Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Member

Verification Example: 0121 – Dynamic Force Distribution

0121 – Dynamic Force Distribution

Description

A single-mass system with dashpot is subjected to a constant loading force *F*. Determine the spring force *S*, the damping force *B* and the inertial force *D* at given test time. In this verification example, the Kelvin–Voigt dashpot, namely, a spring and a damper element in serial connection, is decomposed into its purely viscous and purely elastic parts in accord with **Figure 1**, in order to better evaluate the reaction forces. The problem is described by the following parameters.

System Properties	Dashpot	Stiffness	k	2000.000	N/m
		Length	L	0.200	m
		Damping Parameter	с	100.000	Ns/m
	Mass	Weight	т	100.000	kg
Load		Force	F	200.000	N

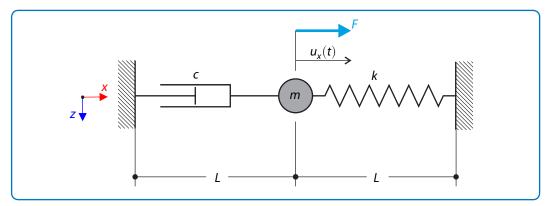


Figure 1: Problem sketch

Analytical Solution

The analytical solution is based on the theory introduced in [1]. A damped single-mass system is described by the second-order differential equation¹

$$m\ddot{u}_x + c\dot{u}_x + ku_x = F, \qquad (121-1)$$

where each term can be replaced by the corresponding force - inertial force *D*, damping force *B* and spring force *S*

$$D + B + S = F.$$
 (121 - 2)

The deflection of the endpoint is defined by the following formula

¹ \dot{u}_x and \ddot{u}_x denote the first and second time derivative of $u_{x'}$ respectively.

Verification Example: 0121 – Dynamic Force Distribution

$$u_{x}(t) = \frac{F}{2k} \left(1 - \frac{c_{r}}{\sqrt{c_{r}^{2} - 1}} \right) e^{\left(\sqrt{c_{r}^{2} - 1} - c_{r}\right)\Omega t} - \frac{F}{2k} \left(3 - \frac{c_{r}}{\sqrt{c_{r}^{2} - 1}} \right) e^{\left(-\sqrt{c_{r}^{2} - 1} - c_{r}\right)\Omega t} + \frac{F}{k}.$$
 (121 - 3)

This deflection and its derivatives are further used for the calculation of the desired forces

$S = ku_x,$	(121 – 4)
-------------	-----------

$B=c\dot{u}_{x}, \qquad (1)$	121 – 5)
------------------------------	----------

$$D = m\ddot{u}_x. \tag{121-6}$$

These forces at test time t = 1 s are equal to

$S(1) \approx 245.317 \text{ N},$	(121 – 7)
$B(1) \approx -26.320 \text{ N},$	(121 – 8)
$D(1) \approx -18.997$ N.	(121 – 9)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.14.01 and RSTAB 8.14.01
- The global element size is $I_{\rm FE} = 0.2 \, {\rm m}$

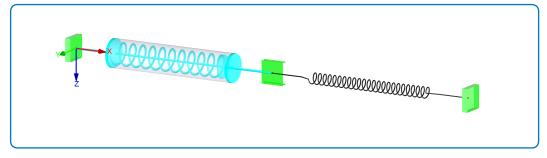
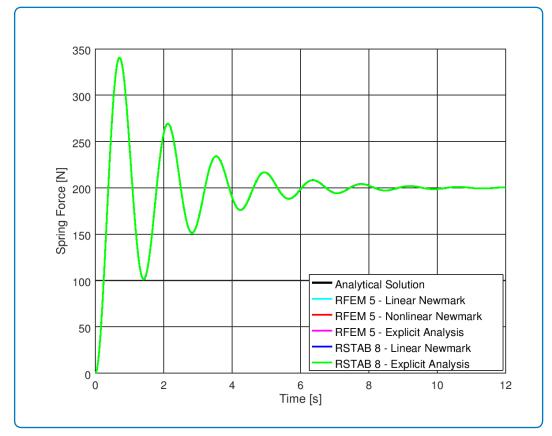


Figure 2: Model in RFEM 5 / RSTAB 8


Results

Structure Files	Program	Method
0121.01	RFEM 5 – RF-DYNAM Pro	Linear Implicit Newmark Analysis
0121.02	RFEM 5 – RF-DYNAM Pro	Nonlinear Implicit Newmark Analysis
0121.03	RFEM 5 – RF-DYNAM Pro	Explicit Analysis
0121.04	RSTAB 8 – DYNAM Pro	Linear Implicit Newmark Analysis
0121.05	RSTAB 8 – DYNAM Pro	Explicit Analysis

Verification Example:	0121 – Dynamic Force Distribution
-----------------------	-----------------------------------

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	S(1) [N]	S(1) [N]	Ratio [-]
RFEM 5, Linear Im- plicit Newmark Analy- sis	245.317	245.449	1.001
RFEM 5, Nonlinear Implicit Newmark Analysis		245.448	1.001
RFEM 5, Explicit Analysis		244.393	0.996
RSTAB 8, Linear Im- plicit Newmark Analy- sis		245.407	1.000
RSTAB 8, Explicit Analysis		245.368	1.000

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	<i>B</i> (1) [N]	<i>B</i> (1) [N]	Ratio [-]
RFEM 5, Linear Im- plicit Newmark Analy- sis	-26.320	-26.316	1.000
RFEM 5, Nonlinear Implicit Newmark Analysis		-26.316	1.000
RFEM 5, Explicit Analysis		-26.320	1.000
RSTAB 8, Linear Im- plicit Newmark Analy- sis		-26.321	1.000
RSTAB 8, Explicit Analysis		-26.318	1.000

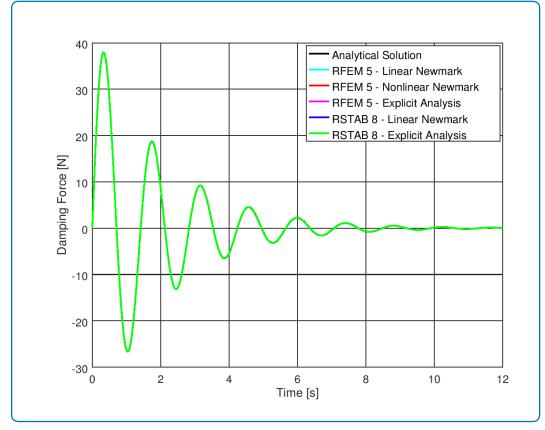


Figure 4: Analytical and RFEM 5 / RSTAB 8 solution - damping force B

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	D(1) [N]	D(1) [N]	Ratio [-]
RFEM 5, Linear Im- plicit Newmark Analy- sis	-18.997	—19.133	1.007
RFEM 5, Nonlinear Implicit Newmark Analysis		—19.133	1.007
RFEM 5, Explicit Analysis		-19.002	1.000
RSTAB 8, Linear Im- plicit Newmark Analy- sis		—19.086	1.005
RSTAB 8, Explicit Analysis		—18.997	1.000

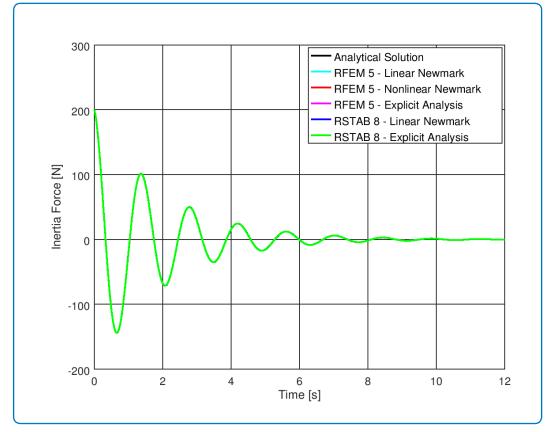


Figure 5: Analytical and RFEM 5 / RSTAB 8 solution - inertia force D

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0120 – Single-Mass Oscillation with Dashpot. 2018a.

