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0109 – Natural Vibrations of Circular Plate

Description

A circular steel plate of radius a and thickness ℎ is clamped around its circumference r = a
according to Figure 1. Determine the natural frequencies of the circular plate. The problem is
described by the following parameters.

Material Steel Modulus of
Elasticity

E 210000.0 MPa

Poisson's
Ratio

𝜈 0.300 −

Density 𝜌 7850.000 kgm-3

Geometry Radius a 0.500 m

Thickness ℎ 0.001 m
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Figure 1: Problem Sketch

Analytical Solution

Free vibrations of a circular plate can be described by the wave equation in polar coordinates r, 𝜑
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where uz = uz(r, 𝜑, t) is the deflection in transversal direction. The speed of the wave propagation
c is given by the density of the plate density 𝜌 , plate thickness ℎ and the plate modulus D
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The solution is sought for in following form

uz(r, 𝜑, t) = W(r, 𝜑)e iu�t (109 – 3)

After substitution into (109 – 1), the following equation is obtained

𝛥2W −
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W = 0 (109 – 4)

where 𝛥 is the Laplace operator in polar coordinates, more precisely
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hence, (109 – 4) can be rewritten as
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Thus two independent equations have to be solved further
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Assuming that the variables ofW(r, 𝜑) are separated, i.e.,W = R(r)F(𝜑), (109 – 7) yields1
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The left-hand side of the equation depends on the radius r, and the right-hand side depends on
the angle 𝜑, which are independent variables. Thus, both sides have to be equal to a constantm2.

The angle-dependent equation F″ + m2F = 0 admits the solution

F(𝜑) = A sin(m𝜑) + B cos(m𝜑) (109 – 9)

where the constants A, B are defined by the boundary conditions.

On the other hand, the radius-dependent equations can be rewritten into the Bessel andmodified
Bessel differential equations, more precisely

1 The dashed notation indicates the derivative with respect to the appropriate spatial coordinate, e.g., R″ = d2R
dr2

(r).
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The solution of the Bessel equations take the form

R(r) = CJm (√𝛺mn
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r) , n = 1, 2, 3, … (109 – 11)
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where Jm and Ym are Bessel functions and Im and Km are modified Bessel functions.

For the circular plate, Bessel functions Ym and Km become unbounded as r → 0, therefore the
constants D, F have to equal zero. The general solution is then rewritten in the form of linear
combination with constants C1, C2 as

R(r) = C1Jm (√𝛺mn
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r) + C2Im (√𝛺mn

c
r) (109 – 13)

For the clamped plate, the following boundary conditions are prescribed
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a) = 0 (109 – 14)
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where the dash denotes the derivative of the appropriate Bessel function. These derivatives can
be replaced according to general formulas for Bessel functions
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(109 – 16)
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From the roots of this equation the set of constants 𝛺mn is obtained. Considering 𝛺mn = 2𝜋fmn,
the set of natural frequencies fmn of the clamped circular plate can be calculated. The first six
natural frequencies can be found in the result table.

RFEM 5 Settings
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• Modeled in RFEM 5.07.05
• The element size is lFE = 0.010 m
• For entity type Solid, layered mesh is used with 4 layers
• Isotropic linear elastic material model is used

Results

Structure Files Program Entity

0109.01 RF-DYNAM Pro Plate

0109.02 RF-DYNAM Pro Solid

Frequency Analytical
Solution

Plate Solid

RF-DYNAM
Pro

Ratio RF-DYNAM
Pro

Ratio

f1 [Hz] 10.179 10.179 1.000 10.253 1.007

f2 [Hz] 21.184 21.184 1.000 21.343 1.008

f3 [Hz] 34.752 34.751 1.000 35.020 1.008

f4 [Hz] 39.629 39.624 1.000 39.940 1.008

f5 [Hz] 50.847 50.844 1.000 51.251 1.008

f6 [Hz] 60.611 60.604 1.000 61.118 1.008

Following Figure 2 shows the first six natural shapes of the investigated plate.
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f1 = 10.179 Hz f2 = 21.184 Hz

f3 = 34.751 Hz f4 = 39.624 Hz

f5 = 50.844 Hz f6 = 60.604 Hz

Figure 2: First six natural shapes of the plate in RFEM 5


