Kanton (Carter Control (Carter

Program: RFEM 5

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Member, Solid

Verification Example: 0082 – Helical Spring

0082 – Helical Spring

Description

Closely coiled helical spring is loaded by a compression force *F* according to **Figure 1**. The spring has a middle diameter *D*, the wire diameter *d* and consists of *i* turns. The total length of the spring is *L*. Determine the total deflection of the spring u_x for the member model and one-turn deflection $u_{x,i}$ for the solid model.

Material	Modulus of Elasticity	Ε	210000.000	MPa
	Poisson's Ratio	ν	0.296	_
Geometry	Middle Diameter	D	30.000	mm
	Wire Diameter	d	3.000	mm
	Number of Turns	i	8	_
	Length	L	50.000	mm
Load	Compression Force	F	50.000	N

Analytical Solution

Analytical solution is based on the spring theory when close coiling (small pitch angle α) and relatively thin wire are assumed, see [1]. Then, the only loading is the torque of the wire

$$M_T = \frac{FD}{2} \cos \alpha \approx \frac{FD}{2}.$$
 (82 - 1)

The deflection u_x of the spring loaded by the concentrated force F can be determined by means of Castigliano's first theorem

$$u_x = \frac{\partial U}{\partial F},\tag{82-2}$$

Verification Example: 0082 – Helical Spring

where U is the strain energy. For the torque loading the strain energy is equal to

$$U = \frac{1}{2} \int_{L} \frac{M_{T}^{2}}{GJ} ds = \frac{1}{2} \frac{M_{T}^{2}L}{GJ} \approx \frac{4F^{2}D^{3}i}{Gd^{4}}.$$
 (82 - 3)

Considering the length of the wire $L = \pi Di$, shear modulus G and the torsional constant $J = \frac{\pi d^4}{32}$. The deflection of the spring is then equal to

$$u_x = \frac{8FD^3i}{Gd^4} \approx 13.169 \text{ mm.}$$
 (82 - 4)

Analogously, the deflection of one turn $u_{x,i}$ is

$$u_{x,i} = \frac{8FD^3}{Gd^4} \approx 1.646 \text{ mm.}$$
 (82 – 5)

This value is used for the comparison in case of a solid model. Due to the large amount of finite elements, only one turn of the spring is modeled.

RFEM 5 Settings

- Modeled in RFEM 5.09.01
- Element size is $I_{\rm FE} = 1.0$ mm (member)
- Element size is $I_{FE} = 0.5 \text{ mm}$ (solid)
- The number of increments is 10
- Isotropic linear elastic material is used
- Shear stiffness of the members is deactivated

Results

Structure File	Program	Entity
0082.01	RFEM 5	Member
0082.02	RFEM 5	Solid

Analytical Solution	RFEM 5		
<i>u_x</i> [mm]	<i>u_x</i> [mm]	Ratio [-]	
13.169	13.172	1.000	
Analytical Solution	BEEM 5		
u _{x,i} [mm]	u _{x,i} [mm]	Ratio [-]	
1.646	1.705	1.036	

Verification Example: 0082 – Helical Spring

Figure 2: RFEM 5 results on member representation - deflection u_x

References

[1] DROTSKY, J. Strength of Materials for Technicians. Elsevier Science, 2013.