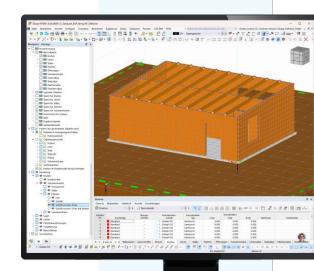


Software for Structural Analysis and Dynamics

Dipl.-Ing. (FH) Andreas Hörold Organizer

Marketing & Public Relations
Dlubal Software GmbH



Michelle Rosin, B.A. Co-Organizer

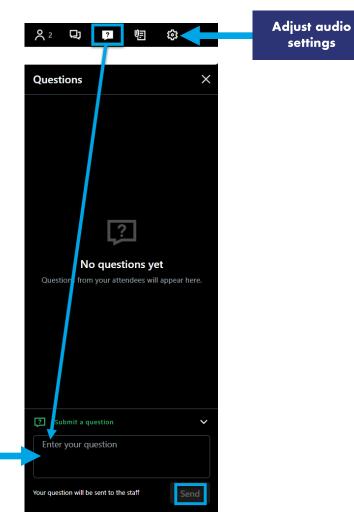
Marketing & Public Relations
Dlubal Software GmbH

Webinar

News in RFEM 6 and RSTAB 9

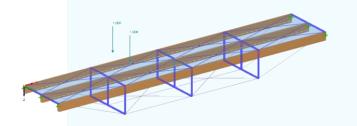
settings

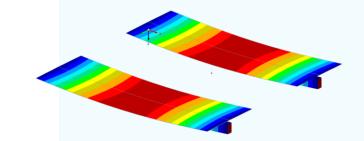
Questions During the Presentation



GoToWebinar Control Panel Desktop

E-mail: info@dlubal.com


Ask questions


Webing

CONTENT

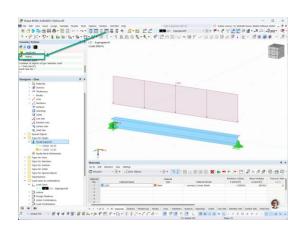
- New features implemented in add-ons and stand-alone programs
- 03 New add-ons
- **04** Prospects

淤

Features

Console with Python Option

 Python high-level functions are available in the console for in-app scripting


 \longrightarrow

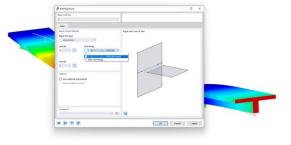
More information

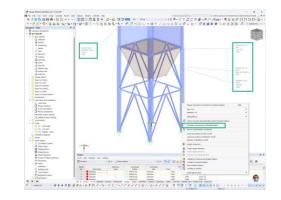
Visual Objects

Importing guide objects in .3ds and .obj file formats

Features

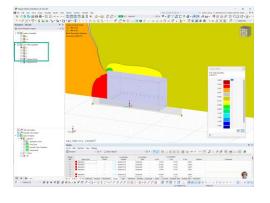
Line Hinges for Rigid Links


- For hinged couplings of different elements
- Modelling of the elements in their actual position
- E. g. Connection ceiling joist



Interactive Comment

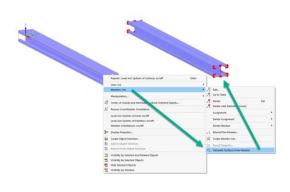
- Display interactive comments including obejet properties for members, surfaces and so on
- Comments can be moved or hidden at any time


Features

Flow Field Quantities

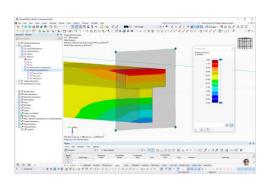
 Visualisation of the flow field quantities pressure, velocity, turbulence kinetic energy and turbulence dissipation rate

More information



Generating Surfaces from Member with RSECTION Cross-Section

Splitting the bars with RSECTION cross-section into surfaces

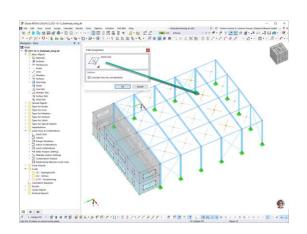

$\overset{\sim}{\sim}$

Features

Stresses Within Members via Clipping Planes

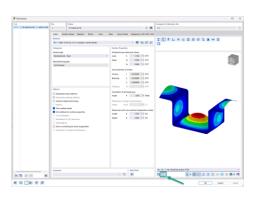
 Improved visualisation of the stress distribution within the member cross-sections by using clipping planes

More information



Generate Bracing in Cells

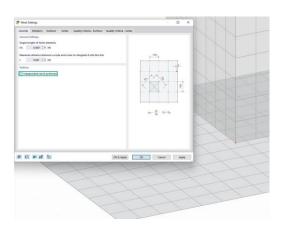
- Generation of diagonal braces in cells
- $\blacksquare \quad \mathsf{Tools} \to \mathsf{Generate} \; \mathsf{Model} \; \mathsf{-} \; \mathsf{Members} \to \mathsf{Bracing} \; \mathsf{in} \; \mathsf{Cells}$



Features

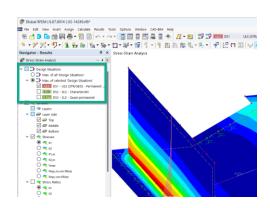
3D Display of FSM Results

 Output of the buckling figures of the finite strip method as 3D graphics via cross-section dialogue



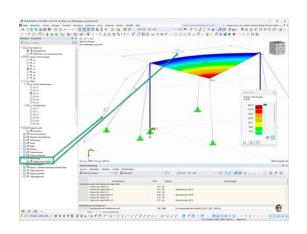
Independent FE Mesh

- Creation of independent FE meshes for integrated objects
- Allows to generate a significantly more detailed and precise FE mesh



Graphical Add-on Result Display by Design Situation

Individual selection of the design situation for the add-on results in the 'Results' navigator

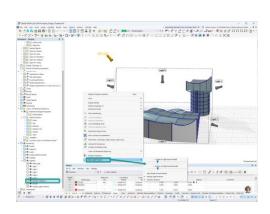

More information

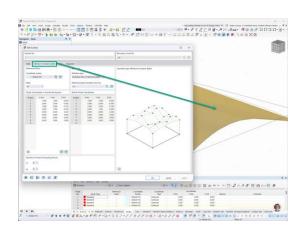
Dimensioning with Result Function

- Display of sags or extreme results of the dimensioning objects
- Display of results on members for specific areas

Dynamic Shadows

- Improvement of the visual representation by dynamic shadows
- Shadows can be added in rendering mode
- Position of the main light can be changed in the context menu via slider

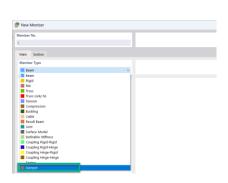



Spline Surface with Minimum Curvature

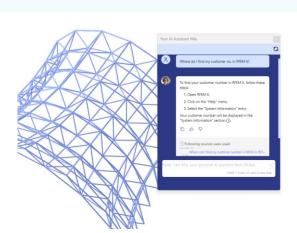
- Facilitates the creation of complex surface geometries with minimal curvature
- E. g. for modelling terrain surfaces

Mia - your Al assistant for structural analysis and Dlubal software

- Support with questions about Dlubal software and civil engineering topics
- Trained with the knowledge of the Dlubal website and ChatGPT
- Directly available in the RFEM, RSTAB and RSECTION programs
- Honored as Innovation of the Year 2024 with the Construction Computing Award 2024

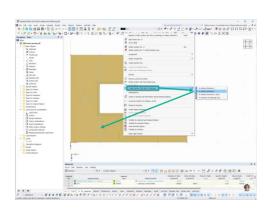


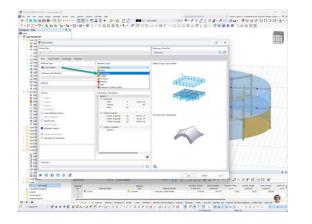
More information


"Damper" Member Type

- Enables the definition of damping coefficient, spring constant and mass
- Similar to the Kelvin-Voigt model in terms of viscoelasticity

Features


Creating Surface Cells Due to Openings


- Surface cells can be created due to openings via the surface shortcut menu
- E. g. to create lines for columns of timber panel walls
 - **More information**

Curved Load Transfer Surfaces

- New geometry types for surface stiffness types 'Load Transfer':
 - Quadrangele
 - NURBS
 - Rotation
 - Pipe

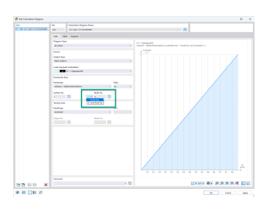
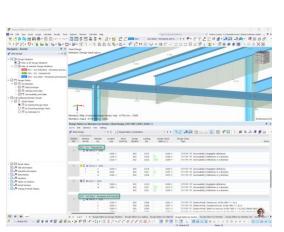


Diagram Evaluation for Surface Result Points

Output results for calculation diagrams at surface result points, surface grid points and nodes

More information

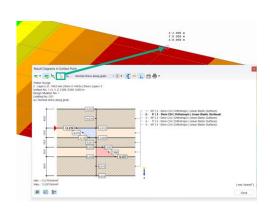


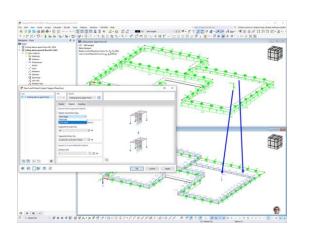
Displaying Design Results in Table by Design Situation

- Display design results of the add-ons by design situation in table
- More detailed evaluation of the results

Design Check Details on Mesh Node Selection in Graphics

- Enables the display of detailed results directly at the selected mesh nodes
- Mesh nodes can be easily selected in the graphic

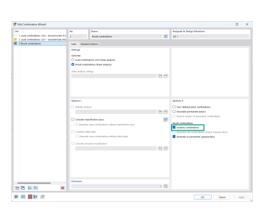


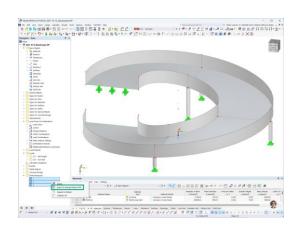

Transfer of Support Reactions to Free Loads

- New object connection type in the 'Import Support Reaction' load wizard
- In addition to 'Manually' the type 'Free Loads' is available
- No need to manually assign support reactions to nodes and lines
- Support forces of the connected model are applied as free loads

Final Result Combination via Auxiliary Combinations

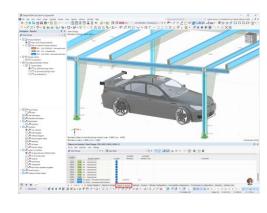
- Generation of final result combinations via auxiliary combinations
- Clearer and easier to check result combinations for models with many load cases
- E. g. moving loads for bridges

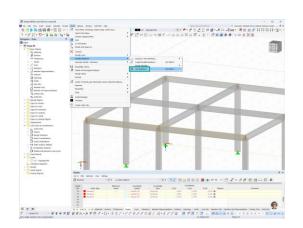



Combined PDF Report

- Exporting multiple printout reports to a PDF file in RFEM and RSTAB
- Function in the Navigator Data

Exclude Objects from Design by Combination


- Exclude objects such as members, surfaces, etc. from the design by load combination (CO)/result combination (RC)
- Input in the 'Objects to Exclude' table tab
- Design of certain objects only with certain load combinations
- Available in all design add-ons with the exception of the 'Steel Joints' add-on


Join Lines, Join Members

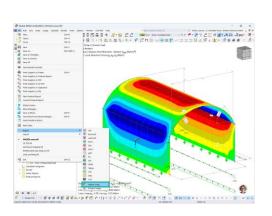
 Combine several lines/ members into one line or member without deleting the common nodes

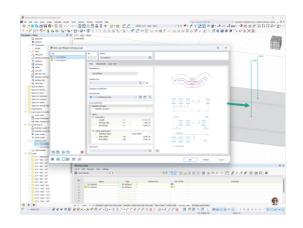
$\overset{\sim}{\sim}$

Features

Import/Export of Python Scripts

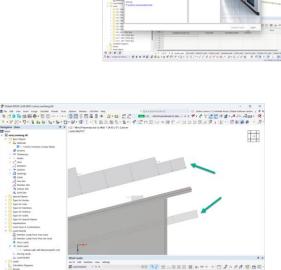
Import Python scripts and export Python scripts of the models




Load Wizard for Moving Loads

- Enables generation of moving loads
- Application of single loads or load models from several loads to the system
- Automatic generation of load cases according to moving step, start and end offset
- Integrated RFEM, no separate licence required

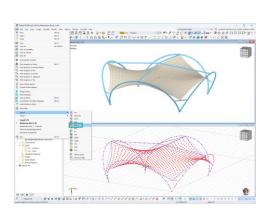
Cloud Calculation 2.0


- Calculation of RFEM 6 and RSTAB 9 models with wind simulation load cases
- Analysis speed-up by about 20%

Wind Loads on Roof Overhangs

onsiders wind loads on roof overhangs in the 'Wind loads' load wizard

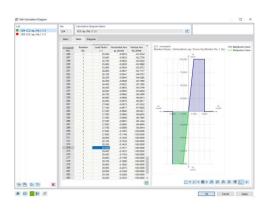
The Control of the Co



Interfaces

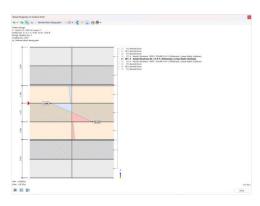
- Direct BricsCAD interface
- SDNF interface
- DXF-II import and export

SDNF



Hinge Diagram

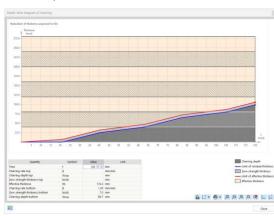
- Hinge response of load situations for nonlinear hinges
- E. g. for calculations with several load situations, such as pushover analysis



Add-on Timber Design

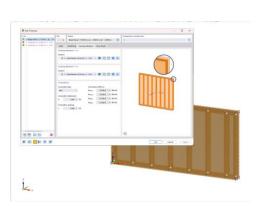
Fire Resistance Design of Surfaces for EN 1995, SIA 265, NDS, and CSA O86

- Fire resistance design for surfaces with the reduced cross-section method possible (reduction via surface thickness)
- Design checks can be performed for all designable timber materials
- For cross laminated timber: Option to consider the fall-off of individual carbonized layer parts (depending on the adhesive) → increased charring in certain layer areas


More information

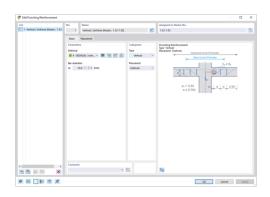
Charring Diagram

- Display a charring diagram depending on the time of fire exposure for fire resistance design of timber surfaces
- Transfer to printout report possible


Add-on Multilayer Surfaces

Timber Panel Element

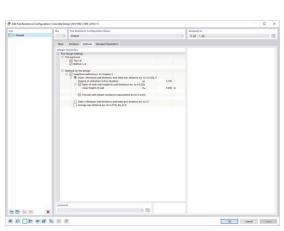
- Modelling of timber panel elements in 3D space using the 'beam panel' thickness type
- Generation via internal member surface construct including simulation of the connection stiffness
- Advantages:
 - Single-sided or double-sided sheathing
 - Automatic calculation of a semi-rigid coupling between studs and sheathing
 - Representation as a complete geometric 3D object (frame, studs, surfaces, etc.)
 including eccentricity and automatically calculated stiffness between elements
 - Consideration of openings via surface cells
 - Design of the individual structural elements utilizing the Timber Design add-on
 - Other material options available (e.g., particle board, gypsum, or fiberboard sheathing with cold-formed steel sections)



Add-on Concrete Design

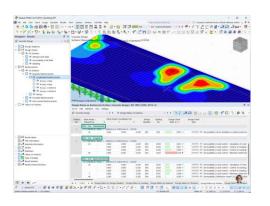
Punching Shear Reinforcement

- Definition of existing vertically orientated punching shear reinforcement
- Consideration during punching shear design



Fire Design of Slabs and Walls According to Simplified Table Method

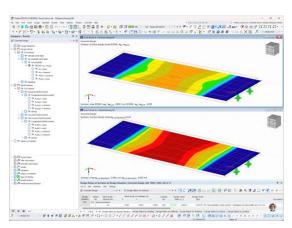
- Fire design according to the simplified table method for reinforced concrete slabs and walls
- According to EN 1992-1-2, section 5.4.2 and tables 5.8 and 5.9


Add-on Concrete Design

Reinforcement Results in Tables by Design Situation

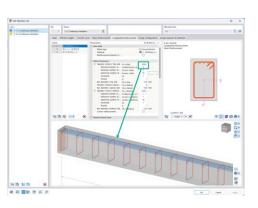
 Display of the tabular reinforcement results separately according to design situations

More information



Determination of Required Longitudinal Reinforcement for Direct Crack Analysis

 Determination of the required longitudinal reinforcement for crack width analysis



Add-on Concrete Design

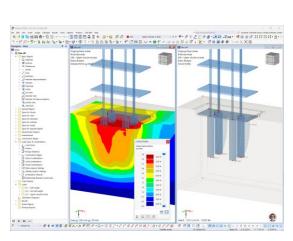
Automatic Function of Longitudinal Reinforcement for Members

 Automatic determination of the number or diameter of rebars for the design of reinforced concrete members

Add-on Geotechnical Analysis

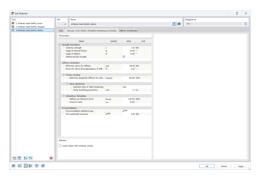
"Hoek-Brown" Material Model

- 'Hoek-Brown' model for linear-elastic ideal-plastic material behaviour is available
- Nonlinear strength criterion is the most commonly used failure criterion for rock and stone
- Input via rock parameters or GSI classification


More information

Member Type "Pile"

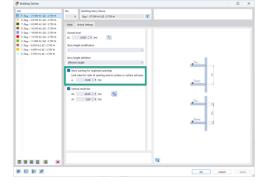
- New member type 'Pile' available
- Creation of pile resistance types with characteristic values for skin friction and pile peak pressure
- Embedding of the pile in soil, considering the resistance properties



Add-on Geotechnical Analysis

Soil Material Model "Modified Hardening Soil Model"

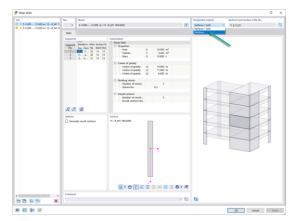
- Material model 'Modified Hardening Soil Model' available
- Suitable for a variety of soils
- Represents the following properties of the soil:
 - Stress dependence of soil stiffness
 - Load path dependence of soil stiffness
 - Plastic strains even before reaching the limit condition
 - Increasing shear resistance with increasing mesh refinement
 - Increasing yield strength with increasing stress until reaching the limit yield condition
 - Failure criterion according to Mohr-Coulomb



Add-on Building Model

Neglecting Openings

- Negligence of openings with a certain area in building model calculation possible
- Function can be activated in the global settings of the building stories
- Warning message indicates that openings have been neglected



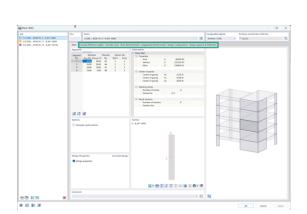
Shear Walls and Deep Beams Consisting of Members

Assignment of members possible when generating shear walls and deep beams

Add-on Building Model

Semi-Rigid Diaphragm for Modeling Stories

- Identical approach as for 'Rigid Diaphragm', but without node coupling from the center of mass to each FE node
- Takes into account the flexibility of the slab


More information

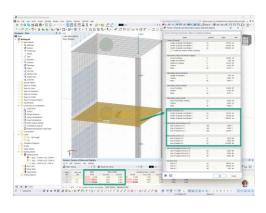
Design Properties of Shear Walls and Deep Beams

Design properties for shear walls and deep beams can be defined for the respective add-ons

More information

Made Perspett II 170 170 e 170

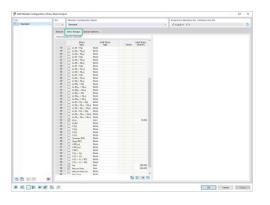
OX Abbreites



Add-on Building Model

Calculating Center of Gravity Considering Loads of Load Cases and Load Combinations

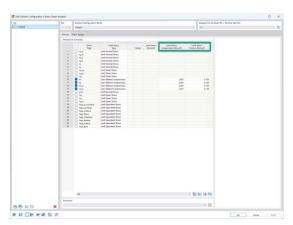
- Results table 'Results by Story' shows center of gravity for load cases and load combinations
- Takes into account self-weight and vertical loads of the respective load cases and combinations
- The centre of gravity can also be displayed in the 'Center of Gravity and Information About Selected Objects' dialogue for selected loads


Add-on Stress-Strain Analysis

Specification of Component-Dependent Limit Stress Cycle

 Definition of a component-dependent limit stress cycle and consideration in the design

More information



Sign-Dependent Stress Analysis

Sign-dependent limit stresses can be defined by each component

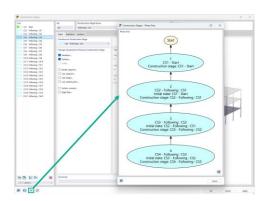
T-BELIIWE IS- 4

OK Canon Apply

Construction Stages Analysis (CSA)

Phase Sections

- Use of built-up cross-sections by means of phase cross-sections possible
- Activation/deactivation of parts of the cross-section of type 'Parametetric Massive II' across the construction stages

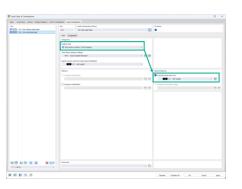

More information

Flow Graphs for Construction Stages

 Graphical representation of the relationships between the construction stages possible using a flowchart

More information

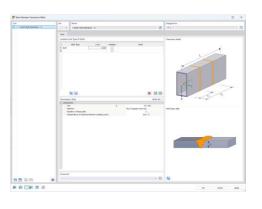
P E - 11 2 2



Time History Analysis

Considering Initial States for Time History Analysis

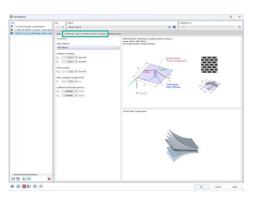
- Possibility of considering initial states in the time history analysis
- RFEM and RSTAB allow to specify different initial states (e.g. prestress, form-finding, strain) for target combinations



Add-on Aluminum Design

Softening (HAZ) due to Transverse Welds

- Consideration of the local reduction in strength caused by transverse seams in the heat-affected zone (HAZ)
- For the design according to EN 1999-1-1
- Calculation of the effective cross-section taking into account the transverse weld in RSECTION (Add-on Effective Sections)



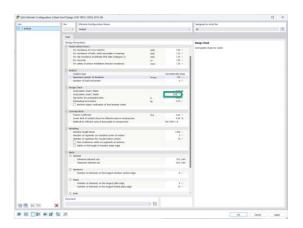
Add-on Form-Finding

Nonlinear Material Behavior | Orthotropic | Fabric | Nonlinear Elastic (Surfaces)

- Material model for prestressed fabric membranes based on representative microstructure-solid element model (RVE)
- Enables realistic simulation of fabric geometry and transverse strain effects
- Suitable for all force conditions in the membrane

Add-on Steel Joints

Component "Rib"

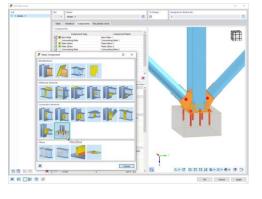

- Quick definition of any number of longitudinal ribs on the member plate with the 'Rib' component
- Automatic specification of welds using reference object
- Ribs can also be arranged on circular hollow sections

Limit Plastic Strain for Welds

- Modifying the plastic limit strain for welds
- Processing in ultimate configuration for steel joint design

東京園田田田

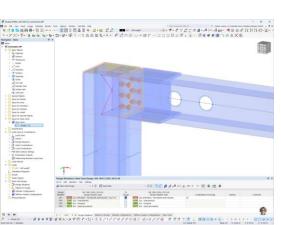
Carcol



Add-on Steel Joints

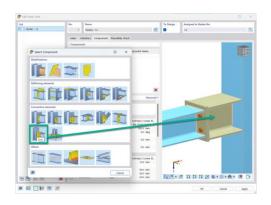
New: Component "Base Plate" for Foundation Block Connections

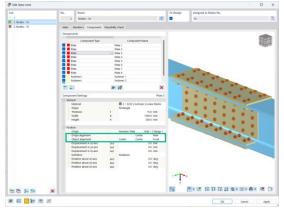
- 'Base plate' component for the design of base plate connections with cast-in anchors
- Analysis of plates, welds, anchorages and steel-concrete interaction



Steel Joint Design on "Result Beam" Member Type and Surface Models

- Additional member type 'Result Beam' and cross-sections from surface elements available
- Selection of a suitable cross-section for the result member
- Definition of member openings in the surface model using the member editor


Add-on Steel Joints


Component "Stub"

- Enables extension of a member via plate joint with another member (stub)
- Connection with a reference component
 - More information

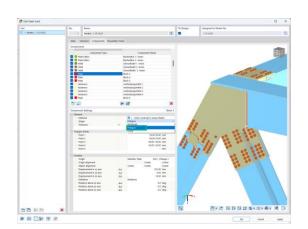
Relative Placement of Objects

- Possibility to arrange objects with a relative reference to other objects
 - More information

Add-on Steel Joints

Connection Library in Dlubal Center

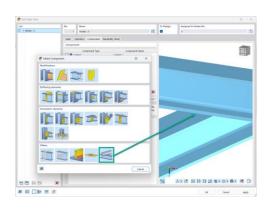
- Extensive connection library for the 'Steel Joints' add-on in the Dlubal Center
- Direct access from the add-on to assign predefined connections to nodes
- Option to save user-defined connections in the library in the Dlubal Center


More information

"Plate" Component with Polygonal Geometry Shape

- Arrangement of plates in various geometric shapes
- Available shapes: Rectangle, circle and polygon
- Polygonal shape can be defined by entering point coordinates

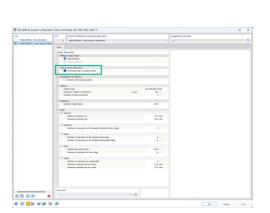
More information



Add-on Steel Joints

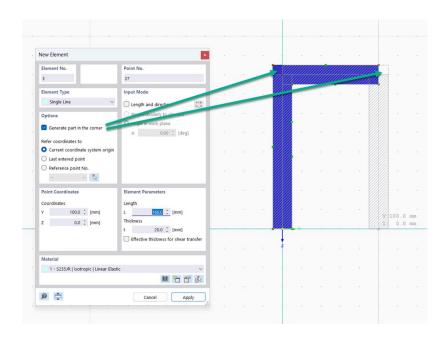
Component "Surface Contact"

- Consideration of pressure contact between two parallel plates/member plates
- Optimum consideration of the friction between the surfaces



Joint-Structure Interaction

- Automatic consideration of the stiffness of steel joints
- Activation in stiffness analysis via 'Joint-Structure Interaction'
- Generation of hinges with springs in the global model
- Consideration of the hinges in subsequent calculations

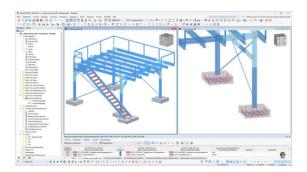


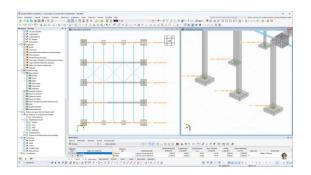
RSECTION 1

Generating Part in Corner

 Generation of parts in the corner when creating new elements in RSECTION

More information





Add-on Concrete Foundations

- Design of reinforced and unreinforced shallow foundations
- Fully integrated within RFEM 6
- Geotechnical design according to Eurocode 7:
 - Design of sliding
 - Equilibrium limit state
 - Uplift limit state
 - Highly eccentric loading
 - Eccentric loading in core
- Reinforced concrete design according to Eurocode 2:
 - Bending design
 - Punching
 - Minimum reinforcements
- Graphical and tabular output of the required reinforcement amount
- Detailed ultimate and serviceability limit state design checks and structural details

More information

Planned Features (from 2024)

- Nonlinear concrete analysis
- Foundation design
- Glass design
- Determination of cutting patterns for membranes
- Design of timber frame wall assemblies
- Python console
- Steel joints: dimensioning and labeling tools, stiffness consideration, footing
- Partial deletion of results
- Moved loads
- Support load transfer to free loads
- Bridge combinatorics
- Damping elements
- Pulley members
- RWIND results completely in RFEM
- Hinge result diagrams
- Nonlinear time step analysis
- Scaffolding support

- Ground linearization
- Fire protection of timber surfaces
- Semi-rigid diaphragms
- Timber connections
- Independent mesh
- Concrete design: pushover hinges, automatic reinforcement layout for members, fire protection: zone method, definition of existing punching shear reinforcement
- RSECTION: welds
- Shear wall design + coupling beam design
- Enhanced plasticity design
- New standards for steel and timber structures
- Wind analysis using cloud computing
- Python: interface with BricsCAD, Excel, DSTV, SDNF
- Al chatbot
- and much more

淤

Planned Features (from 2024)

- Nonlinear concrete analysis
- Foundation design
- Glass design
- Determination of cutting patterns for membranes
- Design of timber frame wall assemblies
- Python console
- Steel joints: dimensioning and labeling tools, stiffness consideration, footing
- Partial deletion of results
- Moved loads
- Support load transfer to free loads
- Bridge combinatorics
- Damping elements
- Pulley members
- RWIND results completely in RFEM
- Hinge result diagrams
- Nonlinear time step analysis
- Scaffolding support

- Ground linearization
- Fire protection of timber surfaces
- Semi-rigid diaphragms
- Timber connections
- Independent mesh
- Concrete design: pushover hinges, automatic reinforcement layout for members, fire protection: zone method, definition of existing punching shear reinforcement
- RSECTION: welds
- Shear wall design + coupling beam design
- Enhanced plasticity design
- New standards for steel and timber structures
- Wind analysis using cloud computing
- Python: interface with BricsCAD, Excel, DSTV, SDNF
- Al chatbot
- and much more

춨

Planned Features (from 2025)

- Nonlinear concrete analysis
- Completion of foundation design
- Glass design
- Determination of cutting patterns for membranes
- Cable pulley members
- Nonlinear time history analysis
- Scaffolding supports
- Soil linearization
- Pushover hinges (concrete and new AISC standard)
- Fire protection: zone method for concrete design
- Enhanced plasticity design
- APIv2 Extension and acceleration of WS interface
- CAD add-on (layers, CAD lines and surfaces, sketches)
- Design strips
- Model type "Plane Strain"
- Prestressed beam elements
- Design of timber panel elements
- Mixed combinatorics
- Components User-Defined Design add-on

- Stability analysis for subsoil geometries
- Performance increase through additional independent meshing forms
- Welds in RSECTION and RFEM
- Timber connection design
- Expansion of metal designs with surfaces and welds
- SSO login technology
- RFEM in cloud for WebService codes
- 3D window in RFEM with DXF export
- Bentley DGN export
- Python coding with Mia
- Completion of column base design
- loints as standalone solution.
- Composite cross-sections in RSECTION
- Wind rose definition for wind comfort analysis
- Plate buckling
- Craneway
- Tower modeling and design
- Design of curved timber beams

$\not \precsim$

Visit us at the BAU 2025

Your Advantages

- You get a live product demonstration on our **booth 133 in Hall C3**, showing the latest developments in our structural analysis programs
- You can benefit from the long-standing know-how of absolute experts in the areas of reinforced concrete structures, steel structures, timber structures, dynamic analysis, and FEM calculations

淤

Online Courses

RFEM 6 Master Class

All you need to know for a start!

TO THE RFEM COURSE

Eurocode 2 Master Class

Deep Dive in Reinforced Concrete Design with RFEM 6!

TO THE EC 2 COURSE

Eurocode 3 Master Class

Deep Dive in Steel Design with RFEM 6!

TO THE EC 3 COURSE

淤

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

Dlubal

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & **Knowledge Base**

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to **Download**

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.

Free Online Services

Youtube Channel -Webinars, Videos

Videos and webinars about the structural engineering software.

Webshop with **Prices**

Configure your individual program package and get all prices online!

Trial Licenses

The best way how to learn using our programs is to simply test them for yourself. Download a

We offer free

and chat

support via email

Get Further Details About Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Download free trial license

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com