Ejemplos de verificación

A single-mass system with clearance and two springs is initially deflected. Determine the natural oscillations of the system - deflection, velocity and acceleration time course.

This verification example is based on Verification Example 0122. A single-mass system without damping is subjected to an axial loading force. An ideal elastic-plastic material with characteristics is assumed. Determine the time course of the end-point deflection, velocity and acceleration.

A single-mass system with dashpot is subjected to a constant loading force. Determine the spring force, the damping force and the inertial force at given test time. In this verification example, the Kelvin--Voigt dashpot, namely, a spring and a damper element in serial connection, is decomposed into its purely viscous and purely elastic parts, in order to better evaluate the reaction forces.

A single mass system with dashpot is subjected to the constant loading force. Determine the deflection and the velocity of the dashpot endpoint in given test time.

The mathematical pendulum consists of a zero‑weight rope and a mass point at its end. The pendulum is initially deflected. Determine the angle of the rope at given test time.

A double-mass oscillator consists of two linear springs and masses, which are concentrated at the nodes. The self-weight of the springs is neglected. Determine the natural frequencies of the system.

A thin string is tensioned by the initial strain and initially deflected. Determine the deflection of the test point at given test times.

A simple oscillator consists of mass m (considered only in x-direction) and linear spring of stiffness k. The mass is embedded on a surface with Coulomb friction and is loaded by constant-in-time axial and transversal forces.

A cantilever of rectangular cross‑section has a mass at its end. Furthermore, it is loaded by an axial force. Calculate the natural frequency of the structure. Neglect the self‑weight of the cantilever and consider the influence of axial force for the stiffness modification.

A double‑mass system consists of two shafts and two masses represented by the corresponding moments of inertia, concentrated in given distance as nodal masses. The left shaft is fixed, and the right mass is free. Neglecting the self‑weight of the shafts, determine the torsional natural frequencies of the system.

1 - 10 de 23

Buscar ejemplo


Programa / Módulo


Modelo de material


Método de cálculo


Tipo de modelo


Funciones especiales

Boletín de noticias

Reciba información de manera regular sobre noticias, consejos útiles, eventos programados, ofertas especiales y cupones.

Soporte técnico 24/7

Base de datos de conocimientos

Además de nuestro soporte técnico (por ejemplo, por medio del chat), podrá encontrar varios recursos en nuestra página web que pueden ayudarle con su cálculo y diseño de estructuras utilizando Dlubal Software.