/GB/IS/NTC-DF/SANS/SIA/SP, RF-ALUMINIUM, RF-KAPPA, and RF-TIMBER Pro provide the option to use the effective length factors from RF-STABILITY directly for the members that you want to analyze.

ielect Effective Length Factor			
Buckling About Axis y	Buckling About Axis z		
Rigid - free $\kappa_{\alpha,\gamma} = 2.0$ Hinged - hinged $\chi_{\alpha,\gamma} = 1.0$ Rigid - hinged $\kappa_{\alpha,\gamma} = 0.2$ Rigid - nigid $\kappa_{\alpha,\gamma} = 0.5$ User-defined $\kappa_{\alpha,\gamma} = \dots$	Bigid - free $K_{07,z} = 2.0$ Hinged - hinged y $k_{07,z} = 1.0$ y Rigid - hinged y $k_{07,z} = 0.7$ y Rigid - nigid y $k_{07,z} = 0.5$ y Uger-defined $k_{07,z} =$		
Import from add-on module RF-STABILITY (Eigenvalue Analysis) RF-STABILITY-Case: CA1 - Stability analysis Buckling mode No.: 2	Import from add-on module RF-STABILITY (Eigenvalue Analysis) RF-STABILITY-Case: CA1 - Stability analysis Buckling mode No.: 2		
Export effective length factor $k_{or,y}$: 1.000 $\stackrel{\wedge}{=}$ [-]	Export effective length factor $k_{or,z}$: 1.000 $\stackrel{\wedge}{\searrow}$ [-]		
	OK Cancel		

Figure 7.9: Selection of effective length factors in the add-on module RF-STEEL EC3

8 Worked Examples

8.1 Rectangular Plate

Determine the critical buckling load of a square plate with a length of 1 m.

Analytical solution

This surface is simply supported on all edges. The critical load N_{cr} can be analytically determined according to the following equation:

$$N_{cr} = \mathbf{k} \cdot \frac{\pi^2 \cdot \mathbf{E} \cdot h^3}{12 \cdot (1 - \nu^2) \cdot a^2}$$

For the square plate with a length of 100 cm, you obtain:

a = 100 cm

Steel S 235 is used as material.

 $\textit{E}=21.000~\rm kN/cm^2$

$$\nu = 0.30$$

The surface has a thickness of 2 cm:

 $h=2\ {\rm cm}$

For the critical load, you obtain:

$$N_{cr} = 4 \cdot \frac{\pi^2 \cdot 21,000 \cdot 2^3}{12 \cdot (1 - 0.30^2) \cdot 100^2} = 60.736 \text{ kN/cm} = 6,037.6 \text{ kN/m}$$

Solution with RFEM

The plate is defined with the following support conditions in RFEM.

1.8 Line	Supports											
	• 3 2		3 🗧 🛇	*	3	× ==	• 💾		S 🖌 🖉	ab=	$f_x \not \to_x$	
	A	B	C	D	E	F	G	H		J	K	
Support	1	Reference	Rotation	n Wall	Suppo	rt or Spring	[kN/m ²]	Rotational F	Restraint or S	pring (kNm	La Contra C	
No.	On Lines N	lo. System	β [°]	in Z	uχ	UY	uz	φχ	φY	φz	Comment	
1	1-3	🗟 <u>G</u> lobal					V					
2	4	Global			Image: A start of the start		v					
3												
4												
5												
							_					
Nodes	Lines Mate	rials Surface	s Solids	Openings	Nodal Supp	orts Line	Supports	Surface Supr	orts Line R	eleases (mss-Sections	Mem

Nodes Lines Materials Surfaces Solids Openings Nodal Supports Line Supports Surface Supports Line Releases Cross-Sections Mer List of supported lines (e.g. '1,3,5-7')

Figure 8.2: Line support

In addition, nodal supports with a small spring stiffness are defined for nodes 2 and 3, thus supporting the system in Y-direction.

1.7 Noda	I Supports											
	3 🖂 👹	🔁 🛃	60	•	3	× ≯			2	😤 🐼 🛛	s 🖬 📮)	$f_x \not \to_x$
	A	B	С	D	E	F	G	H		J	K	L
Support		S	upport Ro	otation [°]		Column	Support	or Spring	g [kN/m]	Rotational I	Restraint or Spri	ng [kNm/rad]
No.	On Nodes No.	Sequence	about X	about Y	about Z	in Z	ux	UY.	uz.	φx.	φY'	φZ'
1	2,3 📘	XYZ	0.00	0.00	0.00			0.010				
2												
3												
4												
5												

Nodes Lines Materials Surfaces Solids Openings Nodal Supports Line Supports Surface Supports Line Releases Cross-Sections Figure 8.3: Nodal support

The FE mesh has a size of 5 cm.

A uniform line load of 1,000 kN/m is applied as shown in Figure 8.1.

Specify the following in RF-STABILITY:

Canaral	Calculation Method
General	
Number of lowest eigenvalues (eigenvectors for	Stability analysis:
buckling) to be calculated	eigenvalue analysis
Find eigenvectors beyond critical load factor:	Increase load until structural failure
fn:	Eigenvalue method:
	Method by Lanczos
Import axial forces, nonlinear effects and initial	Roots of the characteristic polynomial
Load case / combination:	Subspace iteration method
	ICG iteration method
LC1 V	
	Type of matrix:
Options	Standard
Consider favorable effects due to tension	Standard
Activate division also for straight members	
A - Winster minimum initial answerse for and the set	Normalization of Figenvectors
membranes	
	Such that u = 1
Activate stiffness modifications from RFEM	\bigcirc Such that max {ux; uy; uz} = 1
Add initial axial forces from	\bigcirc Such that max {ux; uy; uz; φ x; φ y; φ z} = 1
	\bigcirc Erom geometric stiffness such that $\{u_i\}^T$ [Kg] $\{u_i\} = 1$
LC1 V	Overskiest Overs
	Graphical Settings
Calculate eigenvector for unstable model so that causes of	Display local torsional rotation of
instability can be checked grapfildally	members in greater than.
	φ _x : 0.200 😴 [-]

Figure 8.4: RF-STABILITY Window 1.1 General Data

As a result, RF-STABILITY yields a critical load factor of **6.0453**.

2.1 Critica	I Load Factors	
	A	В
E-Value	Critical Load Factor	Magnification Factor
No.	f [-]	α [-]
1	6.0453	1.1982

Figure 8.5: Critical load factor

From the critical load factor and the applied loading, you obtain:

 $N_{cr} = 6.0453 \cdot 1,000 \text{ kN}/\text{m} = 6,045.3 \text{ kN}/\text{m}$

Thus, the difference to the analytical solution is about 0.5 %.

RF-STABILITY determines the following eigenvector:

Figure 8.6: RF-STABILITY eigenvector

© DLUBAL SOFTWARE 2014

8.2 Circular Plate

Determine the critical load of a circular plate with a diameter of 3 m.

Figure 8.7: FE-model and loading

Analytical solution

The surface is simply supported on all edges. The critical load N_{cr} can be determined by using the following expression (see [3], p. 559):

 $N_{cr} = 14.86 \cdot \frac{E \cdot h^3}{12 \cdot (1 - \nu^2) \cdot a^2}$

The plate has a radius of 150 cm, therefore:

a = 150 cm

Steel S235 is used as material.

 $E = 21,000 \text{ kN/cm}^2 \nu = 0.30$

The surface has a thickness of 2 cm.

 $h=2\ {
m cm}$

For the critical load, you obtain:

$$N_{cr} = 14.68 \cdot \frac{21,000 \cdot 2^3}{12 \cdot (1 - 0.30^2 \cdot 150^2)} = 10.038 \text{ kN/cm} = 1,003.8 \text{ kN/m}$$

Solution with RFEM

The plate in RFEM has a locally defined line support.

1.8 Line	Supports									
	3 🖂 🦛 🛢	36	S 🔮 💈	3 3 3	×		•••	2 😭 😭 🛿	🛎 🖬 🔒 🤅	f _x ¥ _x
	A	В	C	D	E	F	G	H		J
Support		Reference	Rotation	Wall	Suppo	rt or Spring	[kN/m ²]	Rotational Res	traint or Spring	[kNm/rad/m]
No.	On Lines No.	System	β [°]	in Z	Cux	Cuy	Cuz	φx	φy	φz
1	1 🗟	<u>L</u> ocal	0.00		J		V	V		
2										
3										
4										
5										
Nodes	Lines Materials Si	Infaces Solid	ls Openings	Nodal S	upporte	ine Suppor	ts Surface	Supports Line	Releases Cr	se-Sections

List of supported lines (e.g. '1,3,5-7')

The rotation at the edge is thus restrained. Furthermore, the plate is supported in the perpendicular direction. The support in the line direction x prevents the torsion of the plate about the global Z-axis.

For the FE mesh, define an element length of 5 cm.

As loading, apply a line load of 100 kN/m corresponding to Figure 8.7.

Specify the following in RF-STABILITY:

Figure 8.9: RF-STABILITY Window 1.1 General Data

As result, RF-STABILITY yields a critical load factor of 10.050.

Load Factors	
A	B
Critical Load Factor	Magnification Factor
f [-]	α [-]
10.050	1.110
	Load Factors A Critical Load Factor f [-] 10.050

Figure 8.10: Critical load factor

From the critical load factor and the applied loading, you obtain:

Figure 8.8: Line support

 $N_{cr} = 10.050 \cdot 100 \text{ kN/m} = 1,005.0 \text{ kN/m}$

The difference to the analytical solution is thus about 0.1 %.

RF-STABILITY determines the following eigenvector:

Figure 8.11: RF-STABILITY eigenvector

8.3 Tapered Cantilever

This example is from [4]. The paper looks at the buckling modes and the loadings of tapered T-cantilevers by using experiments and FEM calculations.

In this example, beam 1 from Table 4 is used.

Figure 8.12: FE-model and loading

Length l	2,800	mm
Web depth h _{w0}	800	mm
Web depth h _{wl}	200	mm
Flange width b	200	mm
Web thickness t _w	10	mm
Thickness of flange t _f	20	mm

Table 8.1: Beam geometry

The tapered beam has a line load of 1.0 kN/m at the flange.

In [4], the ideal critical load is determined as $q_{cr}=43.6\ kN/m.$

Solution with RFEM

For the beam, specify the following support conditions at the location of restraint:

Nodes Lines Materials Surfaces Solids Openings Nodal Supports Line Supports Surface Supports Line Releases Cross-Se List of supported lines (e.g. '1,3,5-7')

Figure 8.13: Restraint of beam

In addition, the end of the beam is laterally restrained.

The FE mesh has a target length of the finite elements of 4 cm.

As loading, a line load of 1 kN/m is applied corresponding to Figure 8.12.

Specify the following in RF-STABILITY:

Calculation Method
Stability analysis:
eigenvalue analysis
🔘 Increase load until structural failure
Eigenvalue method:
Method by Lanczos
Roots of the characteristic polynomial
Subspace iteration method
ICG iteration method
Type of matrix:
Standard
O Unit matrix (for checking and determination of precision)
Normalization of Eigenvectors
\bigcirc Such that $ u = 1$
\bigcirc Such that max {ux; uy; uz} = 1
\bigcirc Such that max {ux; uy; uz; φ x; φ y; φ z} = <u>1</u>
\bigcirc Erom geometric stiffness such that {u_j} T [K g] {u_j} = 1
Graphical Settings
 ✓ Display local torsional rotation of members if greater than: φ_x : 0.200 ↓ [-]

Figure 8.14: RF-STABILITY Window 1.1 General Data

As result, RF-STABILITY gives a critical buckling factor of 41.710.

2.1	Critica	I Load Factors	
		A	В
E	E-Value	Critical Load Factor	Magnification Factor
	No.	f [-]	α [-]
	1	41.710	1.025

Figure 8.15: Critical load factor

From the critical buckling factor and the applied loading, you obtain:

 $q_{cr} = 41.710 \cdot 1.0 = 41.7 \text{ kN/m}$

The difference to the result in [4] is about 4 %.

As governing eigenvector, RF-STABILITY yields the web plate-buckling:

This result is corresponding to the buckling mode in [4].

- [1] Christian Barth and Walter Rustler. *Finite Elemente in der Baustatik-Praxis*. Beuth, Berlin, 2. edition, 2013.
- [2] EN 1993-1-1: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Beuth Verlag GmbH, Berlin, 2005.
- [3] Richard Bareš. *Tabulky pro výpočet desek a stěn*. SNTL Nakladatelství technické literatury, Praha, 3. edition, 1989a.
- [4] Manfred Fischer and M. Smida. Dimensionierung und Nachweis von gevouteten Kragträgern mit T-förmigem Querschnitt. *Stahlbau*, 70, 2001.
- [5] Christian Petersen. *Statik und Stabilität der Baukonstruktionen*. Vieweg & Sohn, Wiesbaden, 2. edition, 1982.
- [6] Christian Petersen. Stahlbau. Vieweg & Sohn, Wiesbaden, 3. edition, 1993.
- [7] Finite Elemente in der Baustatik. Vieweg & Sohn, Wiesbaden, 3. edition, 2008.

⊿ ■ Dlubal

Index

A

Analysis case	. 28, 29
Axial forces	6

В

Background graphic	22
Browse through module windows	. 5
Buckling	14
Buckling failure	21
Buttons	23

С

Cable
Calculation
Calculation method9
Characteristic polynomial 10
Check12
Clipboards
Color bar
Color spectrum
Comment
Continuous members
Control panel
Critical load
Critical load factor 6, 14, 21, 35, 37
Critical load N _{cr}

D

Decimal places	30
Design color	25
Display navigator	24, 25
Division	7

Е

E-vector
Effective length factor k _{cr}
Effective length L _{cr} 16, 17
Eigenvalue analysis
Eigenvalue method 10
Eigenvector 16, 17, 18, 19, 20, 23, 24, 26
Euler buckling mode16
Evaluation of results
Excel
Exit RF-STABILITY5

F

Filter2	5
Filtering members 2	5

G

General data	5
Graphic	
Graphic printout	
Grid point	

B

L

ICG method	10
Increased to structural failure	9
Infinity norm of stiffness matrix	15
Initial axial forces	6
Initial deformations	6
Initial prestress	8
Instability	17
Installation	3

L

Lanczos	 	 10

Μ

Magnification factor	15
Member	16
Member division	7
Member length	. 16
Member results	. 24
Membrane	8
Message	15

Ν

Navigator
Nonlinearity
Normalization
Normalized displacement
Number of eigenvalues
Number of eigenvectors

0

OpenOffice										•	•	•	•		. 3	1
Options															(б

Ρ

Panel	4, 23, 25
Print	26
Printout report	26, 27
Program start	3

R

Rendering	• •	 	 •		 			. 25
Result values			 				 	. 23

B Index

Dlub

Results navigator	23
Results window	14
RF-IMP	32
RF-STABILITY case	28
RF-STEEL EC3	32
RF-TIMBER Pro	32
RFEM work window	26

S

Second-order analysis	15
Section	23, 26
Stability analysis	9
Start calculation	12
Start RF-STABILITY	3
Stiffness modification	8
Sturm sequence check	13
Subspace iteration method	10

23 **T**

Taper	7
Tensile forces	15
Tension	7
Torsional rotation	11
Type of matrix	11

B

U

Unit matrix	11
Units	30
Unstable model	21
User-profile	30
V	