

Simulation der Lasthistorie

Dlubal Software

16.4 14.7 13.1 11.5 9.8 8.2 6.5 4.9 3.3 1.6

16.5 0.0

April 2020

Handbuch

Kurzübersicht

1	Einleitung		4
2	Eingabedaten	AA	6
3	Berechnung	AA	9
4	Ergebnisse	AA	13
5	Ergebnisauswertung	AA	20
6	Allgemeine Funktionen	AA	23

Dlubal Software GmbH Am Zellweg 2 93464 Tiefenbach Deutschland

Tel.: +49 9673 9203-0 Fax.: +49 9673 9203-51 E-Mail: info@dlubal.com 🗷

Dlubal Software GmbH

Grimmaische Straße 13 04109 Leipzig Deutschland

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-Mail: info@dlubal.com 🗷

Alle Rechte, auch das der Übersetzung, vorbehalten. Ohne ausdrückliche Genehmigung der Dlubal Software GmbH ist es nicht gestattet, die Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

(i) Gebrauch des Handbuchs

Diese Programmbeschreibung ist in Kapitel gegliedert, die sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken orientieren. In den Kapiteln werden die einzelnen Masken Spalte für Spalte vorgestellt. Sie verhelfen zum Verständnis der Funktionsabläufe, die das Zusatzmodul betreffen. Allgemeine Funktionen sind im Handbuch des Hauptprogramms RFEM beschrieben.

Tipp

Im Handbuch sind die beschriebenen Schaltflächen (Buttons) in eckige Klammern gesetzt, z. B. [OK]. Darüber hinaus sind sie am linken Rand abgebildet. Begriffe, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben. Dies soll das Nachvollziehen der Erläuterungen erleichtern. Sie können auch die Suchfunktion für die Knowledge Base 2 und FAQs 2 auf unserer Website nutzen, um in den Beiträgen zum Zusatzmodul RF-LOAD-HISTORY eine Lösung zu finden.

Aktualität

Die hohen Qualitätsansprüche an die Software werden durch eine ständige Weiterentwicklung der Programmversionen gewährleistet. Damit können sich eventuell Abweichungen zwischen dieser Programmbeschreibung und der Ihnen vorliegenden Softwareversion ergeben. Haben Sie deshalb Verständnis dafür, dass aus den Abbildungen und Beschreibungen keine Ansprüche hergeleitet werden können. Wir sind bemüht, die Dokumentation an den aktuellen Stand der Software anzugleichen.

Inhalt

1	Einleitung	4
1.1	Zusatzmodul RF-LOAD-HISTORY	4
1.2	Gebrauch des Handbuchs	4
1.3	Aufruf des Moduls RF-LOAD-HISTORY	5
2	Eingabedaten	6
2.1	Basisangaben	6
2.2	Beanspruchungen	7
3	Berechnung	9
3.1	Detaileinstellungen	9
3.1.1	Berechnungen	9
3.1.2	Optionen	10
3.2	Start der Berechnung	12
4	Ergebnisse	13
4.1	Flächen - Lokale Verformungen	14
4.2	Flächen - Hauptspannungen	15
4.3	Flächen - Vergleichsspannungen	16
4.4	Flächen - Maximale Dehnungen	1/
4.5	Flächen Kriterien	10
4.0		
5	Ergebnisauswertung	20
5.1	Numerische Ergebnisse	20
5.2	Grafische Ergebnisse	21
6	Allgemeine Funktionen	23
61	Einheiten und Dezimalstellen	 23
6.2	Datenexport	24
6.3	Ausdruck	27

Τ

Einleitung

1.1

1

Zusatzmodul RF-LOAD-HISTORY

Mit dem FEM-Programm RFEM können Tragwerke untersucht werden, die ein nichtlineares Materialverhalten mit plastischen Eigenschaften aufweisen. Für die Überlagerung der Ergebnisse aus unterschiedlichen Lastfällen werden die Schnittgrößen dieser Lastfälle herangezogen. Plastische Effekte wie irreversible Verformungen, die sich bei einem schrittweise stattfindenden Belastungsvorgang einstellen, werden damit jedoch nicht erfasst. Mit dem RFEM-Zusatzmodul RF-LOAD-HISTORY steht ein Werkzeug zur Verfügung, das die plastischen, dauerhaften Verformungen aus vorherigen Belastungszuständen berücksichtigt.

Für die Analyse des isotropen Verfestigungsverhaltens in Laststufen ist ein Materialmodell des Typs Isotrop plastisch 2D/3D (für Flächen und Volumen) oder Isotrop plastisch 1D (für Stäbe) zu definieren. Die Nutzung dieser Materialmodelle ist mit einer Lizenz für **RF-MAT NL** möglich. RF-LOAD-HISTORY ermittelt dann die plastischen Verformungen, die ab dem Erreichen der Fließgrenze in den Flächenund Volumenelementen bzw. Stäben auftreten.

Die Materialmodelle Isotrop plastisch 2D/3D und Isotrop plastisch 1D sind im Kapitel 4.3 des RFEM-Handbuchs Deschrieben.

Die Berechnung der dauerhaften Verformungen infolge plastischer Effekte bietet auch die Möglichkeit, eine Tragwerksanalyse mit Entlastungsvorgang durchführen. Die Belastungen in den einzelnen Stufen werden über den gesamten Verlauf der Berechnung addiert (unter Berücksichtigung des Vorzeichens) oder auf den vorherigen Belastungszustand skaliert.

Nach der Berechnung sind die Ergebnisse wie z. B. Flächenverformungen, -schnittgrößen und spannungen oder Plastizitätskriterien in Tabellen verfügbar. Grafisch lassen sie sich im Arbeitsfenster von RFEM auswerten. Die Ergebnisse einer jeden Laststufe können als Ergebniskombination nach RFEM exportiert und dort für die Bemessung in anderen Zusatzmodulen verwendet werden. Die Ergebnisse der Laststufen lassen sich mit den üblichen Selektionsmöglichkeiten im Ausdruckprotokoll dokumentieren.

Wir wünschen Ihnen viel Freude und Erfolg mit RF-LOAD-HISTORY.

Ihr Dlubal Software-Team

1.2

Gebrauch des Handbuchs

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RFEM-Handbuch ausführlich erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit dem Zusatzmodul RF-LOAD-HISTORY ergeben.

Dieses Handbuch orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. Im Text sind die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Ansichtsmodus]. Zugleich sind sie am linken Rand abgebildet. Die Begriffe, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben, sodass die Erläuterungen gut nachvollzogen werden können.

Im PDF-Handbuch ist wie üblich mit [Strg]+[F] eine Volltextsuche möglich. Sollten Sie nicht fündig werden, können Sie auch die Suchfunktion für die Knowledge Base 🖻 auf unserer Website nutzen, um unter den Beiträgen zu den RFEM-Zusatzmodulen eine Lösung zu finden. Auch unsere FAQs 🛛 geben Hilfestellungen zu themenspezifischen Fragen.

Т

1.3

Aufruf des Moduls RF-LOAD-HISTORY

In RFEM bestehen folgende Möglichkeiten, das Zusatzmodul RF-LOAD-HISTORY zu starten.

Menü

Der Programmaufruf kann erfolgen über das RFEM-Menü

```
Zusatzmodule \rightarrow Sonstige \rightarrow RF-LOAD-HISTORY.
```


Bild 1.1 Menü Zusatzmodule → Sonstige → RF-LOAD-HISTORY

Navigator

RF-LOAD-HISTORY kann im Daten-Navigator aufgerufen werden über den Eintrag

```
Zusatzmodule \rightarrow RF-LOAD-HISTORY.
```


Bild 1.2 Daten-Navigator: Zusatzmodule \rightarrow RF-LOAD-HISTORY

2 Eingabedaten

2.1

Nach dem Aufruf des Zusatzmoduls erscheint ein neues Fenster. Links wird ein Navigator angezeigt, der die beiden Eingabemasken verwaltet.

Eine Maske lässt sich durch Anklicken des Eintrags im Navigator aufrufen. Mit den links dargestellten Schaltflächen wird die vorherige bzw. nächste Maske eingestellt. Das Blättern durch die Masken ist auch mit den Funktionstasten [F2] (vorwärts) und [F3] (rückwärts) möglich.

[OK] sichert die Eingaben. RF-LOAD-HISTORY wird beendet und es erfolgt die Rückkehr in das Hauptprogramm RFEM. [Abbrechen] beendet das Zusatzmodul, ohne die Daten zu speichern.

Basisangaben

In Maske 1.1 Basisangaben sind sogenannte "Laststufen" festzulegen. Sie stellen die Schritte dar, in denen die Belastung nacheinander aufgebracht und deren Wirkung untersucht wird. Diesen Laststufen können dann in der nächsten Maske jeweils Beanspruchungen zugewiesen werden.

Bild 2.1 Maske 1.1 Basisangaben

Vorhandene Laststufen

Beim Aufruf des Moduls ist eine Laststufe voreingestellt. Weitere Laststufen können durch Anklicken der Schaltfläche 🛅 erzeugt werden. Die Laststufen werden dabei fortlaufend nummeriert.

Die Bezeichnung der Laststufe kann jeweils über die Liste mit Vorschlägen zugeordnet werden. Im Eingabefeld sind aber auch benutzerdefinierte Einträge möglich. Optional kann jede Laststufe mit einem Kommentar versehen werden, der den Lastschritt kurz beschreibt.

Bezeichnung der Laststufe	
Laststufe 1	~
Laststufe 1	
Laststufe 2	
Laststufe 3	
Laststufe 4	
Laststufe 5	

Die Schaltflächen unterhalb der Liste Vorhandene Laststufen sind mit folgenden Funktionen belegt:

Schaltfläche	Funktion
1	Erzeugt eine neue Laststufe
×	Löscht die in der Liste selektierte Laststufe
	Löscht alle Laststufen
Tabelle 2.1 Schaltfläch	en in Maske 1.1 Basisangaben

Kommentar

Dieses Eingabefeld steht für eine benutzerdefinierte Anmerkung zur Verfügung, die die Simulation näher beschreibt.

2.2 Beanspruchungen

In Maske 1.2 Beanspruchungen können den einzelnen Laststufen Beanspruchungen in Form von Lastfällen oder Lastkombinationen zugeordnet werden.

1.2 Beanspr	ruchungen						
Aktuelle La	iststufe						
1 Lasts	tufe 1		~	4 •			
Vorhanden	ie Lastfälle		Zu <u>b</u> erechne	en		Laststufe 1	Optionen
LF2 LF3	Entlastung Zweitbelastung	~	1.00	LF1	Erstbelastung	Â	
Lastkombir	hationen	 	4				
			A A				
	1		0.75	~ 🗸			

Bild 2.2 Maske 1.2 Beanspruchungen

Aktuelle Laststufe

In diesem Abschnitt ist die Laststufe festzulegen, der eine bestimmte Beanspruchung zugewiesen werden soll. In der Liste stehen die in Maske 1.1 Basisangaben definierten Laststufen zur Auswahl. Die Schaltflächen ist rechts neben dem Eingabefeld ermöglichen es, eine bestimmte Laststufe durch Blättern einzustellen.

1	Laststufe 1	~
1	Laststufe 1	
	Laststufe 2	
3	Laststufe 3	

Vorhandene Lastfälle / Lastkombinationen

In den beiden Abschnitten sind alle Lastfälle und Lastkombinationen aufgelistet, die in RFEM angelegt wurden.

Mit der Schaltfläche ≥ lassen sich selektierte Einträge in die Liste Zu berechnen nach rechts übertragen. Die Übergabe kann auch per Doppelklick erfolgen. Die Schaltfläche ≥ übergibt die komplette Liste nach rechts.

Die Mehrfachauswahl von Lastfällen ist — wie in Windows üblich — mit gedrückter [Strg]-Taste möglich. So lassen sich mehrere Lastfälle oder -kombinationen gleichzeitig übertragen.

Wenn die Beanspruchungen der ersten Laststufe festgelegt sind, kann im Abschnitt Aktuelle Laststufe oben die nächste Laststufe eingestellt und die Zuordnung der entsprechenden Lastfälle und -kombinationen fortgesetzt werden. Die Schaltfläche 🕢 am Ende der Liste erleichtert die Übersicht über die Lastfälle und -kombinationen, die noch keiner Laststufe zugewiesen wurden.

Zu berechnen

In der rechten Spalte werden die Lastfälle und Lastkombinationen angezeigt, die in der aktuellen Laststufe berechnet werden sollen. Mit do oder per Doppelklick lassen sich selektierte Einträge wieder aus der Liste entfernen. Die Schaltfläche de leert die ganze Liste.

Im Regelfall werden alle Lastfälle und Lastkombinationen mit dem Faktor 1.00 bei der Berechnung berücksichtigt. Dieser Faktor kann bei Bedarf angepasst werden. Hierzu ist die entsprechende Zeile in der Liste zu selektieren. Der gewünschte Beiwert kann dann im Eingabefeld unten eingetragen oder in der Liste ausgewählt werden. Ein Klick auf die Schaltfläche *M* wendet den neuen Faktor auf den Lastfall oder die Lastkombination an.

3

3 Berechnung

3.1

Details...

Detaileinstellungen

Vor der Berechnung sollten die Detaileinstellungen zu den Berechnungsparametern und der Ergebnisausgabe überprüft werden. Der entsprechende Dialog ist über die Schaltfläche [Details] zugänglich. Er besteht aus zwei Registern.

3.1.1 Berechnungen

Gerechnungen Optionen		
Einstellungen für nichtlineare Berechnung	Parameter	
Berechnungstheorie	Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichungen:	
O II. Ordnung	Newton-Raphson Newton-Raphson Kombiniert mit Picard	
	O Picard	
	Newton-Raphson mit konstanter Steifigkeitsmatrix	
	O Modifizierter Newton-Raphson	
	Opnamische Relaxation	
		OK Abbred

Einstellungen für nichtlineare Berechnung

In diesem Abschnitt kann festgelegt werden, ob RF-LOAD-HISTORY nach der Berechnung die Ergebnisse durch LF-Faktor zurückdividieren soll. Dieser Lastfallfaktor kann in Maske 1.2 Beanspruchungen für Lastfälle und Lastkombinationen festgelegt werden (siehe Kapitel 'Beanspruchungen' D), um beispielsweise eine schrittweise ansteigende Belastung bei nur einer Beanspruchung zu simulieren. Bei aktiviertem Kontrollfeld werden die Ergebnisse dann auf die 1,0-fache Belastung skaliert ausgegeben. Nichtlinearitäten

3

Aktivieren:

Lager und elastische Bettungen

Stäbe infolge des Stabtyps

Stabendgelenke, Freigaben

Stabnichtlinearitäten

Volumenkörper des Typs 'Kontakt'

Materialien mit nichtlinearem Modell

Anzahl der Laststeigerungen zur automatischen Ermittlung durch die Newton-Raphson-Methode

Isotrop thermisch-elastisches Materialmodell

Parameter

Mit der Schaltfläche 💽 ist der Dialog Berechnungsparameter aufrufbar. Er verwaltet wichtige Einstellungen für die Berechnung. Dieser Dialog ist im Kapitel 7.3.3 des RFEM-Handbuchs 🗷 ausführlich beschrieben.

Wichtig in diesem Zusammenhang ist die Einstellung in diesem Dialog für Materialien mit nichtlinearem Modell (siehe Bild links). Ist das Kontrollfeld Anzahl der Laststeigerungen zur automatischen Ermittlung durch die Newton-Raphson-Methode aktiviert, so bestimmt RF-LOAD-HISTORY die erforderliche Anzahl der Laststufen automatisch nach einem heuristischen Verfahren. Diese Möglichkeit zur effizienten Lösung nichtlinearer Aufgabenstellungen ist nur für nichtlineare Materialmodelle relevant, die nach Theorie I. oder III. Ordnung mit der Newton-Raphson-Methode (siehe unten) berechnet werden.

Berechnungstheorie

Über die Auswahlfelder lässt sich steuern, nach welcher Theorie die Berechnung erfolgen soll. Die vier Berechnungstheorien sind im Kapitel 7.3.1.1 des RFEM-Handbuchs 🗵 beschrieben.

Die automatische Ermittlung der erforderlichen Laststeigerungen bei der Berechnung (nicht zu verwechseln mit den Laststufen von RF-LOAD-HISTORY!) ist nur für das Berechnungsverfahren nach Newton-Raphson möglich (siehe unten). Dieses Verfahren wiederum steht nur für Berechnungen nach Theorie I. oder III. Ordnung zur Verfügung.

Berechnungsverfahren

In diesem Abschnitt ist das Berechnungsverfahren für das System der nichtlinearen algebraischen Gleichung festzulegen. Die Verfahren sind im Kapitel 7.3.1.1 des RFEM-Handbuchs 🗷 beschrieben.

3.1.2 Optionen

tails						
erechnungen Optionen						
Ergebnistabellen anzeigen						
🗹 2.1 Knoten - Lagerkräfte	2.22 Flächen - Vergleichsspannungen - von Mises					
2.2 Knoten - Verformungen	2.23 Flächen - Vergleichsspannungen - Tresca					
2.3 Linien - Lagerkräfte	2.24 Flächen - Vergleichsspannungen - Rankine					
2.4 Stäbe - Verformungen	2.25 Flächen - Vergleichsspannungen - Bach					
🗸 2.5 Stäbe - Globale Verformungen	2.26 Flächen - Grunddehnungen					
2.6 Stäbe - Schnittgrößen	2.27 Flächen - Hauptdehnungen					
2.7 Stäbe - Kontaktkräfte	2.28 Flächen - maximale Dehnungen					
2.8 Stäbe - Verzerrungen	2.29 Flächen - Dehnungen - von Mises					
2.9 Stäbe - Stabkennzahlen für Knicken	2.30 Flächen - Dehnungen - Tresca					
2.10 Stäbe Schlankheiten	2.31 Flächen - Dehnungen - Rankine					
2.11 Stabsätze - Schnittgrößen	2.32 Flächen - Dehnungen - Bach					
2.12 Querschnitte - Schnittgrößen	2.33 Flächen - Plastische Verzerrungen					
🗹 2.13 Flächen - lokale Verformungen	2.34 Flächen - Rissverzerrungen					
🗹 2. 14 Flächen - globale Verformungen	2.35 Flächen - Kriterien					
2.15 Flächen - Grundschnittgrößen	2.36 Volumenkörper - Verformungen					
🗹 2. 16 Flächen - Hauptschnittgrößen	🗹 2.37 Volumenkörper - Spannungen					
🗹 2.17 Flächen - Bemessungsschnittgrößen	2.38 Volumenkörper - Verzerrungen					
🗹 2.18 Flächen - Grundspannungen	2.39 Volumenkörper - Plastische Verzerrungen					
🗹 2. 19 Flächen - Hauptspannungen	2.40 Volumenkörper - Kriterien					
🗹 2.20 Flächen - Weitere Spannungen	2.41 Volumenkörper - Gasdruck					
2.21 Flächen - Kontaktspannungen						
for formation in the second	Functional					
Te bestimmingstyp						
un besummter Läststufe (an Verformten Knoten)						
 Auf nicht verformter Konstruktion (Summe der Verformungen) 	FE-Netz-Punkten					
	OK Abbrei					

Isotrop linear elastisch Isotrop nichtlinear elastisch 1D Isotrop plastisch 1D... Isotrop nichtlinear elastisch 2D/3D..

Isotrop plastisch 2D/2D... Orthotrop elastisch 2D... Orthotrop elastisch 3D... Orthotrop plastisch 2D... Orthotrop plastisch 2D... Orthotrop plastisch 3D... Isotrop thermisch-elastisch... Isotrop thermisch-elastisch... Isotrope Beschädigung 2D/3D...

Ergebnistabellen anzeigen

Hier kann ausgewählt werden, welche Ergebnismasken angezeigt werden sollen. Einige wichtige Masken sind im Kapitel 'Ergebnisse' 🛛 vorgestellt.

Mit RF-LOAD-HISTORY werden Flächen und Volumen (Materialmodell Isotrop plastisch 2D/3D) sowie Stäbe (Materialmodell Isotrop plastisch 1D) nach nichtlinearem Materialverhalten untersucht. Je nach Modell können sich die plastischen Verformungen auch auf Objekte mit linear elastischem Material auswirken.

Standardmäßig sind alle für das Modell verfügbaren Ergebnismasken angehakt. Dieses Register bietet auch die Möglichkeit, nach der Berechnung bestimmte Tabellen auszublenden. Es wird keine Neuberechnung erforderlich.

Verformungstyp

Bei der Berechnung werden die Laststufen nacheinander untersucht und deren Ergebnisse intern abgelegt. Die Einstellung in diesem Abschnitt wirkt sich auf die Ergebniswerte in den Tabellen und die Grafik im RFEM-Arbeitsfenster aus: Bei der Option *In bestimmter Laststufe* werden die Ergebnisse auf die vorherige Laststufe bezogen ausgegeben. Die vorherige Laststufe dient sozusagen als "neuer Nullzustand" des Systems, sodass deren Verformungen - unter Berücksichtigung plastischer Effekte - die Ausgangssituation für die aktuelle Laststufe darstellen. Mit der Option *Auf nicht verformter Konstruktion* hingegen werden die Ergebnisse kumuliert dargestellt. Die Verformungen sind bei jeder Laststufe auf das unverformte Ausgangssystem bezogen. Die bleibenden plastischen Verformungen werden auch hier berücksichtigt.

Der Unterschied zwischen beiden Möglichkeiten ist auch in einer FAQ mit Erklärvideo gezeigt: https://www.dlubal.com/de/support-und-schulungen/support/faq/004317 🛛

Der Wechsel zwischen den beiden Ausgabeoptionen ist auch nach der Berechnung ohne Löschen der Ergebnisse möglich. Die Ergebnisse der einzelnen Laststufen liegen intern vor und werden entsprechend für die Ausgabe aufbereitet.

Als Standard werden die Ergebnisse auf die nicht verformte Konstruktion bezogen ausgegeben. Die Verformungen der letzten Laststufe stellen so die Veränderung zum lastfreien Ausgangszustand dar, die sich durch das Wirken aller Laststufen ergibt.

Ergebnisse

Die Einstellung in diesem Abschnitt steuert, ob die Tabellenergebnisse in den *Raster-Punkten* oder den *FE-Netz-Punkten* angezeigt werden. Die Ergebnisse der FE-Punkte werden direkt vom Rechenkern ermittelt, die Rasterergebnisse durch eine Interpolation aus den Ergebnissen der FE-Punkte bestimmt.

Die Rasterpunkte stellen eine Eigenschaft der Fläche dar. Sie lassen sich benutzerdefiniert festlegen (siehe Kapitel 8.13 des RFEM-Handbuchs 🖻). Bei sehr kleinen Flächen kann das Standardraster von 50 cm zu grobmaschig ausfallen, sodass nur ein einziger Rasterpunkt im Nullpunkt der Fläche erzeugt wird. Dort treten möglicherweise keine Verformungen auf. Folgender Beitrag auf unserer Website erläutert, wie das Flächenraster angepasst werden kann: https://www.dlubal.com/de/support-und-schulungen/support/knowledge-base/000676 🕫

Das Umschalten von FE- auf Rasterpunkte ist auch nach der Berechnung möglich, ohne dass eine Neuberechnung erforderlich wird. Die Ergebnisse sind im Hintergrund vorhanden und werden nach

der Berechnung für die Tabellen entsprechend aufbereitet.

Dlubal

3.2

Start der Berechnung

Berechnung

Die [Berechnung] kann über die gleichnamige Schaltfläche gestartet werden. Sie steht in jeder der beiden Eingabemasken zur Verfügung.

Der Ablauf der Berechnung kann anschließend in einem Dialog verfolgt werden. Im Berechnungsdiagramm ist die Anzahl der erforderlichen Laststufen erkennbar, die bei nichtlinearem Materialverhalten nach Newton-Raphson in Regelfall automatisch ermittelt und angesetzt wird. Im Diagramm sollte auch eine Konvergenz erkennbar sein, die zu einem erfolgreichen Abschluss der Berechnung führt.

FE-Berechnung		>
A ROLL	Gesamtablauf	
	RFEM - Berechnung nach FEM	
	Nichtlineare Analyse LF3	
	Einzelschritte	
	Laststufe 5 / 5 Iteration Nr. 5	Maximale Verschiebung [mm]
	Eingabedaten bearbeiten	20.4033
	- 3D Volumen-FE-Steifigkeitsmatrizen erzeuger	
	- 2D Flächen-FE-Steifigkeitsmatrizen erzeugen	
S	- 1D Stab-FE-Steifigkeitsmatrizen erzeugen	
1. 18	- Gesamtsteifigkeitsmatrix aufstellen	5/5
	- Gleichungssystem lösen, linke Seiten	Anzahl der 3D Volumen-FEs 0
	- Gleichungssystem lösen, rechte Seiten	Anzahl der 2D Flächen-FEs 1500
	- Schnittgrößen ermitteln	Anzahl der 1D Stab-FEs 0
	Ermittlung der 1D Stabschnittgrößen von FE.	Anzahl Knoten 1661
		Anzahl Gleichungen 9966
	Q Abbree	chen 🗹 Diagramm

Bild 3.3 Berechnungsablauf mit Diagramm

4 Ergebnisse

Unmittelbar nach der Berechnung erscheint die Ergebnismaske, die im Dialog Details als erste Ergebnistabelle festgelegt wurde (siehe Kapitel 'Optionen' 🛛).

•

OK

In den Ergebnismasken sind die Ergebnisse nach verschiedenen Kriterien sortiert. Jede Maske lässt sich durch Anklicken des Eintrags im Navigator direkt ansteuern. Mit den links dargestellten Schaltflächen wird die vorherige bzw. nächste Maske eingestellt. Das Blättern durch die Masken ist auch mit den Funktionstasten [F2] und [F3] möglich.

[OK] sichert die Ergebnisse. RF-LOAD-HISTORY wird beendet und es erfolgt die Rückkehr in das Hauptprogramm.

In den folgenden Kapiteln sind einige wichtige Ergebnismasken für Flächen vorgestellt. Die Beschreibung der übrigen Masken können Sie im Kapitel 8 des RFEM-Handbuchs 🛙 nachschlagen.

In den Tabellen werden die Ergebnisse der Laststufe dargestellt, die in der Titelleiste eingestellt ist. Die gewünschte Laststufe kann in der Liste eingestellt werden. Mit den Schaltflächen t kann zwischen den Laststufen geblättert werden.

Die Werte in den Tabellen können sowohl auf FE-Knoten als auch auf Rasterpunkte bezogen werden. Ein Wechsel zwischen den beiden Ergebnisarten ist ohne Neuberechnung möglich, indem im Dialog Details, Register Optionen der Ausgabemodus für Ergebnisse geändert wird (siehe Kapitel 'Optionen' D). In gleicher Weise lassen sich die Ergebnisse kumuliert oder separat darstellen (siehe Kapitel 'Optionen' D), ohne die Laststufen erneut zu berechnen.

-	
/	
-t .	

Flächen - Lokale Verformungen

ebnis	se der La	ststufe										
Las	tstufe 3						~ • •					
	A	B	C	D	E	F	G	H		J	K	
läche Nr	Raster	Rasterpur	nkt-Koordin	aten [m]		Verschiebur	ngen (mm)		Verdre	ehungen (mra	ad]	
191.	Punkt	X	Ŷ	2	ul .	Ux	uy	Uz	φx	Фу	φz	
1	1	0.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0	49.3	
	2	0.500	0.000	0.000	3.1	-1.3	-2.8	0.0	0.0	0.0	-6.7	
	3	1.000	0.000	0.000	6.3	-1.3	-6.1	0.0	0.0	0.0	-6.8	
_	4	1.500	0.000	0.000	9.4	-1.2	-9.3	0.0	0.0	0.0	-6.0	
	5	2.000	0.000	0.000	12.0	-0.9	-11.9	0.0	0.0	0.0	-4.5	
	6	2.500	0.000	0.000	13.7	-0.5	-13.7	0.0	0.0	0.0	-2.5	
	7	3.000	0.000	0.000	14.3	0.0	-14.3	0.0	0.0	0.0	0.0	
	8	0.000	0.000	-0.400	0.0	0.0	0.0	0.0	0.0	0.0	48.0	
	9	0.500	0.000	-0.400	3.1	1.3	-2.8	0.0	0.0	0.0	-6.7	
	10	1.000	0.000	-0.400	6.3	1.3	-6.2	0.0	0.0	0.0	-6.8	
	11	1.500	0.000	-0.400	9.4	1.2	-9.3	0.0	0.0	0.0	-6.0	
	12	2.000	0.000	-0.400	12.0	0.9	-11.9	0.0	0.0	0.0	-4.5	
	13	2.500	0.000	-0.400	13.7	0.5	-13.7	0.0	0.0	0.0	-2.5	
	14	3.000	0.000	-0.400	14.3	0.0	-14.3	0.0	0.0	0.0	0.0	
2	1	3.000	0.000	0.000	14.3	0.0	-14.3	0.0	0.0	0.0	0.0	
	2	3.500	0.000	0.000	13.7	0.5	-13.7	0.0	0.0	0.0	2.5	
	3	4.000	0.000	0.000	12.0	0.9	-11.9	0.0	0.0	0.0	4.5	
	4	4.500	0.000	0.000	9.4	1.2	-9.3	0.0	0.0	0.0	6.0	
	5	5.000	0.000	0.000	6.3	1.3	-6.1	0.0	0.0	0.0	6.8	
	6	5.500	0.000	0.000	3.1	1.3	-2.8	0.0	0.0	0.0	6.7	
	7	6.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	0.0	-49.3	
	8	3.000	0.000	-0.400	14.3	0.0	-14.3	0.0	0.0	0.0	0.0	
	9	3.500	0.000	-0.400	13.7	-0.5	-13.7	0.0	0.0	0.0	2.5	
	10	4.000	0.000	-0.400	12.0	-0.9	-11.9	0.0	0.0	0.0	4.5	
	11	4,500	0.000	-0.400	9.4	-1.2	-9.3	0.0	0.0	0.0	6.0	
	12	5.000	0.000	-0.400	6.3	-1.3	-6.2	0.0	0.0	0.0	6.8	
	13	5.500	0.000	-0.400	3.1	-1.3	-2.8	0.0	0.0	0.0	6.7	
	14	6.000	0.000	-0.400	0.0	0.0	0.0	0.0	0.0	0.0	-48.0	
		1.000	2.000		0.0	0.0	0.0		0.0	0.0	10.0	

Bild 4.2 Maske 2.13 Flächen - lokale Verformungen

In dieser Tabelle sind die lokalen Verschiebungen u und die lokalen Verdrehungen φ aufgelistet. Die Verformungen beziehen sich somit auf die Achsen x, y und z der Flächen, nicht auf das globale XYZ-Koordinatensystem. Die Werte stellen je nach Vorgabe im Dialog *Details* die Verformungen in den Raster- oder FE-Netz-Punkten dar, deren Nummern und Koordinaten in den Spalten A bis D angegeben sind.

Die lokalen Flächenachsen können im RFEM-Arbeitsfenster über die Option Lokale Achsensysteme ein/aus im Flächen-Kontextmenü dargestellt werden. Weitere Erläuterungen zu den lokalen Flächenverformungen finden Sie im Kapitel 8.13 des RFEM-Handbuchs Ø.

Δ

Flächen - Hauptspannungen

	se der Las	isture										
Las	tstufe 3											
	A	B	C	D	E	F	G	H	1	J	K	
äche	Raster	Rasterpu	nkt-Koordin	aten [m]			Hauptsp	annungen [N	1/mm²]			
INr.	Punkt	X	Y	Z	σ1,+	σ2,+	α+[°]	σ1,-	σ2,-	α [°]	τmax	
1	1	0.000	0.000	0.000	-14.1	-90.1	-25.94	-14.1	-90.1	-25.94	0.0	
	2	0.500	0.000	0.000	-4.0	-65.2	-89.69	-4.0	-65.2	-89.69	0.0	
	3	1.000	0.000	0.000	24.7	-4.D	+0.50	24.7	-4.0	-0.50	0.0	
	4	1.500	0.000	0.000	94.5	-4.D	-0.11	94.5	-4.0	-0.11	0.0	
	5	2.000	0.000	0.000	144.5	-4.D	-0.05	144.5	-4.0	+0.05	0.0	
	6	2.500	0.000	0.000	153.7	-2.4	0.27	153.7	-2.4	0.27	0.0	
	7	3.000	0.000	0.000	131.8	-2.8	0.00	131.8	-2.8	0.00	0.0	
	8	0.000	0.000	-0.200	41.1	-46.5	45.50	41.1	-46.5	45.50	0.0	
	9	0.500	0.000	-0.200	16.9	-23.4	-42.42	16.9	-23.4	-42.42	0.0	
	10	1.000	0.000	-0.200	12.8	-19.3	-41.82	12.8	-19.3	-41.82	0.0	
	11	1.500	0.000	-0.200	8.8	-15.4	-40.77	8.8	-15,4	-40.77	0.0	
	12	2.000	0.000	-0.200	4.9	-11,5	-38.71	4.9	-11,5	-38.71	0.0	
	13	2.500	0.000	-0.200	2.3	-8.7	-35.40	2.3	-8.7	-35.40	0.0	
	14	3.000	0.000	-0.200	-1.4	-5.1	0.00	-1.4	-5.1	0.00	0.0	
	15	0.000	0.000	-0.400	95.4	11.9	-60.25	95.4	11.9	-60.25	0.0	
	16	0.500	0.000	-0.400	62.2	-6.1	-0.28	62.2	-6.1	-0.28	0.0	
	17	1.000	0.000	-0.400	-6.1	-27.7	-89.33	-6.1	-27.7	-89.33	0.0	
	18	1.500	0.000	-0.400	-6.1	-97.5	-89.88	-6.1	-97.5	-89.88	0.0	
	19	2.000	0.000	-0.400	-6.1	-147.4	-89.95	-6.1	-147.4	-89.95	0.0	
	20	2.500	0.000	-0.400	-7.6	-157.5	89.71	-7.6	-157.5	89.71	0.0	
	21	3.000	0.000	-0.400	-7.2	-135.9	-90.00	-7.2	-135.9	-90.00	0.0	
2	1	3.000	0.000	0.000	131.8	-2.8	0.00	131.8	-2.8	0.00	0.0	
	2	3.500	0.000	0.000	153.7	-2.4	+0.27	153.7	-2.4	+0.27	0.0	
	3	4.000	0.000	0.000	144.5	-4.D	0.05	144.5	-4.0	0.05	0.0	
	4	4.500	0.000	0.000	94.5	-4.0	0.11	94.5	-4.0	0.11	0.0	
	5	5.000	0.000	0.000	24.7	-4.0	0.50	24.7	-4.0	0.50	0.0	
	6	5.500	0.000	0.000	-4.0	-65.2	89.69	-4.0	-65.2	89.69	0.0	
	7	6.000	0.000	0.000	-14.1	-90.1	25.94	-14.1	-90.1	25.94	0.0	
	8	3.000	0.000	-0.200	-1.4	-5.1	0.00	-1.4	-5.1	0.00	0.0	
	9	3.500	0.000	-0.200	2.3	-8.7	35.40	2.3	-8.7	35.40	0.0	

Bild 4.3 Maske 2.19 Flächen - Hauptspannungen

Diese Tabelle listet die Extremwerte der Flächenspannungen mit den Winkeln der jeweiligen Hauptspannungsrichtungen auf. Je nach Vorgabe im Dialog *Details* sind die Werte auf die Raster- oder FE-Netz-Punkte bezogen.

Weitere Erläuterungen zu den Hauptspannungen finden Sie im Kapitel 8.19 des RFEM-Handbuchs 🗷 .

4.3

Flächen - Vergleichsspannungen

ebniss	se der Last	stufe						
Las	tstufe 1					~ · ·		
[A	B	C	D	E	F	G	
he	Raster	Rasterpu	nkt-Koordina	ten [m]	Vergleichsspann	ungen von Mise	s [N/mm ²]	
-	Punkt	X	Y	Z	σ _{v,max}	σν.+	σ _{V,-}	
	1	0.000	0.000	0.000	296.1	296.1	296.1	
	2	0.500	0.000	0.000	178.9	178.9	178.9	
	3	1.000	0.000	0.000	9.0	9.0	9.0	
	4	1.500	0.000	0.000	123.2	123.2	123.2	
	5	2.000	0.000	0.000	217.6	217.6	217.6	
	6	2.500	0.000	0.000	252.7	252.7	252.7	
	7	3.000	0.000	0.000	239.9	239.9	239.9	
	8	0.000	0.000	-0.200	67.1	67.1	67.1	
	9	0.500	0.000	-0.200	65.6	65.6	65.6	
	10	1.000	0.000	-0.200	52.3	52.3	52.3	
	11	1.500	0.000	-0.200	39.2	39.2	39.2	
	12	2.000	0.000	-0.200	26.2	26.2	26.2	
	13	2.500	0.000	-0.200	15.3	15.3	15.3	
	14	3.000	0.000	-0.200	1.8	1.8	1.8	
	15	0.000	0.000	-0.400	297.6	297.6	297.6	
	16	0.500	0.000	-0.400	179.7	179.7	179.7	
	17	1.000	0.000	-0.400	10.4	10.4	10.4	
	18	1.500	0.000	-0.400	122.4	122.4	122.4	
	19	2.000	0.000	-0.400	216.8	216.8	216.8	
_	20	2 500	0.000	-0.400	252.9	252.9	252.9	
	21	3 000	0.000	-0.400	240.4	240.4	240.4	
2	1	3 000	0.000	0.000	239.9	239.9	239.9	
_	2	3 500	0.000	0.000	252.7	252.7	252.7	
	3	4 000	0.000	0.000	217.6	217.6	217.6	
	4	4,500	0.000	0.000	123.2	123.2	123.2	
	5	5.000	0.000	0.000	90	9.0	9.0	
	6	5 500	0.000	0.000	178.9	178.9	178.9	
	7	6,000	0.000	0.000	296.1	296.1	296.1	
	8	3,000	0.000	-0.200	1.8	1.8	1.8	
_	9	3 500	0.000	-0.200	15.3	15.3	15.3	

Bild 4.4 Maske 2.22 Vergleichsspannungen - von Mises

In dieser Tabelle sind die Vergleichsspannungen für den ebenen Spannungszustand aufgelistet, die sich gemäß der Spannungshypothese nach von Mises ergeben. Dabei werden die Hauptspannungen verwendet.

Weitere Erläuterungen zu den Vergleichsspannungen finden Sie im Kapitel 8.22 des RFEM-Handbuchs 🗷 .

Wenn die Ergebnisse die Fließspannung überschreiten, liegt das daran, dass plastische Effekte nicht knotenweise berücksichtigt werden, sondern **elementweise**. Hierzu werden die Ergebnisse der FE-Knoten in den Schwerpunkt des finiten Elements interpoliert ("geglättet"). Das finite Element befindet sich im plastischen Zustand, wenn der gemittelte Wert aus seinen FE-Knoten die Fließspannung erreicht.

Der Spannungsverlauf einer Fläche mit plastischen Materialeigenschaften kann grafisch mit der Glättungsoption Konstant in Elementen überprüft werden (siehe Kapitel 'Grafische Ergebnisse' 2). In folgender FAQ ist näher beschrieben, wie die Grenzspannungen bei einem nichtlinearen Material auszuwerten sind:

https://www.dlubal.com/de/support-und-schulungen/support/faq/002703 🗷

Die Verzerrungshypothese zur Ermittlung der Referenzspannung kann im Materialmodell-Dialog eingestellt werden. Es stehen die Ansätze nach von Mises, Tresca, Drucker-Prager und Mohr-Coulomb zur Auswahl.

Verzerrung-Hypothese

von Mises
Tresca
Drucker-Prager
Mohr-Coulomb

Δ

Л		Л	
-	•	-	

Flächen - Maximale Dehnungen

jebnis	se der Li	aststufe											
Las	tstufe 1						~ • •						
	A	B	C	D	E	F	G	H		J	K	L	М
che	Raster	Rasterpur	nkt-Koordii	naten [m]				Maxim	ale Verzemung	en [-]			
vr.	Punkt	X	Y	Z	εmax,+	۶min,+	lɛmaxl+	Emax,-	εmin,-	lɛmaxl-	٤max	٤min	lεmax
1	1	0.000	0.000	0.000	0.00048	-0.01933	0.01933	0.00048	-0.01933	0.01933	0.00048	-0.01933	0.019
	2	0.500	0.000	0.000	0.00025	-0.00085	0.00085	0.00025	-0.00085	0.00085	0.00025	-0.00085	0.000
	3	1.000	0.000	0.000	0.00001	-0.00004	0.00004	0.00001	-0.00004	0.00004	0.00001	-0.00004	0.000
	4	1.500	0.000	0.000	0.00059	-0.00017	0.00059	0.00059	-0.00017	0.00059	0.00059	-0.00017	0.000
	5	2.000	0.000	0.000	0.00104	-0.00031	0.00104	0.00104	-0.00031	0.00104	0.00104	-0.00031	0.001
	6	2.500	0.000	0.000	0.00134	-0.00041	0.00134	0.00134	-0.00041	0.00134	0.00134	-0.00041	0.001
	7	3.000	0.000	0.000	0.00152	-0.00052	0.00152	0.00152	-0.00052	0.00152	0.00152	-0.00052	0.001
	8	0.000	0.000	-0.200	0.00025	-0.00026	0.00026	0.00025	-0.00026	0.00026	0.00025	-0.00026	0.000
	9	0.500	0.000	-0.200	0.00023	-0.00024	0.00024	0.00023	-0.00024	0.00024	0.00023	-0.00024	0.000
	10	1.000	0.000	-0.200	0.00018	-0.00019	0.00019	0.00018	-0.00019	0.00019	0.00018	-0.00019	0.000
	11	1.500	0.000	-0.200	0.00014	-0.00014	0.00014	0.00014	-0.00014	0.00014	0.00014	-0.00014	0.000
	12	2.000	0.000	-0.200	0.00009	-0.00010	0.00010	0.00009	-0.00010	0.00010	0.00009	-0.00010	0.000
	13	2.500	0.000	-0.200	0.00005	-0.00006	0.00006	0.00005	-0.00006	0.00006	0.00005	-0.00006	0.000
	14	3.000	0.000	-0.200	0.00000	-0.00001	0.00001	0.00000	-0.00001	0.00001	0.00000	-0.00001	0.000
	15	0.000	0.000	-0.400	0.01938	-0.00075	0.01938	0.01938	-0.00075	0.01938	0.01938	-0.00075	0.019
	16	0.500	0.000	-0.400	0.00085	-0.00027	0.00085	0.00085	-0.00027	0.00085	0.00085	-0.00027	0.000
	17	1.000	0.000	-0.400	0.00004	-0.00003	0.00004	0.00004	-0.00003	0.00004	0.00004	-0.00003	0.000
	18	1.500	0.000	-0.400	0.00016	-0.00059	0.00059	0.00016	-0.00059	0.00059	0.00016	-0.00059	0.000
	19	2.000	0.000	-0.400	0.00029	-0.00104	0.00104	0.00029	-0.00104	0.00104	0.00029	-0.00104	0.001
	20	2.500	0.000	-0.400	0.00040	-0.00134	0.00134	0.00040	-0.00134	0.00134	0.00040	-0.00134	0.001
	21	3.000	0.000	-0.400	0.00049	-0.00152	0.00152	0.00049	-0.00152	0.00152	0.00049	-0.00152	0.001
2	1	3.000	0.000	0.000	0.00152	-0.00052	0.00152	0.00152	-0.00052	0.00152	0.00152	-0.00052	0.001
	2	3.500	0.000	0.000	0.00134	-0.00041	0.00134	0.00134	-0.00041	0.00134	0.00134	-0.00041	0.001
	3	4.000	0.000	0.000	0.00104	-0.00031	0.00104	0.00104	-0.00031	0.00104	0.00104	-0.00031	0.001
	4	4.500	0.000	0.000	0.00059	-0.00017	0.00059	0.00059	-0.00017	0.00059	0.00059	-0.00017	0.000
	5	5.000	0.000	0.000	0.00001	-0.00004	0.00004	0.00001	-0.00004	0.00004	0.00001	-0.00004	0.000
	6	5.500	0.000	0.000	0.00025	-0.00085	0.00085	0.00025	-0.00085	0.00085	0.00025	-0.00085	0.000
	7	6.000	0.000	0.000	0.00048	-0.01933	0.01933	0.00048	-0.01933	0.01933	0.00048	-0.01933	0.019
	8	3.000	0.000	-0.200	0.00000	-0.00001	0.00001	0.00000	-0.00001	0.00001	0.00000	-0.00001	0.000
	9	3,500	0.000	-0.200	0.00005	-0.00006	0.00006	0.00005	-0.00006	0.00006	0.00005	-0.00006	0.000

Bild 4.5 Maske 2.28 Flächen - maximale Dehnungen

Die Tabelle gibt Auskunft über die Extremwerte der Verzerrungen *ɛ*, die an jeder positiven und negativen Flächenseite vorliegen. Die Werte stellen je nach Vorgabe im Dialog *Details* die Dehnungen in den Raster- oder FE-Netz-Punkten dar, deren Nummern und Koordinaten in den Spalten A bis D angegeben sind.

Weitere Erläuterungen zu den Flächenverzerrungen finden Sie im Kapitel 8.28 des RFEM-Handbuchs 12.

Л		5
-	•	5

Flächen - Plastische Verzerrungen

L Las	tstufe 1					~ • •	1				
		0	<u> </u>	D	- (
läche	Raster	Bastemu	nkt-Koordinat	ten [m]	E	F I	Plastische Ver	zemingen [-]	1	J	
Nr.	Punkt	X	Y	Z	En-x +	En-v +	/n-xy +	En-x -	8n-v -	70-00-	
1	1	0.000	0.000	0.000	-0.01472	-0.00238	-0.01437	-0.01472	-0.00238	-0.01437	
_	2	0.500	0.000	0.000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	
	3	1 000	0.000	0.000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	
	4	1.500	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	5	2.000	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	6	2.500	0.000	0.000	0.00014	-0.00006	0.00000	0.00014	-0.00006	0.00000	
	7	3.000	0.000	0.000	0.00038	-0.00018	0.00000	0.00038	-0.00018	0.00000	
	8	0.000	0.000	-0.200	0.00000	0.00000	0.00004	0.00000	0.00000	0.00004	
	9	0.500	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	10	1.000	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	11	1.500	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	12	2.000	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	13	2.500	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	14	3.000	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	15	0.000	0.000	-0.400	0.01466	0.00222	-0.01466	0.01466	0.00222	-0.01466	
	16	0.500	0.000	-0.400	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	17	1.000	0.000	-0.400	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	18	1.500	0.000	-0.400	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	19	2.000	0.000	-0.400	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	20	2.500	0.000	-0.400	-0.00013	0.00006	0.00000	-0.00013	0.00006	0.00000	
	21	3.000	0.000	-0.400	-0.00037	0.00017	0.00000	-0.00037	0.00017	0.00000	
2	1	3.000	0.000	0.000	0.00038	-0.00018	0.00000	0.00038	-0.00018	0.00000	
	2	3.500	0.000	0.000	0.00014	-0.00006	0.00000	0.00014	-0,00006	0.00000	
	3	4.000	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	4	4.500	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	5	5.000	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	6	5.500	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	7	6.000	0.000	0.000	-0.01472	-0.00238	0.01437	-0.01472	-0.00238	0.01437	
	8	3.000	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	9	3.500	0.000	-0.200	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	

Bild 4.6 Maske 2.33 Flächen - Plastische Verzerrungen

In dieser Tabelle sind die plastischen Dehnungen ε_{ρ} und die plastischen Scherungen γ_{ρ} aufgelistet, die an jeder Flächenseite vorliegen. Die Werte beziehen sich auf das xy-Achsensystem der Flächen.

18

www.dlubal.com

Δ

4.6

Flächen - Kriterien

Las	tstufe 3				~ ·	•		
	A	B	C	D	E	F	G	
äche	Raster	Rasterpu	nkt-Koordinat	en (m)	Nichtlinearitäts-	Aus-	Plastische	
Nr.	Punkt	×	Y	Z	grad [-]	nutzung [-]	Vergleichsverzerrung [-]	
1	1	0.000	0.000	0.000	1.00000	0.14492	0.01043	
	2	0.500	0.000	0.000	0.00000	0.25230	0.00000	
	3	1.000	0.000	0.000	0.00000	0.10716	0.00000	
	4	1.500	0.000	0.000	0.00000	0.38371	0.00000	
	5	2.000	0.000	0.000	0.00000	0.58202	0.00000	
	6	2.500	0.000	0.000	1.00000	0.61107	0.00012	
	7	3.000	0.000	0.000	1.00000	0.57562	0.00028	
	8	0.000	0.000	-0.200	0.00000	0.39305	0.00000	
	9	0.500	0.000	-0.200	0.00000	0.14675	0.00000	
	10	1.000	0.000	-0.200	0.00000	0.11673	0.00000	
	11	1.500	0.000	-0.200	0.00000	0.09034	0.00000	
	12	2.000	0.000	-0.200	0.00000	0.06706	0.00000	
	13	2.500	0.000	-0.200	0.00000	0.05566	0.00000	
	14	3.000	0.000	-0.200	0.00000	0.04511	0.00000	
	15	0.000	0.000	-0.400	1.00000	0.14368	0.01047	
	16	0.500	0.000	-0.400	0.00000	0.26062	0.00000	
	17	1.000	0.000	-0.400	0.00000	0.10066	0.00000	
	18	1.500	0.000	-0.400	0.00000	0.37612	0.00000	
	19	2.000	0.000	-0.400	0.00000	0.57431	0.00000	
	20	2.500	0.000	-0.400	1.00000	0.60681	0.00012	
	21	3.000	0.000	-0.400	1.00000	0.57149	0.00027	
2	1	3.000	0.000	0.000	1.00000	0.57562	0.00028	
	2	3.500	0.000	0.000	1.00000	0.61107	0.00012	
	3	4.000	0.000	0.000	0.00000	0.58202	0.00000	
	4	4.500	0.000	0.000	0.00000	0.38371	0.00000	
	5	5.000	0.000	0.000	0.00000	0.10716	0.00000	
	6	5.500	0.000	0.000	0.00000	0.25230	0.00000	
	7	6.000	0.000	0.000	1.00000	0.14492	0.01043	
	8	3.000	0.000	-0.200	0.00000	0.04511	0.00000	
	9	3.500	0.000	-0.200	0.00000	0.05566	0.00000	

Bild 4.7 Maske 2.35 Flächen - Kriterien

Diese Tabelle ermöglicht es, die plastischen Ergebnisse in den Raster- oder FE-Netzpunkten zu bewerten. Der Nichtlinearitätsgrad beschreibt den Anteil der Gaußpunkte, die bei der Analyse mindestens einmal nichtlinear untersucht wurden. Anhand der plastischen Ausnutzung lässt sich beispielsweise überprüfen, an welchen Stellen Fließgelenke vorliegen. Die Plastische Vergleichsverzerrung beschreibt die plastische Verzerrung ε_p , die sich mit der Verzerrungshypothese nach von Mises ergibt.

Die Plastizitätskriterien lassen sich im Arbeitsfenster auch grafisch darstellen (siehe Bild 9.8 im RFEM-Handbuch 🗵).

5

5 Ergebnisauswertung

5.1

Numerische Ergebnisse

Die Ergebnisse der Laststufen lassen sich in den Tabellen nach Ergebnisarten sortiert auswerten. Die Tabellen, die im Navigator zur Auswahl stehen, können im Dialog *Details* festgelegt werden (siehe Kapitel 'Optionen' D). Für die Auswertung sind auch die Schaltflächen unterhalb der Tabelle hilfreich.

Las	tstufe 1						~ • •					
		P (<u> </u>	D	E	E (6	ц (1 1		K (
äche	Baster	Rastemur	ht-Koordina	aten [m]		Verschiebur	ngen [mm]	<u> </u>	Verdr	ehungen Imr	adl	
Nr.	Punkt	X	Y	Z	lul	ux	uy I	uz	ox	0Y	ΦZ	
1	1	0.000	0.000	0.000	0.0	0.0	0.0		0.0	53.2	0.0	
-	2	0.500	0.000	0.000	3.8	-17	0.0	3.5	0.0	-8.9	0.0	
	3	1.000	0.000	0.000	8.3	-1.9	0.0	8.1	0.0	-9.9	0.0	
	4	1 500	0.000	0.000	12.9	-17	0.0	12.8	0.0	-91	0.0	
	5	2.000	0.000	0.000	16.8	-1,3	0.0	16.8	0.0	-6.9	0.0	
	6	2,500	0.000	0.000	19.4	-0.7	0.0	19.4	0.0	-3.8	0.0	
	7	3.000	0.000	0.000	20.4	0.0	0.0	20.4	0.0	0.0	0.0	
	8	0.000	0.000	-0.400	0.0	0.0	0.0	0.0	0.0	52.0	0.0	
	9	0.500	0.000	-0.400	3.8	1.7	0.0	3.5	0.0	-8.9	0.0	
	10	1.000	0.000	-0.400	8.3	1.9	0.0	8.1	0.0	-9.9	0.0	
	11	1.500	0.000	-0.400	12.9	1.7	0.0	12.8	0.0	-9.1	0.0	
	12	2.000	0.000	-0.400	16.8	1.3	0.0	16.8	0.0	-6.9	0.0	
	13	2.500	0.000	-0.400	19.4	0.7	0.0	19.4	0.0	-3.8	0.0	
	14	3.000	0.000	-0.400	20.4	0.0	0.0	20.4	0.0	0.0	0.0	
2	1	3.000	0.000	0.000	20.4	0.0	0.0	20.4	0.0	0.0	0.0	
	2	3.500	0.000	0.000	19.4	0.7	0.0	19.4	0.0	3.8	0.0	
	3	4.000	0.000	0.000	16.8	1.3	0.0	16.8	0.0	6.9	0.0	
	4	4.500	0.000	0.000	12.9	1.7	0.0	12.8	0.0	9.1	0.0	
	5	5.000	0.000	0.000	8.3	1.9	0.0	8.1	0.0	9.9	0.0	
	6	5.500	0.000	0.000	3.8	1.7	0.0	3.5	0.0	8.9	0.0	
	7	6.000	0.000	0.000	0.0	0.0	0.0	0.0	0.0	-53.2	0.0	
	8	3.000	0.000	-0.400	20.4	0.0	0.0	20.4	0.0	0.0	0.0	
	9	3.500	0.000	-0.400	19.4	-0.7	0.0	19.4	0.0	3.8	0.0	
	10	4.000	0.000	-0.400	16.8	-1.3	0.0	16.8	0.0	6.9	0.0	
	11	4.500	0.000	-0.400	12.9	-1.7	0.0	12.8	0.0	9.1	0.0	
	12	5.000	0.000	-0.400	8.3	-1.9	0.0	8.1	0.0	9.9	0.0	
	13	5.500	0.000	-0.400	3.8	-1.7	0.0	3.5	0.0	8.9	0.0	\
	14	6.000	0.000	-0.400	0.0	0.0	0.0	0.0	0.0	-52.0	0.0	

Bild 5.1 Schaltflächen für Ergebnisauswertung

Schaltfläche	Bezeichnung	Funktion
A	Grafische Auswahl	Ermöglicht die Auswahl eines Objekts (Fläche, Volumen etc.) im RFEM-Arbeitsfenster, um dessen Ergebnisse in der Tabelle anzuzeigen
?	Ergebnisse im Hintergrund	Blendet die grafischen Ergebnisse der aktuellen Tabelle in der RFEM-Hintergrundgrafik ein und aus
En al a a a a a a a a a a a a a a a a a a	Farbige Bezugsskala	Blendet die farbigen Relationsbalken in den Ergebnistabellen ein und aus
	Export zu Excel	Exportiert die aktuelle Tabelle nach MS Excel → Kapitel 'Datenexport' ⊠
Tabelle 5.1 Schaltfläch	ien für Ergebnisauswertung	

Ergebnisse in

Raster-Punkten

O FE-Netz-Punkten

Grafik

Bild 5.2 RFEM-Arbeitsfenster mit Ergebnisse-Navigator für RF-LOAD-HISTORY

Für die Ergebnisse von RF-LOAD-HISTORY stehen die gleichen Einträge wie für Lastfälle oder Lastkombinationen zur Auswahl. Die Verformungen, Schnittgrößen, Spannungen, Verzerrungen, Plastizitätskriterien, Lagerreaktionen etc. lassen sich wie bei einem Lastfall mit oder ohne Werten darstellen. Im Kapitel 9 des RFEM-Handbuchs 🗷 sind die Möglichkeiten zur Auswertung der grafischen Ergebnisse ausführlich beschrieben.

Bei einem plastischen Material sollte ein konstanter Spannungsverlauf in den finiten Elementen gewählt werden, um die Ergebnisse korrekt zu interpretieren. Der Verlauf der Schnittgrößen/Spannungen kann im Zeigen-Navigator unter dem Eintrag Ergebnisse → Flächen eingestellt werden. Bei durchlaufender Glättung können Ergebniswerte in einigen FE-Knoten auftreten, die größer sind als die definierte Fließspannung. Dies hat folgenden Grund: Die Fließgrenze wird bei der Berechnung elementweise berücksichtigt, nicht knotenweise. Hierzu werden die Ergebnisse aus den FE-Knoten auf den Elementschwerpunkt interpoliert.

Die diversen Glättungsoptionen sind im Kapitel 9.7.1 des RFEM-Handbuchs D mit Beispielen beschrieben. Auch folgender Fachbeitrag gibt eine Hilfestellung zur Glättung der Ergebnisse: https://www.dlubal.com/de/support-und-schulungen/support/knowledge-base/001571 D

Dlubal

Das Register Faktoren des Panels verwaltet neben den Anzeigefaktoren auch die Laststufe ("PLF"), deren Ergebnisse präsentiert werden. In der Liste kann zwischen den einzelnen Laststufen gewechselt werden.

Die Ergebnisse können auf die vorherige Laststufe oder das unverformte Ausgangsmodell bezogen dargestellt werden. Ein Wechsel zwischen diesen beiden Varianten ist ohne Neuberechnung möglich: Rufen Sie z. B. mit der Schaltfläche [RF-LOAD-HISTORY] wieder das Zusatzmodul auf und ändern im Dialog Details, Register Optionen den Verformungstyp (siehe Kapitel 'Optionen' D). Nach der Rückkehr zur [Grafik] können Sie die angepassten Werte überprüfen.

Verformungstyp

🔿 In bestimmter Laststufe (an verformten Knoten)

Auf nicht verformter Konstruktion (Summe der Verformungen)

6 Allgemeine Funktionen

Dieses Kapitel stellt nützliche Funktionen wie beispielsweise den Export und die Dokumentation der Ergebnisse vor.

6.1

Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RFEM bzw. RSTAB und für die Zusatzmodule gemeinsam verwaltet. In RF-LOAD-HISTORY ist der Dialog zum Anpassen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es erscheint der aus RFEM bekannte Dialog. In der Liste Programm / Modul ist RFEM eingestellt, da die in RF-LOAD-HISTORY verwendeten Einheiten denen des Hauptprogramms entsprechen.

gramm / Modul	Mo	dell Belastu	ng Ergebr	nisse	Abmessu	ingen					
BE-STAHL Flächen	Ge	ometrie						Materialien			
- RF-STAHL Stäbe				E	inheit	Dez	zStellen		Einheit		DezStelle
RF-STAHL EC3	Lá	naen:		m	~	ΙΓ	3 🚔	E G-Modul:	N/mm^2	\sim	1
- RF-STAHL AISC										-	
- RF-STAHL IS	w	nkel:		•	~		2 🗸	Spezifische Gewichte:	kN/m ^{**} 3	~	2 🗸
- RF-STAHL SIA	Fla	ichendicken:		mm	\sim		1 🜩	Wärmedehnkoeffizienten:	1/°C	\sim	2 ≑
- RE-STAHL BS								Energien nach Bereich:	N/mm	~	3 📤
RESTARLOS									1.1.1		
- RF-STAHL AS								Querdehnzahlen:	•	\sim	3
RF-STAHL NTC-DF	0	orachaitte						Lagar / Staifigkaitan / Ortho	tronio		
RF-STAHL SP	Gal	erschnitte						Lager / Stelligkeiten / Ortino	nopie	_	
RF-STAHL Plastisch	Be	maßungen:		mm	~		1 🜩	Kräfte:	kN	\sim	3 🜩
RF-STAHL SANS	Q	ierschnittswei	te:	cm	~		2 ≑	Längen f. Momente:	m	\sim	3 ≑
RF-STAHL Emüdung	M	eeen nro Län		ka/a		i F	1	Längen:	m	~	2 🔺
PESTALL NER	141	assen pro Lan	ige.	Kg/II	· · ·		· •	Langen.		-	
- RF-ALUMINIUM	Fla	ichen:		m^2	′m ∼		3 ≑	Winkel:	rad	\sim	4 🜩
- RF-ALUMINIUM ADM	Di							Constino			
RF-KAPPA		IICTISIUTISIUS		_				Sonsage			
- RF-BGDK	Fa	ktoren:		-			2 🜩	Erdbeschleunigung:	m/s^2	\sim	2 🌩
- RF-FE-BGDK	Pr	zente:		%			2 ≑	Massen:	kg	\sim	2 ≑
RF-EL-PL								Gaednicke:	har	~	2
EF-BEIII									Dai	-	
- RF-BETON Flächen								Molmassen:	kg/mol	\sim	3 🜩
- RF-BETON Stäbe								Themische	W/m/K	\sim	3 ≑
RF-BETON Stützen											
	e								01/	-	
									OK		Abbrech

۱

Die geänderten Einstellungen können als Benutzerprofil gespeichert und in anderen Modellen wieder verwendet werden. Diese Funktionen sind im Kapitel 11.1.3 des RFEM-Handbuchs 🗵 beschrieben.

Datenexport

In RF-LOAD-HISTORY bestehen verschiedene Möglichkeiten, die Ergebnisdaten der Laststufen zu exportieren.

Aktuelle Ergebnistabelle exportieren

Markierte Zellen der Ergebnismasken können mit [Strg]+[C] in die Zwischenablage kopiert und dann mit [Strg]+[V] z. B. in ein Textverarbeitungsprogramm eingefügt werden. Die Überschriften der Tabellenspalten bleiben dabei unberücksichtigt.

4

6.2

Ferner ist in allen Ergebnismasken die [Excel]-Schaltfläche verfügbar (siehe Bild 'Schaltflächen für Ergebnisauswertung' D). Sie ermöglicht es, den Inhalt der aktuellen Tabelle einschließlich Überschriften nach MS Excel zu übergeben. Excel wird automatisch aufgerufen, d. h. das Programm braucht vorher nicht geöffnet werden.

C	<u>ا</u> ک	• 6	~ = -	Tabelle1 -	Excel	,∕⊂ Su	chen				8	T –		×
Da	atei	Start	Einfüge	en Se	itenlayou	t Form	neln D	Daten	Überprüf	en Ansi	cht Hilf	e	ß	P
Ein Zwis	fügen	⟨] ¥ Ige ⊑	Calibri F K L Calibri	~ 10 J ~ A [*] 2 ~ <u>A</u> riftart	À A E	E I III E IIII III E IIII IIII Ausrichtung	ab 	% E Zahl E	Bedingt Als Tabe Zellenfo Forn	e Formatieru lle formatiere rmatvorlager atvorlagen	ng Y E	len Bearb	D veiten	~
B3	}	Ŧ	: ×	~	<i>f</i> _x 1									~
	А	В	С	D	E	F	G	н	1	J	К	L	м	
1	Fläche	Raster	Rasterpun	kt-Koordi	naten [m]		Verschieb	ungen (mn	n]	Ver	drehungen [r	mrad]		
2	Nr.	Punkt	х	Y	Z	[u]	u _x	uy	u _z	φ _x	φγ	φ		
3	1	1	0,000	0,000	0,000	0,0	0,0	O ,	0 0	,0 0,0	0,0	49,3		
4		2	0,500	0,000	0,000	3,1	-1,3	-2,	8 0	,0 0,0	0,0	-6,7		
5		3	1,000	0,000	0,000	6,3	-1,3	-6,	1 0	,0 0,0	0,0	-6,8		
6		4	1,500	0,000	0,000	9,4	-1,2	-9,	з с	,0 0,0	0,0	-6,0		
7		5	2,000	0,000	0,000	12,0	-0,9	-11,	9 0	,0 0,0	0,0	-4,5		
8		6	2,500	0,000	0,000	13,7	-0,5	-13,	7 0	,0 0,0	0,0	-2,5		
9		7	3,000	0,000	0,000	14,3	0,0	-14,	з с	,0 0,0	0,0	0,0		
10		8	0,000	0,000	-0,400	0,0	0,0	0,0,	0 0	,0 0,0	0,0	48,0		
11		9	0,500	0,000	-0,400	3,1	1,3	-2,	8 0	,0 0,0	0,0	-6,7		
12		10	1,000	0,000	-0,400	6,3	1,3	-6,	2 0	,0 0,0	0,0	-6,8		
13		11	1,500	0,000	-0,400	9,4	1,2	-9,	з с	,0 0,0	0,0	-6,0		
14		12	2,000	0,000	-0,400	12,0	0,9	-11,	9 0	,0 0,0	0,0	-4,5		
15		13	2,500	0,000	-0,400	13,7	0,5	-13,	7 0	,0 0,0	0,0	-2,5		
16		14	3,000	0,000	-0,400	14,3	0,0	-14,	з с	,0 0,0	0,0	0,0		
17	2	1	3,000	0,000	0,000	14,3	0,0	-14,	з с	,0 0,0	0,0	0,0		
18		2	3,500	0,000	0,000	13,7	0,5	-13,	7 0	,0 0,0	0,0	2,5		
19		3	4,000	0,000	0,000	12,0	0,9	-11,	9 0	,0 0,0	0,0	4,5		
20		4	4,500	0,000	0,000	9,4	1,2	-9,	3 0	,0 0,0	0,0	6,0		
21		5	5,000	0,000	0,000	6,3	1,3	-6,	1 0	,0 0,0	0,0	6,8		
22		6	5,500	0,000	0,000	3,1	1,3	-2,	8 0	,0 0,0	0,0	6,7		
23		7	6,000	0,000	0,000	0,0	0,0	0 0 ,	0 0	,0 0,0	0,0	-49,3		
24		8	3,000	0,000	-0,400	14,3	0,0	-14,	3 0	,0 0,0	0,0	0,0		
25		9	3,500	0,000	-0,400	13,7	-0,5	-13,	7 0	,0 0,0	0,0	2,5		-
	4 - F		3 - PLF, 2	.13 Fläch	en - loka	le	+		: [1				Þ
Bere	eit										巴	-	+	100 %

Bild 6.2 Ergebnis in Excel

Alle Ergebnistabellen exportieren

Es können auch mehrere oder alle Tabellen in einem Arbeitsgang nach MS Excel oder in das CSV-Format exportiert werden. Dies ist möglich über die Menüfunktion

Datei \rightarrow Tabellen exportieren.

Es öffnet sich folgender Exportdialog:

	A
Einstellungen Tabelle	Applikation
Mit Tabellenkopf	Microsoft Excel
Nur markierte Zeilen	○ CSV file format
Einstellungen	
Tabelle in die aktive Arbeits	mappe exportieren
Tabelle in die aktive Tabelle	exportieren
Existierende Tabelle überso	threiben
Selektierte Tabellen	
O Aktuelle Tabelle	Ausgeblendete Spalten
Alle Tabellen	exportieren
	Export-Tabellen mit
	Details
geonotabellen	
D	OK Abbreche

Wenn die Auswahl feststeht, kann der Export mit [OK] gestartet werden. Excel wird automatisch aufgerufen, d. h. das Programm braucht vorher nicht geöffnet werden.

Ę	J ら~	(°		Tabelle1 -	Excel	م		8	T –		×
Da	tei Sta	rt Einfü	gen Sei	tenlayout	Forme	ln Daten	Überprüf	fen Ansi	cht Hilfe	ß	∇
A3		• = >	< 🗸 .	<i>f</i> _x 1							~
	А	В	с	D	E	F	G	н	I.	J	
1	Fläche	Raster	Rasterpur	nkt-Koordin	aten [m]	,	on Mises [-]				
2	Nr.	Punkt	х	Y	Z	ε _{+,Mises}	٤.,Mises	8 _{Mises}			
3	1	1	0,000	0,000	0,000	0,01749	0,01749	0,01749			
4		2	0,500	0,000	0,000	0,00030	0,00030	0,00030			
5		3	1,000	0,000	0,000	0,00013	0,00013	0,00013			
6		4	1,500	0,000	0,000	0,00046	0,00046	0,00046			
7		5	2,000	0,000	0,000	0,00070	0,00070	0,00070			
8		6	2,500	0,000	0,000	0,00088	0,00088	0,00088			
9		7	3,000	0,000	0,000	0,00103	0,00103	0,00103			
10		8	0,000	0,000	-0,400	0,01760	0,01760	0,01760			
11		9	0,500	0,000	-0,400	0,00031	0,00031	0,00031			
12		10	1,000	0,000	-0,400	0,00012	0,00012	0,00012			
13		11	1,500	0,000	-0,400	0,00045	0,00045	0,00045			
14		12	2,000	0,000	-0,400	0,00069	0,00069	0,00069			
15		13	2,500	0,000	-0,400	0,00087	0,00087	0,00087			
16		14	3,000	0,000	-0,400	0,00102	0,00102	0,00102			
17	2	1	3,000	0,000	0,000	0,00103	0,00103	0,00103			
18		2	3,500	0,000	0,000	0,00088	0,00088	0,00088			
19		3	4,000	0,000	0,000	0,00070	0,00070	0,00070			
20		4	4,500	0,000	0,000	0,00046	0,00046	0,00046			
21		5	5,000	0,000	0,000	0,00013	0,00013	0,00013			
22		6	5,500	0,000	0,000	0,00030	0,00030	0,00030			-
	< >	3 - PLF,	2.29 Fläch	en - Dehn	ung 3	- PLF, 🤆					
Bere	it] [2] -			00 %

Bild 6.4 Ergebnis in Excel

In den Excel-Registern sind die Ergebnisse der Laststufen als "Plastischer LastFall" gekennzeichnet: 1 - PLF, 2 - PLF, 3 - PLF etc.

Г	Evenet	٦
	Export	

Ergebniskombinationen nach RFEM exportieren

Die Ergebnisse der Laststufen können auch für weitere Untersuchungen in RFEM genutzt werden. Mit der Schaltfläche [Export] wird eine Funktion aufgerufen, die für jede Laststufe eine Ergebniskombination *EK* erzeugt und die Ergebnisse der Laststufen in die jeweiligen EKs exportiert.

An RFEM üb	ergebene Ergebnis	kombinationen	
EK1: RF-LO EK2: RF-LO EK3: RF-LO Export der E	AD-HISTORY - Sch AD-HISTORY - Sch AD-HISTORY - Sch Irgebniskombination	witt 1 witt 2 witt 3 en nach RFEM wurde erfolgreich	durchgef

Mit diesen Ergebniskombinationen liegen die Schnittgrößen in einer Ausgabeform unabhängig vom Modul RF-LOAD-HISTORY vor. Jede Laststufe kann so als Ergebniskombination mit anderen Einwirkungen überlagert oder in den Zusatzmodulen als Bemessungsfall untersucht werden.

Die Definitionskriterien der aus RF-LOAD-HISTORY erzeugten EKs können in RFEM nicht bearbeitet werden.

Dlubal

6.3

Ausdruck

Für die Daten des Moduls RF-LOAD-HISTORY wird — wie in RFEM — ein Ausdruckprotokoll generiert, das mit Grafiken und Erläuterungen ergänzt werden kann. Die Selektion im Ausdruckprotokoll steuert, welche Daten des Zusatzmoduls im Ausdruck erscheinen.

Im Kapitel 10.1.3.5 des RFEM-Handbuchs 🗷 ist beschrieben, wie die Ein- und Ausgabedaten von Zusatzmodulen für den Ausdruck aufbereitet werden können.

usdruckprotokoll-Selektio	n	
Programm	Globale Selektion Eingabedaten Ergebnisse	
RFEM	Anzeigen	
	Daten des Moduls	
	☐ 1. Eingabedaten	
	2. Fraebnisse	
	Zu zeigende Laststufen	
	Alle Laststuren anzeigen	
	Vorhandene Laststufen	Zu zeigende Laststufen
	Laststufe 1 Laststufe 1	Laststufe 3 Laststufe 3
	Laststufe 2 Laststufe 2	
		>
		>>
		· · · · · · · · · · · · · · · · · · ·
		4
Deckblatt	100	
Inhalt		
Info-Bilder		
🗹 Große Überschriften		
-		
D		OK Abbrech

Bild 6.6 Dialog Ausdruckprotokoll-Selektion mit Auswahlmöglichkeit für Laststufen

Im Register Globale Selektion kann festgelegt werden, welche Laststufen im Ausdruck erscheinen sollen. Hierzu ist die Option Alle Laststufen anzeigen zu deaktivieren. Die nicht relevanten Laststufen können dann per Doppelklick oder mit der Schaltfläche dus der Liste Zu zeigende Laststufen entfernt werden.

Des Weiteren kann jede Grafik, die im Arbeitsfenster angezeigt wird, in das Ausdruckprotokoll übergeben oder direkt zum Drucker geleitet werden. So lassen sich auch die am Modell gezeigten Ergebnisse der Laststufen für den Ausdruck aufbereiten. Das Drucken von Grafiken ist im Kapitel 10.2 des RFEM-Handbuchs Deschrieben.

🙇 Ausdruckprotokoll - AP2: Eingabedaten und reduzie	rte Erge	bnisse*								-		×	
Datei Ansicht Bearbeiten Einstellungen Einfüge	en Hil	fe											
A & B 🗄 🖉 < > 🖸 🖉 🗑 🖥 🕾	- 🗐		3 🝸	1) 🖉 🛛	ئى ئ							
Ausdruckprotokollnavigator ×		2.18	FLÄC	HEN - HAU	IPTSPA	NNUN	GEN.						
Ausdruckprotokoll		LAST	STUF	E 3 : LAS	TSTUFE	3							
		Fläche	Raster	Rasterpunk X	t-Koordinaten Y	[m] 7	5 1.	5 2 •	Spann o., M	ungen [N/mm²] or .)	a. m	
μ			Standig			-						••[]	
1.1.1 Basisangaben		1	2	0.00	0.00	0.00	-14.11	-90.00 7 -65.20	-25.94	-14.11	-90.08 -65.20	-25.94 -89.69	
			4	1.50	0.00	0.00	94.5	3 -3.9	-0.80 3 -0.11	94.53	-3.96	-0.50	
🖃 📩 Laststufe 3			6	2.50	0.00	0.00	153.6	9 -24	0.27	153.69	-2.41	0.27	
Ergebnisse			8	-0.00	0.00	-0.40	95.3	B 11.90	-60.25	95.38	11.92	-60.25	
2.2 Knoten - Verformungen, Lasts			10	1.00	0.00	-0.40	-6.14	4 -27.67	-89.33	-6.14	-27.67	-89.33	
2.12 Flächen - lokale Verformunge			12	2.00	0.00	-0.40	-6.1	5 -147.44	4 -89.95	-6.15 -7.58	-147.44	-89.95 89.71	
2.18 Flächen - Hauptspannungen,		2	14	3.00	0.00	-0.40	-7.23	2 -135.92	2 -90.00	-7.22 131.77	-135.92	-90.00 0.00	
📺 2.21 Flächen - Vergleichsspannun			2	3.50	0.00	0.00	153.6	9 -2.4	1 -0.27 5 0.05	153.69	-2.41 -3.95	-0.27	
····· 🛅 2.27 Flächen - maximale Dehnung			4	4.50	0.00	0.00	94.53 24.68	3 -3.9 8 -3.9	6 0.11 8 0.50	94.53 24.68	-3.96	0.11	
🛅 2.28 Flächen - Vergleichsdehnung			6 7	6.00	0.00	0.00	-3.9	7 -65.20	89.69 25.94	-3.97	-65.20 -90.08	89.69 25.94	
🛅 2.32 Flächen - Plastische Verzerrur			9	3.50	0.00	-0.40	-7.58	2 -135.9 8 -157.5 5 -147.4	2 -90.00	-7.58	-135.92	-90.00	
2.33 Flächen - Rissverzerrungen, L			11	4.50	0.00	-0.40	-6.14	4 -97.52	89.88	-6.14	-97.52 -27.67	89.88	
🛄 2.34 Flächen - Kriterien, Laststufe			13	5.50	0.00	-0.40	62.17	7 -6.1	2 0.28	62.17	-6.12	0.28	
		LAS I Fläche Nr. 1	STUF Raster Punkt Ständig 1 2 3 4 5	E 3 . LAS Raste X 0.00 0.50 1.00 1.50 2.00	rpunkt-Koordi Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0	= 3 naten [m] 0 0 0	2 0.00 0.00 0.00 0.00	Vergleichssp 6.,mix 83.92 63.31 26.88 96.57 146.47	annungen - von Mis G _{V,1} 63.92 63.31 26.88 96.57 146.47	ses [N/mm ²] 6 _{V-} 83.9 63.3 26.5 96.5 146.4	92 31 36 37		
		2	6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 6 7 8 9 9 10 11 12 2 3 14 12 2 3 14 12 12 13 14 12 12 13 14 11 12 12 13 14 11 12 12 14 11 12 12 14 11 11 12 14 14 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	2 500 3 500 -0.00 0.550 1.500 2.500 3 000 3 000 3 500 5 500 3 000 4 500 3 000 5 500 3 000 5 500 3 000 5 500 3 000 5 500 3 000 5 500 5			0.00 0.00 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 0.00	154.91 133.19 90.02 85.44 25.17 94.60 144.47 153.88 132.45 133.19 154.91 146.47 28.88 863.31 83.92 132.45 153.88 144.47 94.60 25.17 94.60	154 91 133 19 90 02 85 44 85 44 153 88 132 45 133 19 144 47 144 47 168 47 26 88 63 31 154 91 154 91 153 88 133 88 133 88 133 88 144 47 96 57 26 88 133 88 133 88 133 88 144 47 96 57 26 88 133 88 133 88 133 88 144 45 153 88 153 88 154 85 153 88 153 88 154 85 155 85	1543 1533 900 654 251 946 1444 1538 1324 1333 1545 268 633 3639 1324 1538 1444 965 268 633 3639 1324 1538 1454 5656	91 199 199 199 199 192 122 144 147 188 199 191 193 193 193 193 193 193		
	-	2.27 LAST Fläche Nr.	FLÄCH STUF Raster Punkt Ständig	HEN - MAX E 3 : LAS Rasterpuri X 0.00		0 I DEHNI E 3 (m) z	-0.40 UNGEI Emec.+ / En	90.02 N, max t max.+/	90.02 Maximal emixlemad+/lex 1.00 1	90.0 le Verzerrunger med- <u></u> € me	n[-] «	-0.02	
			3 4 5	1.00 1.50 2.00	0.00	0.00		.00 .00 .00	1.00 1 1.00 1 1.00 1	.00 .00 .00	0.00	-0.00 -0.00 -0.00	
>	<										0	>	
Ausdruck	rotoko								Seiten	n: 8	Seite: 6		ĺ

