Verification

Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0033 – Plate with a Hole

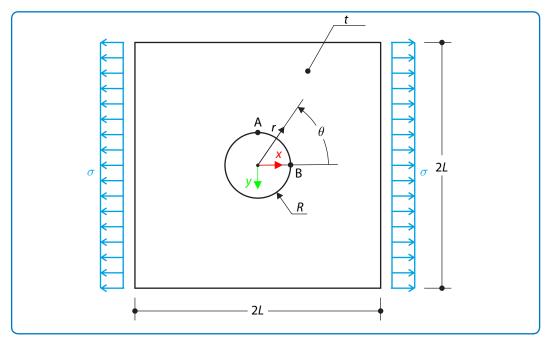
0033 – Plate with a Hole

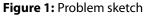
Description

The wide plate with a hole is loaded in one direction by means of the tensile stress σ according to the **Figure 1**. The plate width is large with respect to the hole radius and it is very thin considering the state of the plane stress.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.270	-
Geometry		Plate Width	2L	800.000	mm
		Plate Thickness	t	1.000	mm
		Hole Radius	R	20.000	mm
Load		Tension	σ	100.000	MPa

Determine the radial stress σ_r , tangential stress σ_{θ} and shear stress $\tau_{r\theta}$ in test points A and B according to the **Figure 1**. The plate is considering infinite wide. Thus the plate modeled in RFEM 5 and RFEM 6 is relatively large.





Analytical Solution

Analytical solution of the stress state can be determined by means of the Airy stress function Φ which is defined in the state of plane stress. Airy stress function Φ is defined as

Verification Example: 0033 – Plate with a Hole

$$\sigma_{\rm x} = \frac{\partial^2 \Phi}{\partial y^2} \tag{33-1}$$

$$\sigma_{y} = \frac{\partial^{2} \Phi}{\partial x^{2}} \tag{33-2}$$

$$\tau_{xy} = \frac{\partial^2 \Phi}{\partial x \partial y} \tag{33-3}$$

It is appropriate to use the polar coordinates. Airy stress function in polar coordinates is defined as follows.

$$\sigma_r = \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2}$$
(33 - 4)

$$\sigma_{\theta} = \frac{\partial^2 \Phi}{\partial \theta^2} \tag{33-5}$$

$$\tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \right) \tag{33-6}$$

Where *r* is the parameter of the radial position and θ is the parameter of the angular position. The Airy stress function has to fullfil the conditions of compatibility, which are defined in the plane stress state by means of Beltrami equation.

$$\Delta(\sigma_r + \sigma_\theta) = \Delta \Delta \Phi = 0 \tag{33-7}$$

The radial stress σ_r and tangential stress σ_{θ} in the hole proximity results as follows.

$$\sigma_{\rm r} = \frac{\sigma}{2} \left(1 - \frac{r^2}{R^2} \right) + \frac{\sigma}{2} \left(1 + \frac{3r^4}{R^4} - \frac{4r^2}{R^2} \right) \cos(2\theta)$$
(33 - 8)

$$\sigma_{\theta} = \frac{\sigma}{2} \left(1 + \frac{r^2}{R^2} \right) - \frac{\sigma}{2} \left(1 + \frac{3r^4}{R^4} \right) \cos(2\theta)$$
(33 - 9)

$$T_{r\theta} = -\frac{\sigma}{2} \left(1 + \frac{3r^4}{R^4} + \frac{2r^2}{R^2} \right) \sin(2\theta)$$
(33 - 10)

For the test point A (r = R, $\theta = \frac{\pi}{2}$) the stresses then results

0

1

 $\sigma_{\rm r} = 0.000 \,{\rm MPa}$ (33 – 11)

$$\sigma_{\theta} = 3\sigma = 300.000 \text{ MPa}$$
 (33 – 12)

$$au_{
m r heta} = 0.000 \, {
m MPa}$$
 (33 – 13)

For the test point B ($r = R, \theta = 0$) the stresses then results

$$\sigma_{\rm r} = 0.000 \,{\rm MPa}$$
 (33 – 14)

 $\sigma_{\theta} = -\sigma = -100.000 \text{ MPa}$ (33 - 15)

$$au_{r heta} = 0.000 \text{ MPa}$$
 (33 – 16)

RFEM Settings

- Modeled in RFEM 5.05.0030 and RFEM 6.01
- The global element size is $I_{\rm FE} = 0.005$ m
- The mesh refinement (circular) is used, $I_{\rm FE}=0.001~{
 m m}$
- Geometrically linear analysis is considered
- The number of increments is 5
- Plate entity is used

Results

Structure Files	Program
0033.01	RFEM 5, RFEM 6

Resultant stress fields around the hole are demonstrated in Figure 2, Figure 3 and Figure 4.

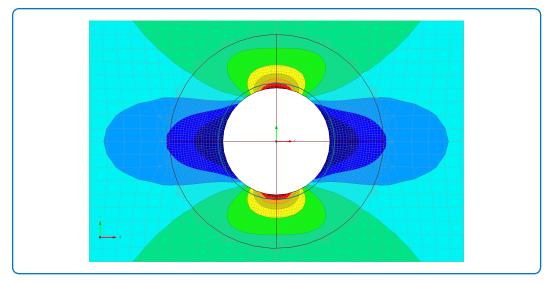


Figure 2: $\sigma_{\rm x}$ stress field around the hole.

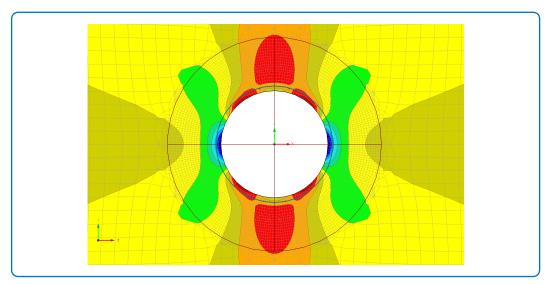


Figure 3: σ_y stress field around the hole.

Verification Example: 0033 – Plate with a Hole

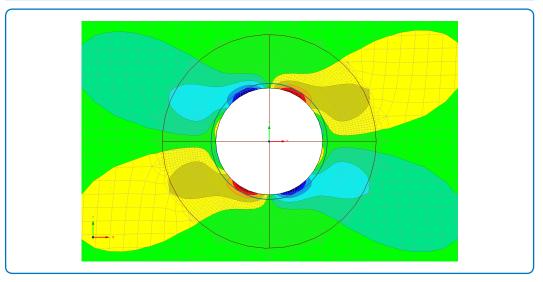


Figure 4: τ_{xy} stress field around the hole.

Test Point A	Analytical Solution	RFEM 5	Ratio	RFEM 6	Ratio
$\sigma_{ m r}~[{ m MPa}]$	0.000	2.449	-	2.632	-
$\sigma_{ heta}$ [MPa]	300.000	300.529	1.002	300.753	1.003
$ au_{\mathrm{r} heta}~[\mathrm{MPa}]$	0.000	-0.002	-	-0.001	-
Test Point B	Analytical Solution	RFEM 5	Ratio	RFEM 6	Ratio
$\sigma_{ m r}~[{ m MPa}]$	0.000	-1.753	-	-1.828	-
$\sigma_{ heta}$ [MPa]	-100.000	-100.216	1.002	-100.398	1.004
$ au_{\mathrm{r} heta}~[\mathrm{MPa}]$	0.000	0.000	-	0.000	-

Remark: In RFEM 5 and RFEM 6, the values of stresses σ_r , σ_θ and $\tau_{r\theta}$ are read from the values of σ_{xr} , σ_y and τ_{xy} in appropriate point and directions.

