Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Member

Verification Example: 0101 – Modal Analysis of the Cantilever

0101 – Modal Analysis of the Cantilever

Description

A steel cantilever of rectangular cross-section is fully fixed on one side and free on the other side according to the **Figure 1**. The aim of this verification example is to determine the natural frequencies of the structure. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	208000.000	MPa
		Poisson's Ratio	ν	0.300	—
		Density	ρ	7800.000	kg/m ³
Geometry		Length	L	90.000	mm
		Width	w	10.000	mm
		Thickness	t	5000	mm

Determine the natural frequencies of longitudinal and transversal oscillations.

Figure 1: Problem sketch

Analytical Solution

The natural longitudinal oscillation of a thin bar is described by the following differential equation, [1].

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{101-1}$$

Where *u* denotes the deflection in the longitudinal direction and *c* is the material constant which is describing the longitudinal waves propagation velocity.

$$c = \sqrt{\frac{E}{\rho}} \tag{101-2}$$

The solution u(x, t) is supposed in the following form.

Verification Example: 0101 – Modal Analysis of the Cantilever

$$u(x,t) = U(x)T(t)$$
 (101 - 3)

Using formula (101 – 3) and its derivative the formula (101 – 1) can be rewritten.

$$-\frac{1}{T}\frac{\partial^2 T}{\partial t^2} = c^2 \frac{1}{U}\frac{\partial^2 U}{\partial x^2} = \text{const.} = \omega^2$$
(101 - 4)

Where ω is the angular frequency. For each time has to be fulfilled following equation.

$$\frac{\partial^2 U}{\partial x^2} + \frac{\omega^2}{c^2} U = 0 \tag{101-5}$$

This is the second order differential equation with the following solution.

$$U(x) = C_1 \sin\left(\frac{\omega^2}{c^2}x\right) + C_2 \cos\left(\frac{\omega^2}{c^2}x\right)$$
(101 - 6)

The constants C_1 and C_2 can be obtained from the boundary conditions. The deflection on the fixed side and the stress on the free side has to be zero¹.

$$U(0) = 0 (101 - 7)$$

$$\frac{\partial U(L)}{\partial x} = 0 \tag{101-8}$$

Using the boundary conditions the wave equation is determined.

$$C_1 \frac{\omega}{c} \cos\left(\frac{\omega}{c}L\right) = 0 \tag{101-9}$$

The set of angular frequencies can be then obviously determined.

$$\omega_k = \frac{c}{L}(2k-1)\frac{\pi}{2}, \qquad k = 1, 2, 3, \dots$$
 (101 - 10)

The first natural frequency in longitudinal direction can be calculated.

$$f_1 = \frac{\omega_1}{2\pi} = \frac{c}{4L} = 14275.253 \text{ Hz}$$
 (101 – 11)

The natural transversal oscillation of a thin bar is described by the following differential equation, [1].

$$\frac{\partial^4 v}{\partial x^4} + \frac{\rho A}{EI} \frac{\partial^2 v}{\partial t^2} = 0$$
(101 - 12)

¹ The stress can be expressed as $\sigma = E\varepsilon = E \frac{dU(x)}{dx}$.

Verification Example: 0101 – Modal Analysis of the Cantilever

Where *l* is the quadratic moment of the cross-section and *A* is the cross-section area. Note that the equation (101 - 12) has to be solved for both transversal directions. The solution v(x, t) is supposed in the following form.

$$v(x,t) = V(x)T(t)$$
 (101 - 13)

Using formula (101 – 3) and its derivative the formula (101 – 12) can be rewritten.

$$-\frac{1}{T}\frac{\partial^2 T}{\partial t^2} = \frac{EI}{\rho A}\frac{1}{V}\frac{\partial^4 V}{\partial x^4} = \text{const.} = \omega^2$$
(101 - 14)

Where ω is the angular frequency. For each time has to be fulfilled following equation.

$$\frac{d^4 V}{dx^4} - \lambda^4 V = 0$$
 (101 - 15)

Where λ^4 is the substitution for following expression.

$$\lambda^4 = \frac{\rho A \omega^2}{El} \tag{101-16}$$

The fourth order differential equation has the following solution.

$$V(x) = C_1 \sinh(\lambda x) + C_2 \cosh(\lambda x) + C_3 \sin(\lambda x) + C_4 \cos(\lambda x)$$
(101 - 17)

The constants C_1 till C_4 can be obtained from the boundary conditions. The deflection and the rotation on the fixed side and the bending moment M and the transversal force T on the free side has to be zero. The bending moment can be defined by means of Bernoulli-Euler formula. The transversal force can be determine using Schwedler theorem.

$$V(0) = 0$$
 (101 - 18)

$$\frac{dV(0)}{dx} = 0 \tag{101-19}$$

$$M(L) = EI \frac{d^2 V(L)}{dx^2} = 0$$
 (101 - 20)

$$T(L) = EI \frac{d^3 V(L)}{dx^3} = 0$$
 (101 - 21)

Using the boundary conditions the wave equation for the transversal oscillations is determined.

$$\cosh(\lambda L)\cos(\lambda L) + 1 = 0 \tag{101-22}$$

Verification Example: 0101 – Modal Analysis of the Cantilever

This is the transcendent equation and its solution can be found numerically. The natural frequencies can be then determined.

$$f_i = \frac{1}{2\pi} \lambda_i^2 \sqrt{\frac{El}{\rho A}}, \qquad i = 1, 2, 3, ...$$
 (101 – 23)

RFEM 5 Settings

- Modeled in RFEM 5.08.02
- The global element size is $I_{FE} = 0.001 \text{ m}$
- Shear stiffness of the members is neglected
- Isotropic linear elastic material model is used
- Member entity is used

Results

Structure Files	Program							
0101.01			RF-DYNAM Pro					
Natural Frequency (x - direction)		Analytical Solution	RF-DYNAM	Ratio				
<i>f</i> _{x1} [Hz]		14275.253	14275.072	1.000				
Natural Frequency (y - direction)		Analytical Solution	RF-DYNAM	Ratio				
<i>f</i> _{y1} [Hz]		1024.900	1024.820	1.000				
<i>f</i> _{y2} [Hz]		6422.940	6419.154	0.999				
<i>f</i> _{y3} [Hz]		17984.417	17960.779	0.999				
Natural Frequency (z - direction)		Analytical Solution	RF-DYNAM	Ratio				
<i>f</i> _{z1} [Hz]		512.450	512.495	1.000				
f _{z2} [Hz]		3211.470	3211.004	1.000				
<i>f</i> _{z3} [Hz]		8992.208	8988.420	1.000				

References

[1] STEJSKAL, V. and OKROUHLÍK, M. Kmitání s Matlabem. Vydavatelství ČVUT Praha.

