Program: RFEM 5, RF-DYNAM Pro

Category: Isotropic Plasticity, Dynamics, Member

Verification Example: 0124 – Plastic Material Oscillations

0124 – Plastic Material Oscillations

Description

This verification example is based on Verification Example 0122, see [1]. A single-mass system without damping is subjected to an axial loading force F. An ideal elastic-plastic material with characteristics is assumed, according to **Figure 1**. Determine the time course of the end-point deflection, velocity and acceleration. The problem is described by the following parameters.

Material	Plastic	Modulus of Elasticity	E	50.000	MPa
		Poisson's Ratio	ν	0.000	_
		Yield Strength	f _y	1.000	MPa
Geometry	Beam	Length	L	0.300	m
	Cross-section	Height	h	20.000	mm
		Width	b	20.000	mm
Load Force		F	300.000	N	
Mass			m	100.000	kg

Figure 1: Problem sketch

Analytical Solution

Single-mass-system oscillations are described by the second-order differential equation.¹ In case of nonlinear elastic-plastic behaviour, this equation has to be divided due to the change of stiffness (only tension of the beam is considered)

¹ \dot{u}_x and \ddot{u}_x denote the first and second time derivative of $u_{x'}$ respectively.

Verification Example: 0124 – Plastic Material Oscillations

$$m\ddot{u}_x + ku_x = F, \qquad u_x \le \frac{f_y L}{E},$$
 (124 - 1)

$$m\ddot{u}_x = F - f_y A, \qquad u_x \in \left(\frac{f_y L}{E}, \frac{2f_y L}{E}\right), \qquad (124-2)$$

$$m\ddot{u}_x + k(u_x - 2\frac{f_yL}{E}) = F - f_yA$$
, for steady oscillations, (124 - 3)

where the stiffness k is defined by the modulus of elasticity E, cross-section area A = bh and the length of the beam L

$$k = \frac{EA}{L}.$$
 (124 – 4)

The set of equations (124 - 1), (124 - 2) and (124 - 3) is further solved by means of Runge–Kutta method. For time behaviour of the deflection, velocity and acceleration see **Figure 2**. The specific values at test time 0.3 s are listed below

$u_x(0.3) = 9.026 [\text{mm}]$	(124 – 5)
--------------------------------	-----------

$\dot{u}_x(0.3) = -5.063 [\text{mm/s}]$	(124 – 6)
$\ddot{u}_x(0.3) = 0.984 [m/s^2]$	(124 – 7)

RFEM 5 Settings

- Modeled in RFEM 5.14.01
- The global element size is $I_{\rm FE} = 0.2 \text{ m}$

Results

Structure Files	Method
0124.01	Explicit Analysis
0124.02	Nonlinear Newmark Analysis

Verification Example: 0124 – Plastic Material Oscillations

Figure 2: Results comparison

Model	Analytical Solution	RFEM 5	
	<i>u_x</i> [mm]	u _x [mm]	Ratio [-]
Explicit Analysis		9.029	1.000
Nonlinear Implicit Newmark Analysis	9.026	9.028	1.000

Model	Analytical Solution	RFEM 5	
	<i>ù_x</i> [mm/s]	<i>ù_x</i> [mm/s]	Ratio [-]
Explicit Analysis	-5.063	-5.353	1.057
Nonlinear Implicit Newmark Analysis		-5.397	1.066

Verification Example: 0124 – Plastic Material Oscillations

Model	Analytical Solution	RFEM 5	
	<i>ü_x</i> [m/s ²]	<i>ü_x</i> [m/s ²]	Ratio [-]
Explicit Analysis		0.989	1.005
Nonlinear Implicit Newmark Analysis	0.984	0.989	1.005

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0122 – Nonlinear Elastic Material Oscillations – Yielding. 2018b.

