Kerification Example

Program: RFEM 5, RSTAB 8, RF-FE-LTB, FE-LTB, RFEM 6, RSTAB 9

Category: Second-Order Analysis, Isotropic Linear Elasticity, Warping, Member

Verification Example: 0099 – Spatial Bending with Warping

0099 – Spatial Bending with Warping

Description

A structure made of I-profile is embedded according to the the **Figure 1**[1]. The axial rotation φ_x is restricted on the both ends by means of the fork supports¹. The structure is loaded by two transverse forces in its middle. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.300	—
Geometry	Structure	Length	L	6.000	m
	Cross-Section	Height	h	400.000	mm
		Width	b	180.000	mm
		Web Thickness	s	10.000	mm
		Flange Thickness	t	14.000	mm
Load		Transverse Forces	F _y	3.000	kN
			Fz	194.000	kN

The self-weight is neglected in this example. Determine the maximum deflections of the structure $u_{y,\max}$ and $u_{z,\max}$, maximum rotation $\varphi_{x,\max}$, maximum bending moments $M_{y,\max}$ and $M_{z,\max}$ and maximum torsional moments $M_{T,\max}$, $M_{Tpri,\max}$, $M_{Tsec,\max}$ and $M_{\omega,\max}$.

Figure 1: Problem sketch

Analytical Solution

Analytical solution is not available, results given in [1] are taken as a reference.

¹ The axial rotation is restricted in the fork support while the warping is enabled.

RFEM and RSTAB Settings

- Modeled in version RFEM 5.26.02, RSTAB 8.26.02 and RFEM 6.01, RSTAB 9.01
- The element size is $I_{\rm FE} = 0.025$ m
- Isotropic linear elastic material model is used
- Second–Order Analysis is used
- Torsional Warping and Steel Design add-on is used in RFEM 6 and RSTAB 9

Results

Structure Files	Program
0099.01	RFEM 5 – RF-FE-LTB, RFEM 6
0099.02	RSTAB 8 – FE-LTB, RSTAB 9

Following graphs ilustrate the behaviour of selected deformations and internal forces calculated in RSTAB 9. Maximum values are sorted and compared in result tables.

Figure 2: RSTAB 9 results - deformation u_y [mm]

Figure 3: RSTAB 9 results - deformation *u_z* [mm]

Figure 4: RSTAB 9 results - deformation φ_x [mrad]

Figure 5: RSTAB 9 results - bending moment *M_y* [kNm]

Verification Example: 0099 – Spatial Bending with Warping

Figure 6: RSTAB 9 results - bending moment M_z [kNm]

Figure 7: RSTAB 9 results - torional moment M_{T} [kNm]

Figure 8: RSTAB 9 results - primary torsional moment *M*_{Tpri} [kNm]

Figure 9: RSTAB 9 results - secondary torsional moment M_{Tsec} [kNm]

Figure 10: RSTAB 9 results - warping moment M_{ω} [kNm]

	Termation Example: 0000 Spatial Schang Mar Halping							
Quantity	S3D [2]	RFEM 5, RF-FE-LTB	Ratio	RSTAB 8, FE-LTB	Ratio [-]			
$u_{y,\max}$ [mm]	25.0	28.1	1.124	28.1	1.124			
u _{z,max} [mm]	19.8	18.9	0.954	18.9	0.954			
$\varphi_{\mathbf{x},\max} \left[mrad \right]$	81.0	87.8	1.084	87.9	1.084			
$M_{y,\max}$ [kNm]	290.0	289.0	0.997	289.0	0.997			
<i>M_{z,max}</i> [kNm]	-28.0	-29.9	1.068	-29.9	1.068			
M _{T,max} [kNm]	2.38	2.54	1.068	2.54	1.068			
M _{Tpri,max} [kNm]	1.48	1.57	1.061	1.57	1.061			
M _{Tsec,max} [kNm]	1.03	1.19	1.155	1.19	1.155			
$M_{\omega,{ m max}}[{ m kNm^2}]$	2.61	2.77	1.061	2.78	1.061			
Quantity	S3D [2]	RFEM 6	Ratio	RSTAB 9	Ratio [-]			
u _{y,max} [mm]	25.0	26.6	1.064	27.1	1.084			
u _{z,max} [mm]	19.8	20.8	1.051	18.9	0.955			
$\varphi_{\mathbf{x},\max} \left[mrad \right]$	81.0	87.7	1.083	84.1	1.038			
$M_{y,\max}$ [kNm]	290.0	289.5	0.998	289.1	0.997			
<i>M_{z,max}</i> [kNm]	-28.0	-30.0	1.071	-28.7	1.025			
M _{T,max} [kNm]	2.38	2.56	1.034	2.45	1.029			
M _{Tpri,max} [kNm]	1.48	1.57	1.061	1.50	1.013			
M _{Tsec,max} [kNm]	1.03	1.21	1.175	1.15	1.117			
$M_{\omega,\max}$ [kNm ²]	2.61	2.84	1.088	2.70	1.034			

Verification Example: 0099 – Spatial Bending with Warping

References

- [1] LUMPE, G. and GENSICHEN, V. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software: Prüfbeispiele, Fehlerursachen, genaue Theorie. Ernst, 2014.
- [2] LUMPE, G. S3D (Vers. 25.09.2011). Hochschule Biberach, 2011.