Kerification Example

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Large Deformation Analysis, Isotropic Linear Elasticity, Dynamics, Member

Verification Example: 0112 – Free Vibrations of a String

0112 - Free Vibrations of a String

Description

A thin string of diameter *D* is tensioned by the initial strain ε_0^1 and initially deflected at a distance *a* according to **Figure 1**. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.0	MPa
		Poisson's Ratio	ν	0.300	_
		Linear Density	μ	24.662	kgm ⁻¹
Geometry		Diameter	D	0.002	m
		Length	L	1.000	m
		Deflection Position	а	0.500	m
Load		Tension	ε_0	0.001	-
		Initial Deflection	h	0.020	m

Determine the deflection u_{zA} of the test point A (x = a) at given test times.

Analytical Solution

The general solution of string free vibrations was determined in Verification Example 0106. It can be written as a sum of the mode shapes

$$u_{z}(x,t) = \sum_{n=1}^{\infty} \sin\left(\frac{\Omega_{n}}{c}x\right) \left(A_{n}\cos(\Omega_{n}t) + B_{n}\sin(\Omega_{n}t)\right)$$
(112 - 1)

¹ The initial strain ε_0 has to be assigned in DYNAM Pro Details as Minimum Axial Strain for Cables and Membranes ε_{min} .

Verification Example: 0112 – Free Vibrations of a String

where A_n and B_n are appropriate integration constants given by the initial conditions. In this example, the string is initially deflected at distance a equalling $u_z(a, 0) = h$. The function of initial deflection can then be written as

$$u_z(x,0) = u_{z0}(x) = \begin{cases} \frac{h}{a}x, & \text{for } x \in [0,a];\\ \frac{h}{a-L}(x-L), & \text{for } x \in (a,L] \end{cases}$$

The initial velocity of the string is equal to zero

$$\frac{\partial u_z}{\partial t}(x,0) = v_{z0}(x) = 0, \quad \text{for } x \in [0,L]$$
(112-2)

Substituting t = 0 into (112 – 1) while considering the latter initial conditions, the values of A_n and B_n are obtained

$$u_{z0}(x) = u_z(x,0) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{\Omega_n}{c}x\right)$$
(112-3)

$$v_{z0}(x) = \frac{\partial u_z}{\partial t}(x,0) = \sum_{n=1}^{\infty} B_n \Omega_n \sin\left(\frac{\Omega_n}{c}x\right)$$
(112 - 4)

Multiplying both equations by the *m*-th mode function $X_m(x) = \sin\left(\frac{\Omega_m}{C}x\right)$ and integrating over the string length, the following relations are obtained²

$$\int_{0}^{L} u_{z0}(x) X_{m}(x) dx = \sum_{n=1}^{\infty} \int_{0}^{L} A_{n} X_{n}(x) X_{m}(x) dx = A_{m} \frac{L}{2}$$
(112-5)

$$\int_{0}^{L} v_{z0}(x) X_m(x) dx = \sum_{n=1}^{\infty} \int_{0}^{L} \Omega_n B_n X_n(x) X_m(x) dx = \Omega_m B_m \frac{L}{2}$$
(112-6)

From (112 – 2) and (112 – 6) there is $B_m = 0$. The constant A_m can be calculated according to (112 – 5)

$$A_m = \frac{2}{L} \int_0^L u_{z0}(x) \sin\left(\frac{\Omega_m}{c}x\right) dx \qquad (112-7)$$

Hence, the general solution of the string free vibrations is

$$u_{z}(x,t) = \sum_{m=1}^{\infty} A_{m} \sin\left(\frac{\Omega_{m}}{c}x\right) \cos(\Omega_{m}t)$$
(112 - 8)

where the natural frequency of the string Ω_m is defined as

² According to the ortogonality of the mode functions, it holds that $\int_{0}^{L} X_m(x)X_n(x)dx = \frac{L}{2}\delta_{mn}$, where δ_{mn} is the Kronecker delta function.

$$\Omega_m = \frac{n\pi c}{l}$$

(112 – 9)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.07.05 and RSTAB 8.07.01
- The string is modeled by the member type Cable
- The member is divided into 100 parts
- Isotropic linear elastic material model is used
- Shear stiffness of members is deactivated
- Subspace iteration method is used

Results

Structure Files	Program
0112.01	RFEM 5 – RF-DYNAM Pro
0112.02	RSTAB 8 – DYNAM Pro

Figure 2: Comparison of analytical solution to the RFEM 5 / RSTAB 8 results

Test time	Analytical Solution	RFEM 5 RF-DYNAM Pro		RSTAB 8 DYNAM Pro	
	u _{zA} [mm]	u _{zA} [mm]	Ratio [-]	u _{zA} [mm]	Ratio [-]
$t_1 = 0.015 \text{ s}$	1.862	2.165	1.163	1.854	0.996
$t_2 = 0.030 \text{ s}$	-16.227	-15.761	0.971	-16.249	1.001
$t_3 = 0.040 \text{ s}$	-1.683	-1.391	0.826	-1.731	1.029