Verification Example

Program: RFEM 5, RSTAB 8

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Member, Plate

Verification Example: 0090 – Eccentricity Test

0090 – Eccentricity Test

Description

Pinned beam of length 2*L* with rectangular cross-section of side length *b* and height *h* is subjected to distributed loading *q* and shifted vertically by eccentricity *e*. Considering small deformation theory, neglecting self-weight, and assuming that the beam is made of isotropic elastic material with modulus of elasticity *E*, determine the maximum deflection u_{max} .

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.296	-
Geometry	Beam	Cross-section Width	Ь	0.050	m
		Cross-section Height	h	0.200	m
		Beam Length	2L	10.000	m
		Eccentricity	е	0.100	m
Loading		Member Load	q	5.000	kN/m

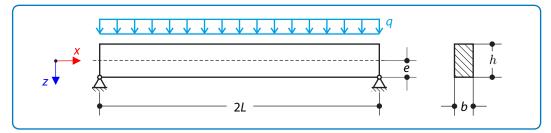


Figure 1: Problem sketch

Analytical Solution

The deflection of the beam is composed of the bending deflection u_b and shear deflection u_s

$$u_{\max} = u_b + u_s.$$
 (90 - 1)

As a sub-step in the determination process of beam maximum deflection, fictitious force $2F_d$ is applied at the midspan of the beam. Considering $2F_d$ and applied distributed loading q, shear force acting in the beam is

$$V(x) = -qx + qL + F_d.$$
 (90 - 2)

Integrating (90 - 2), expression for bending moment of the beam can be obtained

Verification Example: 0090 – Eccentricity Test

$$M(x) = \int V(x)dx = -\frac{qx^2}{2} + qLx + F_d x + M_a,$$
 (90-3)

where $M_a = Ne$ is bending moment produced by axial force N acting with eccentricity e. Knowing the expression for bending moment (90 – 3), energy in the beam produced by loading (with exception of the shear force) can be obtained with following formula

$$U = \int_{0}^{L} \frac{M^{2}(x)}{2EI_{y}} dx + U_{t},$$
 (90 - 4)

where $I_y = \frac{1}{12}bh^3$ is the second moment of inertia and U_t is the energy in the beam produced by axial force N

$$U_t = \frac{LN^2}{2EA},\tag{90-5}$$

where cross-section area A = bh. According to the principle of minimum energy $\frac{dU}{dN} = 0$, axial force can be calculated as

$$N = -\frac{eLA(2qL + 3F_d)}{6(e^2A + I_y)}.$$
 (90-6)

Differentiating (90 – 4) by fictitious force F_d and setting $F_d = 0$, maximum deflection in the mid-span of the beam (excluding effect of shear force) can be expressed as

$$u_b = \frac{qL^4(e^2A + 5I_y)}{24EI_y(e^2A + I_y)}.$$
 (90-7)

Similarly the deflection of the beam caused by shear force, can be obtained by differentiating shear strain energy U_s

$$U_{\rm s} = \int_{0}^{L} \frac{V^{2}(x)}{2GA_{\rm s}} dx = \frac{5}{12GA} \left(\frac{q^{2}L^{3}}{2} + F_{d}^{2}L + qF_{d}L^{2} \right)$$
(90-8)

by fictitious force F_d and setting $F_d = 0$.

$$u_{\rm s} = \frac{5qL^2}{12GA} \tag{90-9}$$

Maximum deflection of the beam can be obtained by summarizing (90 - 7) and (90 - 9):

$$u_{\max} = u_b + u_s = \frac{qL^4(e^2A + 5I_y)}{24EI_v(e^2A + I_v)} + \frac{5qL^2}{12GA} \approx 37.267 \text{ mm.}$$
 (90 - 10)

RFEM 5 and RSTAB 8 Settings

- Modelled in version RFEM 5.09.01 and RSTAB 8.09.01
- Geometrically linear analysis is considered
- The element size is $I_{\rm FE}=0.025~{
 m m}$
- Shear stiffness of members is activated
- The Mindlin plate theory is used

Results

Structure File	Program	Entity	
0090.01	RSTAB 8	Member	
0090.02	RFEM 5	Member	
0090.03	RFEM 5	Plate	

The detail of the eccentricity can be seen in Figure 2.

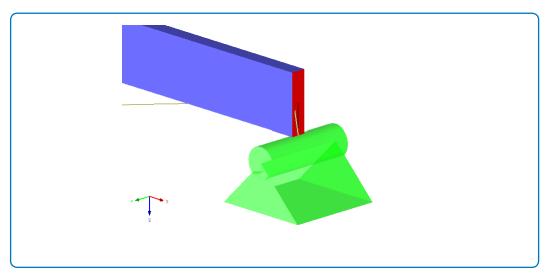


Figure 2: RFEM 5 / RSTAB 8 detail of the eccentricity

Analytical Solution	RSTAB 8 Member		RFEM 5 Member		RFEM 5 Plate	
u _{max} [mm]	u _{max} [mm]	Ratio [-]	u _{max} [mm]	Ratio [-]	u _{max} [mm]	Ratio [-]
37.267	37.295	1.001	37.295	1.001	37.275	1.000