

Version August 2017

Add-on Module

RF-/STEEL NBR

Desing of Steel Members According to ABNT NBR 8800

Program Description

All rights, including those of translations, are reserved. No portion of this book may be reproduced – mechanically, electronically, or by any other means, including photocopying – without written permission of DLUBAL SOFTWARE GMBH.

© Dlubal Software GmbH 2017 Am Zellweg 2 93464 Tiefenbach Germany

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com Web: www.dlubal.com Dlub

Contents

Contents

1.	Introduction 2
1.1	Add-on Module RF-/STEEL NBR 2
1.2	Using the Manual
1.3	Starting RF-/STEEL NBR
2.	Input Data 4
2.1	General Data 4
2.1.1	Ultimate Limit State 5
212	Serviceability Limit State 6
22	Materials 7
23	Cross-Sections 9
2.3	Intermediate Lateral Restraints 12
2.1	Design Parameters 13
2.5	Effective Lengths - Members 14
2.0	Effective Lengths - Sets of Members 17
2.7	Serviceability Data
2.0	Calculation 19
31	Detail Settings 19
3.1	Starting Calculation 20
3.2	Populte 21
4.	Design by Load Case 22
4.1	Design by Cross Section 22
4.2	Design by Cross-Section
4.5	Design by Set of Members
4.4 4.5	Design by Member
4.5	Design by x-Location
4.0	Governing Internal Forces by Member
4.7	Governing Internal Forces by Set of Members
4.8	Members Siendernesses
4.9	Parts List by Member
4.10	Parts List by Set of Members
5.	Results Evaluation
5.1	Results in RFEM/RSTAB Model
5.2	Result Diagram
5.3	Filter for Results
6.	Printout
6.1	Printout Report
6.2	Graphic Printout
7.	General Functions
7.1	Design Cases
7.2	Cross-Section Optimization
7.3	Units and Decimal Places
7.4	Data Transfer
7.4.1	Exporting Materials to RFEM/RSTAB
7.4.2	Exporting Effective Lengths to RFEM/RSTAB
7.4.3	Exporting Results
Α.	Literature
В.	Index

1 Introduction

1.1 Add-on Module RF-/STEEL NBR

The Standard ABNT NBR 8800 *Design of steel and composite structures for buildings* [1] describes the design of steel buildings in the Federative Republic of Brazil. With the add-on modules RF-STEEL NBR (for RFEM) and STEEL NBR (for RSTAB), DLUBAL provides powerful tools for the design of steel beam models according to this Standard.

In the following, the add-on modules of both main programs are described in one manual and are referred to as **RF-/STEEL NBR**.

RF-/STEEL NBR performs all typical ultimate limit state designs as well as stability and deformation analyses. The program takes into account various actions for the ultimate limit state design. The allocation of designed cross-sections into three types (compact, noncompact and slender) makes an important part of the design according to the Brazilian Standard. The purpose of this classification is to determine the range in which the local buckling in cross-section parts limits the load capacity so that the rotational capacity of cross-sections can be verified. RF-/STEEL NBR determines the limiting width-to-thickness ratios of compressed parts and carries out the classification automatically.

For the stability analyis, you can determine for every single member or set of members whether buckling and flexural buckling is possible. Lateral restraints can be added for a realistic representation of the structural model.

For models with slender cross-sections, the serviceability limit state has become an essential aspect of the design. The limit deformations are preset according to the Standard, but can be adjusted. In addition, you can specify the reference lengths and precambers, if necessary.

The program allows you to optimize cross-sections and to export them to RFEM or RSTAB. Using the design cases, it is possible to design separate structural components of complex structures or analyze alternatives with different sections or materials.

Since RF-/STEEL NBR is integrated in the main program, the design relevant input data is preset when the module is called up. After the analysis, the design results can be evaluated graphically in the work window of RFEM or RSTAB. Last but not least, it is possible to keep records of the analysis in the global printout report which includes the internal forces and the design results.

We hope you will enjoy working with RF-/STEEL NBR.

Your DLUBAL team

1.2 Using the Manual

Topics like installation, graphical user interface, results evaluation, and printout are described in detail in the manuals of the main programs RFEM and RSTAB. The present manual focuses on typical features of the RF-/STEEL NBR add-on module.

۲

The descriptions in this manual follow the sequence and structure of the module's input and results windows. In the text, the described **buttons** are given in square brackets, for example [View mode]. At the same time, they are pictured on the left. **Expressions** appearing in dialog boxes, windows, and menus are set in *italics* to clarify the explanations.

At the end of the manual, you can find the index. If you cannot find what you are looking for, go to the Knowledge Base where you can search for the solution of the problem. Or consult the FAQs on our website.

RFEM and RSTAB provide the following options to open the RF-/STEEL NBR add-on module.

Menu

To start the program from the menu bar, select

```
Add-on Modules \rightarrow Design - Steel \rightarrow RF-/STEEL NBR.
```

Add	i-on Modules	<u>W</u> indow	He	elp					
4 00	Current Modul	e			* <	> <u>P</u>	* 🛸	🎽 🚳 📾 🔛 🎆 🖗	42 🥵 🏦 🎜
	Design - Steel		•	<i>.</i>	RF-STEEL Surfaces			General stress analysis o	of steel surfaces
	Design - Concr	ete	۲	Ľ	RF-STEEL Member	s		General stress analysis of	f steel members
	Design - Timbe	r		Fe	RF-STEEL EC3		Des	ign of steel members according	g to Eurocode 3
	Design - Alumi	nium		Also	RF-STEEL AISC	De	sign of s	steel members according to AIS	C (LRFD or ASD)
	Dynamic			LIS	RF-STEEL IS			Design of steel members	according to IS
	Connections		1	SIA	RF-STEEL SIA			Design of steel members a	ccording to SIA
	Foundations			BS	RF-STEEL BS			Design of steel members a	according to BS
	Stability			1G8	RF-STEEL GB			Design of steel members a	according to GB
	Towers			CSA	RF-STEEL CSA			Design of steel members ac	cording to CSA
	Others		4	LAS	RF-STEEL AS			Design of steel members a	according to AS
	External Modul	les	×	NIC	RF-STEEL NTC-DF			Design of steel members accor	ding to NTC-DF
	Stand-Alone Pr	ograms	▶	Isp	RF-STEEL SP			Design of steel members	according to SP
				PIPM	RF-STEEL Plastic			Design of steel members acc	cording to PIFM
				SANS	RF-STEEL SANS			Design of steel members acc	ording to SANS
				NBR	RF-STEEL NBR		N	Design of steel members ac	cording to NBR
				J FD	RF-STEEL Fatigue	Members	5	Fatigue design of	f steel members
				1	RF-KAPPA			Flexural b	uckling analysis
				Ð	RF-LTB	La	teral-tor	rsional and torsional-flexural b	uckling analysis
				€. FE	RF-FE-LTB	Lateral-tor	rsional a	nd torsional-flexural buckling	analysis by FEM

Figure 1.1: Menu Add-on Modules \rightarrow Design - Steel \rightarrow RF-STEEL NBR

Navigator

You can also start the add-on module in the Data navigator by selecting

```
\textbf{Add-on Modules} \rightarrow \textbf{RF-/STEEL NBR}.
```


Figure 1.2: Data navigator Add-on Modules \rightarrow RF-STEEL NBR

2 Input Data

When you have started the add-on module, a new window appears. In this window, a *Navigator* is displayed on the left. It manages the different window that can be currently selected. The drop-down list above the navigator contains the design cases (see Chapter 7.1, page 39).

The design-relevant data is to be defined in several input windows. When you open RF-/STEEL NBR for the first time, the following parameters are imported automatically:

- Members and sets of members
- Load cases, load and result combinations
- Materials

5 3

Cancel

OK

- Cross-sections
- Effective lengths
- Internal forces (in background, if calculated)

To select a window, click the corresponding entry in the navigator. To set the previous or next input window, use the buttons shown on the left. You can also use the function keys to select the next [F2] or previous [F3] window.

[OK] saves the results. Thus, you quit RF-/STEEL NBR and return to RFEM or RSTAB. To exit the add-on module without saving any changes, click [Cancel].

2.1 General Data

In the 1.1 General Data Window, you can select the members, sets of members and actions for the design. The two tabs manage the load cases, load and result combinations for the different types of design.

Figure 2.1: Window 1.1 General Data

Design of			
Members:	1,2,4-6,8,81-83,99-102	🚯 🗙	🔲 Ali
Sets:	1-5	🖏 🗙 🎦	V AI

Figure 2.2: Design of members and sets of members

```
X
```

2

The design can be carried out for *Members* as well as for *Sets of Members*. If you want to design only selected objects, clear the *All* check box. Then you can access the text boxes to enter the numbers of the relevant members or sets of members. The [Delete] button clears the list of preset numbers. The [Select] button enables you to define the objects graphically in the work window of RFEM or RSTAB.

When you design a set of members, the program determines the extreme values of the analyses of all members contained in the set of members and takes into account the boundary conditions of connected members for the stability analysis. The results are shown in Windows 2.3 Designs by Set of Members, 3.2 Governing Internal Forces by Set of Members, and 4.2 Parts List by Set of Members.

Click [New] to create a new set of members. The dialog box that you already know from RFEM or RSTAB appears. There you can specify the parameters of the set of members.

Comment

In this text box, you can enter user-defined notes, for example to describe the current design case.

2.1.1 Ultimate Limit State

Ultimate Limit	State Serviceability Limit State					
Existing Load	Cases and Combinations			Selected for D	lesign	
LC1	Self-weight			CO3	1.35*LC1 + LC8 + LC9 + LC10	
Q.Ge LC2	Snow			CO9	1.35*LC1 + 1.5*LC2 + LC8 + LC9	
Qw LC3	Wind in +X	Ξ		CO13	1.35*LC1 + 1.5*LC2 + LC9 + LC10	
Qw LC4	Wind in +Y					
Qw LC5	Wind in -Y					
Q Ge LC7	Live load					
CO1	1.35*LC1 + LC8					
CO2	1.35*LC1 + LC8 + LC9					
CO4	1.35*LC1 + LC8 + LC10					
CO5	1.35*LC1 + LC9		>>			
CO6	1.35*LC1 + LC9 + LC10					
C07	1.35*LC1 + LC10		_			
CO8	1.35*LC1 + 1.5*LC2 + LC8					
CO10	1.35*LC1 + 1.5*LC2 + LC8 + LC9 +					
CO11	1.35*LC1 + 1.5*LC2 + LC8 + LC10		~			
CO12	1.35*LC1 + 1.5*LC2 + LC9					
CO14	1.35*LC1 + 1.5*LC2 + LC10					
CO15	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L					
CO16	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L					
CO17	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L					
CO18	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L					
CO19	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L					
CO20	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L					
CO21	1.35*LC1 + 1.5*LC2 + 1.5*LC7 + L	Ŧ				
All (195		33				

Figure 2.3: Window 1.1 General Data, tab Ultimate Limit State

Existing Load Cases and Combinations

This column lists all load cases, load combinations, and result combinations that have been created in RFEM or RSTAB.

To transfer selected items to the *Selected for Design* list on the right, click \geq . Alternatively, you can double-click the items. To transfer the complete list to the right, click \geq .

To select several items at once, click them while pressing the [Ctrl] key – as common for Windows applications.

2 Input Data

	All (195)
	All (195)
LC	Load Cases (9)
CO	Load Combinations (184)
CO	Load Combinations - Generated (184)
RC	Result Combinations (2)
RC	Result Combinations - Generated (2)
	Load and Result Combinations (186)
	Load and Result Combinations - Generated (186)
QGe	General variable actions (2)
Qw	Wind (3)
S Qp	CO SLS - Quasi-permanent (12)
S Qp	RC SLS - Quasi-permanent (1)
Imp	Imperfection (3)
G Si	Self-weight of structures built on site (0)
Norm	CO ULS - Normal (0)
Norm	RC ULS - Normal (0)

If a load case is highlighted in red, it cannot be designed. This happens when a load case has no loads or contains only imperfections.

At the end of the list, some filter options are available. They help you to assign the items by load case, load combination, or action category. The buttons next to the box have the following functions:

Selects all load cases in the list
Inverts the selection of load cases

Table 2.1: Buttons in the Ultimate Limit State tab

Selected for Design

The column on the right lists the load cases, load and result combinations selected for design. To remove an item from the list, click <a> or double-click the item. To transfer the entire list to the left, click <<>>.

Result combination

The design of an enveloping max/min result combination *RC* is faster than the design of all contained load cases and load combinations. However, the influence of the contained actions is difficult to check afterwards.

2.1.2 Serviceability Limit State

disting Load C	ases and Combinations			Selected for D	Design	
CO165	1.35*LC1 + 1.4*LC4 + 1.2*LC7 + L	^		S Qp RC2	SLS - Quasi-permanent	
CO166	1.35*LC1 + 1.4*LC4 + 1.2*LC7 + L					
CO167	1.35*LC1 + 1.4*LC4 + 1.2*LC7 + L					
CO168	1.35*LC1 + 1.4*LC4 + 1.2*LC7 + L					
CO169	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L					
CO170	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L					
C0171	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L					
CO172	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L					
CO173	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L					
CO174	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L		>>			
CO175	1.35*LC1 + 1.4*LC5 + 1.2*LC7 + L					
Qp CO176	LC1 + LC8					
Qp CO177	LC1 + LC9					
Op CO178	LC1 + LC10					
Qp CO179	LC1 + 0.6*LC2 + LC8		~			
Op CO180	LC1 + 0.6*LC2 + LC9					
Qp CO181	LC1 + 0.6*LC2 + LC10					
Op CO182	LC1 + 0.6*LC2 + 0.6*LC7 + LC8					
Op CO183	LC1 + 0.6*LC2 + 0.6*LC7 + LC9					
Qp CO184	LC1 + 0.6*LC2 + 0.6*LC7 + LC10					
Qp CO185	LC1 + 0.6*LC7 + LC8					
Op CO186	LC1 + 0.6*LC7 + LC9	Ξ				
Op CO187	LC1 + 0.6*LC7 + LC10					
RC1	ULS – Normal	-				

Figure 2.4: Window 1.1 General Data, tab Serviceability Limit State

Existing Load Cases and Combinations

This section lists all load cases, load and result combinations that have been created in RFEM or RSTAB.

Selected for Design

You can add or remove load cases, load and result combinations as described in Chapter 2.1.1.

The limit values of the deflections are preset in the *Details* dialog box (see Figure 3.1, page 19). To adjust those values, click the [Details] button.

In the *1.8 Serviceability Data* Window, you can specify the reference lengths of the deformation analysis (see Chapter 2.8, page 18).

2.2 Materials

This window consists of two parts: The upper table lists all materials created in RFEM or RSTAB. The *Material Properties* section below shows the characteristics of the current material, i.e. the table row which is selected above.

2 Mater	als				
	A		В		
Material	Material				
No.	Description		Comm	nent	
1	Steel CG-26 ABNT NBR 8800:2008				
2	Steel G-30 ABNT NBR 8800:2008				-
3	Concrete f'c = 4000 psi ACI 318-11				
				🖹 ĕ 🐧 💿	
Material F	Properties				-
	ropenies	E	200000 0	N/mm?	J
She	and the story	6	200000.0	N/mm ²	-
Poie	eon's Ratio		77000.0	10/100-	-
Sne	cific Weight	~ ~	79.50	kN/m3	-
Coe	fficient of Thermal Expansion	0	1 2000E-05	1/K	-
Pad	ial Safety Factor	744	1.20002-03		-
- Additio	nal Properties	1	1.00		Material No. 1 used in
Yiel	d Strength	fv	255.00	MPa	Cross-sections No.:
Ultir	nate Strength	fu	410.00	MPa	1 2 6 7 10 12 12 15
					. 1-3,6,7,10,12,13,13
					Members No.:
					1-8,11,13-18,21-28,31-46,51-64,81-83,91-
					Sets of members No.:
					15
					1-0
					Σ Lengths: Σ Masses:
					460.46 [m] 15.920 [t]

Figure 2.5: Window 1.2 Materials

Materials that will not be used in the design appear gray in color. Materials that are not allowed are highlighted in red. Modified materials are displayed in blue.

The material properties required to determine the internal forces (*Main Properties*) are described in Chapter 4.3 of the RFEM manual and Chapter 4.2 of the RFEM manual. The material properties required for design (*Additional Properties*) are stored in the global material library. These values are preset.

To adjust the units and decimal places of the material properties and stresses, select **Settings** \rightarrow **Units and Decimal Places** from the menu bar of the module (see Chapter 7.3, page 43).

Material Description

The materials defined in RFEM or RSTAB are preset, but you can always modify them: Click the material in column A, and then click the subtron or press the function key [F7] to open the material list.

A		
Material		
Description		
Steel CG-26 ABNT NBR 8800:2008		
Steel MR 250	ABNT NBR 8800:2008	A
Steel AR 350	ABNT NBR 8800:2008	
Steel AR 350 COR	ABNT NBR 8800:2008	Ξ
Steel AR 415	ABNT NBR 8800:2008	
Steel CG-26	ABNT NBR 8800:2008	
Steel CG-28	ABNT NBR 8800:2008	
Steel CF-26 (Cold Rolled)	ABNT NBR 8800:2008	
Steel CF-26 (Hot Rolled)	ABNT NBR 8800:2008	
Steel CF-28 (Cold Rolled)	ABNT NBR 8800:2008	
Steel CF-28 (Hot Rolled)	ABNT NBR 8800:2008	Ŧ

Figure 2.6: List of materials

According to the design concept of the Standard [1], only materials of the Brazilian *Steel* category are available in the list.

When you have imported a material, the design-relevant Material Properties are updated.

As a matter of principle, the material properties cannot be edited in the RF-/STEEL NBR module.

Material Library

Alternatively, you can use the material library to change a material. To open the library, select

Edit \rightarrow Material Library

	×		

Material to Select Material category group: Material Description S Material category: Steel MR 250 S Material category: Steel AR 350 S Steel Steel AR 350 COR S Steel are stop of the stop of	Standard ABNT SABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	I NBR 8800:2008 NBR 8800:2008	
Material category group: Material Description S Metal Steel MR 250 S Material category: Steel AR 350 COR S Steel Steel AR 350 COR S Steel or Use of the second se	Standard Standard Standard ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008	
Metal Material category: Steel Steel Steel Standard group: Standard: Standard: Standard: Steel CF-26 (Cold Rolled) Steel CF-26 (Cold Rolled) Steel CF-28 (Cold Rolled) Steel CF-28 (Cold Rolled) Steel CF-30 (Hot Rolled) Steel G-30 Steel G-35 Steel G-42 Steel G-42 Steel G-45 Steel G-46 Steel G-47 Steel G-48 Steel G-40 Steel G-41 Steel G-42 Steel G-45 Steel G-45 Steel G-46 Steel G-47 Steel G-48 Material Properties Main Properties Main Properties Main Properties	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:208 NBR 8800:208 NBR 8800:208 NBR 8800:208 NBR 8800:208 NBR 8800 NBR 8	
Material category: Steel AR 350 Steel AR 350 COR Steel CG-26 Steel CG-26 Steel CF-26 (Cold Rolled) Steel CF-26 (Cold Rolled) Steel CF-28 (Cold Rolled) Steel CF-30 (Hot Rolled) Steel G-30 Steel G-31 Steel G-35 Steel G-35 Steel G-35 Steel G-35 Steel G-35 Steel G-35 Steel G-36 Steel G-37 Steel G-37 Steel G-38 Steel G-30 Steel G-35 Steel G-35 Steel G-35 Steel G-36 Steel G-37 Steel G-37 Steel G-38 Steel G-38 Steel G-38 Steel G-39 Steel G-35 Steel G-35 Steel G-35 Steel G-35 Steel G-36 Steel G-37 Steel G-38 Steel G-38 <td< td=""><td>ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT</td><td>NBR \$800:2008 NBR \$800:2008</td><td></td></td<>	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR \$800:2008 NBR \$800:2008	
Material category: Steel AR 350 COR Steel AR 415 Standard group: Steel CG-26 Steel CG-26 Steel CG-26 Steel CG-26 Steel CG-26 (Cold Rolled) Steel CF-26 (Cold Rolled) Steel CF-26 (Cold Rolled) Steel CF-28 (Cold Rolled) Steel CF-	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008	
Steel Steel and ard group: Standard group: Standard: Standard: Standard: Steel CF-26 (Cold Rolled) Steel CF-26 (Hot Rolled) Steel CF-28 (Cold Rolled) Steel CF-28 (Hot Rolled) Steel CF-28 (Hot Rolled) Steel CF-30 (Hot Rolled) Steel G-35 Steel G-35 Steel G-35 Steel G-42 Steel G-45 Steel G-45 Steel G-45 Steel G-45 Steel G-45 Steel G-45 Steel G-46 Steel G-47 Steel G-47 Steel G-48 Steel G-4	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008	
Standard group: Standard group: Steel CG-26 Steel CG-28 Standard: Standard: Standard: Standard: Steel CF-26 (Cold Rolled) Steel CF-28 (Hot Rolled) Steel CF-30 (Hot Rolled) Steel G-35 Steel G-35 Steel G-35 Steel G-42 Steel G-42 Steel G-45 Steel G-45 Steel G-46 Steel O-40 Main Properties Main Properties Main Modulus of Elasticity E Shear Modulus	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR. 8800:2008	
standard group: Steel CG-28 Steel CG-28 Steel CF-26 (Cold Rolled) Steel CF-26 (Hot Rolled) Steel CF-28 (Cold Rolled) Steel CF-28 (Cold Rolled) Steel CF-28 (Hot Rolled) Steel CF-30 (Hot Rolled) Steel CF-30 (Hot Rolled) Steel CF-30 (Steel G-35 Steel G-35 Steel G-42 Steel G-42 Steel G-45 Steel G-45 Steel G-45 Steel G-45 Steel G-45 Steel G-46 Steel G-47 Steel G-48 Steel G-45 Steel G-46 Steel G-47 Steel G-48 Steel G-48 <	Abri Abri Abri Abri Abri Abri Abri Abri	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Index Steel CF-26 (Cold Rolled) Standard: Steel CF-26 (Hot Rolled) ABINT NBR 8800:2008 Steel CF-26 (Hot Rolled) Steel CF-28 (Cold Rolled) Steel CF-28 (Hot Rolled) Steel CF-28 (Hot Rolled) Steel CF-28 (Hot Rolled) Steel CF-28 (Hot Rolled) Steel CF-30 (Hot Rolled) Steel G-35 Steel G-35 Steel G-42 Steel G-42 Steel G-45 Steel G-45 Steel G-45 Steel G-45 Steel G-42 Steel G-42 Steel G-45 Steel G-42 Steel G-45 Steel G-45 Steel G-46 Steel G-46 Main Properties Steel G-40 Main Properties Steel Modulus G	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR \$800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Standard: Stael CF-28 (bot Rolled) Steel CF-28 (cold Rolled) Steel CF-28 (bot Rolled) Steel CF-28 (bot Rolled) Steel CF-28 (bot Rolled) Steel CF-28 (bot Rolled) Steel CF-30 (bot Rolled) Steel CF-30 (bot Rolled) Steel CF-30 (bot Rolled) Steel G-35 Steel G-42 Steel G-42 Steel G-42 Steel G-45 Steel G-45 Steel F-32/Q-32 Steel CF-30 (bot Rolled) Steel G-41 Steel G-42 Steel G-45 Steel G-45 Steel G-45 Steel G-46 Steel G-47 Steel G-48 Steel G-41 Steel G-42 Steel G-45 Steel G-45 Steel G-46 Steel G-47 Steel G-48 Steel G-49 Steel G-41 Steel G-42 Steel G-43 Steel G-44 Steel G-45 Steel G-47 Steel G-48 Steel G-41 Steel G-42 Steel G-42 Steel G-42 Steel G-41 Steel G-42 Steel G-42 Steel G-42 Steel G-42 Steel G-42 <	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Steel G-28 (cold Rolled) Steel G-30 Steel G-35 Steel G-42 Steel G-42 Steel G-42 Steel G-45 Steel G-45 </td <td>ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT</td> <td>NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008</td> <td></td>	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
ABNT NBR 8800:2008	ABNT ABNT ABNT ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Steel GF-20 (Hot Rolled) Steel GF-30 (Hot Rolled) Steel GF-35 Steel GF-42 Steel GF-42 Steel F-32/Q-32 Steel F-35/Q-35 Steel OF-40 Steel OF-40 Steel Reserver Main Properties Main Properties Main Vodulus G	ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Steel G-30 Steel G-35 Steel G-35 Steel G-45 Steel G-45 Steel F-32/Q-32 Steel F-35/Q-35 Favorites group: Indudu sof Elasticity Main Properties Main Properties Shear Modulus G	ADATI ABNT ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Include invalid Steel G-35 Include invalid Steel G-42 Steel F-32/Q-32 Steel F-35/Q-35 Favorites group: Steel G-40 Image: Steel Steel G-40 Steel G-45 Steel F-35/Q-35 Steel G-40 Induiting Steel G-40 Steel G-41 Image: Steel G-42 Steel G-42 Steel G-45 Steel G-45 Steel F-35/Q-35 Steel G-40 Image: Steel G-40 Steel G-40	ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Steel G-35 Steel G-32 Steel G-42 Steel G-45 Steel F-32/Q-32 Steel F-35/Q-35 Favorites group: Steel G-45 Steel F-32/Q-32 Steel F-35/Q-35 Steel G-40 Steel G-40 Steel G-40 Steel G-40 Steel G-40 Steel G-45 Steel G-40 Steel G-40 Stee	ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Steel G-45 Steel G-45 Steel G-45 Steel F-32/Q-32 Steel F-35/Q-35 Favorites group: Steel G-45 Steel F-32/Q-32 Steel F-35/Q-35 Steel G-40 Steel Modulus Steel G-40 Steel Modulus G	ABNT ABNT ABNT ABNT	NBR 8800:2008 NBR 8800:2008 NBR 8800:2008	
Steel G-45 Steel G-45 Steel F-32/Q-32 Steel F	ABNT	NBR 8800:2008	
Steel F-32/Q-32 Steel F-32/Q-32 Steel F-35/Q-35 Steel C-40 Steel		NBR 8800:2008	
Steel F-35/Q-35 Steel F-35/Q-35 Favorites group: Steel O-40 Image: Steel Properties Search: Main Properties Search: Main Properties Search: Shear Modulus of Elesticity E		NBR 8800:2008	
Image: Steel 0.40 Image: Steel 0.40	I 🖾 ABNT		
Iaterial Properties Main Properties Modulus of Elasticity Shear Modulus G		NBR 8800:2008	
Iaterial Properties Main Properties Modulus of Elasticity Shear Modulus G			
∃Main Properties Modulus of Elasticity E Shear Modulus G	Stee	el CG-26 ABNT I	NBR 8800:
Modulus of Elasticity E Shear Modulus G			
- Shear Wodulus	E	200000.0	N/mm ²
Poisson's Batio	u v	//000.0	N/mm~
Specific Weight	v 7	78.50	kN/m ³
Coefficient of Themal Expansion a	α	1.2000E-05	1/K
Additional Properties			
- Yield Strength fy	fy	255.0	N/mm ²
Ultimate Strength fu	fu	410.0	N/mm ²

Figure 2.7: Dialog box Material Library

In the *Filter* section, *ABNT NBR 8800:2008* is the default Standard. Select the material quality that you want to use for the design in the *Material to Select* list. You can check the corresponding properties in the dialog section below.

OK

Click [OK] or press [-] to transfer the selected material to Window 1.2 of RF-/STEEL NBR.

Chapter 4.3 of the RFEM manual and Chapter 4.2 of the RSTAB manual describe in detail how materials can be filtered, added, or rearranged.

In the library, you can also select materials of categories *Cast Iron* and *Stainless Steel*. Please check, however, whether those materials are covered by the design concept of the Standard [1].

2.3 Cross-Sections

This window manages the cross-sections used for design. In addition, the module window allows you to specify optimization parameters.

	٨	n n	1			E (F		0.10.000.000	
	A	Creas Section	Carea Seatia	n Onti	_	E	F		2 - VS 300x46 N	BR 5884
No	Material	Cross-Section	Cross-Secul	n Opu-		Demade	Comment			
4	INO.		Type	mize		Nemark	Comment		. 1	80.0
1	1	VS 300x46 NBR 5884	I-section rolle	d No	-					
2	1	VS 300x46 NBR 5884	I-section rolle	d No	<u> </u>				+	
3	1	VS 400x34 NBR 5884	I-section rolle	d No					12.1	
6	1	CS 200 x 41 NBR 5884	I-section rolle	d From current	row					
/	1	CS 400 x 165 NBR 5884	I-section rolle	d No	_				0	
9	2	VS 350x33 NBR 5884	I-section rolle	d No					300	
10	1	CS 250 x 49 NBR 5884	I-section rolle	d No						
12	1	TO 80/80/4.5/4.5/4.5/4.5	Box welded	No						4.8
13	1	• RD 24	Round bar	No						
15	1	CS 300 x 92 NBR 5884	I-section rolle	d No						
16	3	Circle 300	Invalid	No		6)				1
										z
										1
								_		
						3	😼 🐧	۲	0	🍝 😭
							🔹 🚯 (۲	0	ĭ.
ss-Si	ection Prop	perties - VS 300x46 NBR 5884				×	I	۲	Cross-section No.	2 used in
ss-Si ìross-	ection Prop Section Ty	vs 300x46 NBR 5884		I-section roll	ed			•	Cross-section No.	2 used in
ss-Sectio	ection Prop Section Ty n Height	VS 300x46 NBR 5884 ype		I-section roll 300.0	ed mm			•	Cross-section No. Members No.:	2 used in
ss-Si Cross- Sectio	ection Prop Section Ty n Height n Width	Perties - VS 300x46 NBR 5884 ype	h b	I-section roll 300.0 180.0	ed mm mm			•	Cross-section No. Members No.: 3-8,13-18,23-28,4	2 used in
ss-Sectio Sectio Veb	ection Prop Section Ty n Height n Width Thickness	perties - VS 300x46 NBR 5884 ype	h b t _w	I-section roll 300.0 180.0 4.8	ed mm mm			•	Cross-section No. Members No.: 3-8,13-18,23-28,4	2 used in
ss-So cross- Sectio Sectio Veb	ection Prop Section Ty n Height n Width Thickness Thickness	VS 300x46 NBR 5884 ype ss	h b tw tf	I-section roll 300.0 180.0 4.8 12.5	ed mm mm mm				Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N	2 used in 1-46
ss-Sectio Sectio Sectio Root I	ection Prop Section Ty n Height n Width Thickness Thickness Radius	VS 300x46 NBR 5884 ype 88	h b t _w tf	I-section roll 300.0 180.0 4.8 12.5 0.0	ed mm mm mm i mm				Cross-section No.: Members No.: 3-8,13-18,23-28,4 Sets of members N 2.3	2 used in 1-46
ss-Sectio Sectio Sectio Root I Gross	ection Prop Section Ty n Height n Width Thickness Thickness Radius Area of M	perties - VS 300x46 NBR 5884 ype ss ember	h b tw tf r Ag	I-section roll 300.0 180.0 4.8 12.5 0.0 58.10	ed mm mm mm mm mm cm ²				Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3	2 used in 1-46
ss-So Cross Sectio Sectio Root I Gross Shear	ection Prop Section Ty n Height n Width Thickness Thickness Thickness Thickness Thickness Thickness Thickness Thickness Thickness Thickness	Perties - VS 300x46 NBR 5884 spe	h b tw tr r Ag Aw	l-section roll 300.0 180.0 4.8 12.5 0.0 58.10 45.00	ed mm mm mm mm mm cm ² cm ²			 Image: Constraint of the second second	Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3	2 used in 1-46
ss-Si Cross Sectio Sectio Veb Flange Root I Gross Shear Shear	ection Prop Section Ty n Height n Width Thickness Thickness Radius Area of M Area Area	Perties - VS 300x46 NBR 5884 ype s8 ember	h b tw tr r Ag Aw:	l-section roll 300.0 180.0 4.8 12.5 0.0 58.10 7 45.00 14.25	ed mm mm mm mm cm ² cm ² cm ²			 Image: A marked black Ima	Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3 Σ Lengths:	2 used in 1-46 Ιο.: Σ Masses:
Section Section Section Section Section Section Section Shear Shear Shear Shear Shear	ection Prop Section Ty n Height n Width Thickness adius Area of M Area d Moment	perties - VS 300x46 NBR 5884 ype ss ember t of Area	h b tw tr r Ag Aw; lv	l-section roll 300.0 188.0 4.8 12.5 0.0 58.10 7 45.00 142.5 10128.00	ed mm mm mm mm mm cm ² cm ² cm ² cm ²			 Image: Constraint of the second second	Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3 Σ Lengths: 100.38 [m] 100.38 [m]	2 used in 1-46 Ιο.: Σ Masses: 4.443
ss-Si Cross Sectio Sectio Sectio Root I Flange Root I Gross Shear Shear Shear Secor Secor	ection Prop Section Ty n Height n Width Thickness adius Area of M Area d Moment d Moment	Perties - VS 300x46 NBR 5884 ppe ss ember t of Area t of Area t of Area	h b tw tr r Ag Aw; Aw; Iy Iz	l-section roll 300.0 180.0 4.8 12.5 0.0 58.10 , 45.00 14.25 10128.00 1215.00	ed mm mm mm mm mm cm ² cm ² cm ² cm ⁴ cm ⁴			 Image: A marked bit is a marked b	Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2.3 Σ Lengths: 100.38 [m]	2 used in 1-46 lo.: Σ Masses: 4.443
ss-Si Cross Sectio Sectio Veb Root I Root I Gross Shear Shear Shear Shear Shear Shear Shear	ection Proj Section Tr n Height n Width Thickness Radius Area of M Area d Moment d Moment nal Consta	Perties - VS 300x46 NBR 5884 ype ss ember t of Area ant	h b tw tr Ag Aw, ly ly lz	l-section roll 300.0 180.0 4.8 12.5 0.0 58.10 7 45.00 7 45.00 14.25 10128.00 1215.00 24.42	ed mm mm mm cm ² cm ² cm ² cm ⁴ cm ⁴				Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3 Σ Lengths: 100.38 [m] Material:	2 used in 1.46 lo.: Σ Masses: 4.443
ss-Si Cross Sectio Sectio Sectio Root I Gross Shear Shar Shar Shar Shar Shar Shar Shar Sh	ection Proj Section Tr n Height n Width Thickness Thickn	Perties - VS 300x46 NBR 5884 ype ss ember t of Area t of Area ant on	h b tw tr r Ag Aw, J ly lz J J	I-section roll 300.0 180.0 4.8 12.5 0.0 58.10 7 45.00 14.25 10128.00 1215.00 1215.00 24.42 132.1	ed mm mm mm mm cm ² cm ² cm ² cm ⁴ cm ⁴ cm ⁴				Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3 Σ Lengths: 100.38 [m] Material: 1 Set OC 2011	2 used in 1-46 lo.: Σ Masses: 4.443
ss-Si Gectio Sectio Sectio Sectio Root I Gross Shear Shear Secor Torsio Radiu Radiu	ection Prop Section To n Height n Width Thickness a Thickness a Thickness a Thickness a Thickness a Thickness a Area Area Area Area Area d Moment nal Consta s of Gyratii s of Gyratii	Perties - VS 300x46 NBR 5884 ppe ss ember t of Area t of Area ant on	h b tw tr r Aw, Aw, Iy Iz J J r y r	I-section roll 300.0 180.0 4.8 12.5 0.0 58.10 7 45.00 14.25 10128.00 1215.00 24.42 132.1 45.7	ed mm mm mm mm cm ² cm ² cm ² cm ⁴ cm ⁴ mm				Cross-section No. Members No.: 3-8,13-18,23-28.4 Sets of members N 2.3 Σ Lengths: 100.38 [m] Material: 1 - Steel CG-26 [A	2 used in 1-46 Io.: Σ Masses: 4.443 KBNT NBR 8800-20
SS-SI Cross- Sectio Sectio Sectio Tange Root I Gross Shear Shear Secor Torsio Radiu Radiu Radiu Elastic	ection Prop Section Ty n Height n Width Thickness a Thickness a Thickness a Thickness a Satist Area Area Area d Moment d Moment nal Consta s of Gyrati s of Gyrati s of Gyrati	VS 300x46 NBR 5884 ype ss ember t of Area on on Mord Mis	h b tw tr Aw Aw Iy ly lz J fy rz ry rz	l-section roll 300.0 180.0 4.8 12.5 0.0 58.10 7 45.00 14.25 10128.00 1215.00 24.42 132.1 45.7 675.00	ed mm mm mm mm cm ² cm ² cm ² cm ⁴ cm ⁴ cm ⁴ cm ⁴ cm ⁴ cm ⁴ cm ³				Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3 Σ Lengths: 100.38 [m] Material: 1 - Steel CG-26 [A	2 used in 146 1.46 1.46 1.46 1.46 1.44 1.44 1.44
Cross Section Section Web Plange Root I Gross Shear Shear Shear Secor Torsio Radiu Radiu Elastion Elastion	ection Prop Section Ty n Height n Width Thickness a Thickness a Th	Perties - VS 300x46 NBR 5884 ype ss ember t of Area t of Area ant on on Modulus Modulus	h b tw tr Ag Aw, J ly lz J J ry ry rz Wy Wy	l-section roll 300.0 180.0 4.8 12.5 0.0 58.10 7 45.00 14.25 10128.00 1215.00 1215.00 24.42 132.1 45.7 675.00 1125.00	ed mm mm mm cm ² cm ² cm ² cm ⁴ cm ⁴ cm ⁴ cm ⁴ cm ³				Cross-section No. Members No.: 3-8,13-18,23-28,4 Sets of members N 2,3 Σ Lengths: 100.38 [m] Material: 1 - Steel CG-26 [A	Σ Image: Constraint of the second seco

Figure 2.8: Window 1.3 Cross-Sections

Cross-Section Description

The cross-sections defined in RFEM or RSTAB are preset with their material numbers.

If you want to modify a cross-section, select the entry in column B. Click the *button* or *in* in the box, or press the function key [F7] to open the cross-section table of the current cross-section type (see Figure 2.9).

3

In this dialog box, you can select a different cross-section. To select a different section category, click [Back to cross-section library] to access the global library of cross-sections.

Chapter 4.13 of the RFEM manual and Chapter 4.3 of the RSTAB manual describe how sections can be selected from the library.

You can directly enter the new cross-section description in the text box. If the entry is listed in the database, RF-/STEEL NBR imports the cross-section parameters.

A modified cross-section will be highlighted in blue.

If the cross-section in RF-/STEEL NBR is different from the one of RFEM or RSTAB, both sections are displayed in the graphic area. The designs will then be performed with the internal forces of RFEM/RSTAB for the section defined in RF-/STEEL NBR.

Thin-Walled Cross-Sections - Sym	metric I-Section	X
Cross-Section Type $\begin{bmatrix} I & I & I & T \\ T & L & U \\ C & I & T & T \\ \hline U & T & T \\ \hline U & T & T \\ \hline U & T & T \\ \hline I & T & T \\ \hline I & I & T \\ \hline I & L & J \\ \hline I & C & C \\ \hline \Sigma & 0 & \nabla & O \\ \hline \hline$	Parameters h: 250.0 ⊕/b [mm] b: 250.0 ⊕/b [mm] s: 12.0 ⊕/b [mm] t: 20.0 ⊕/b [mm] a: 0.0 ⊕/b [mm]	
		IS 250/250/12/20/0
2 🔤 🖹		OK Cancel

Figure 2.9: IS cross-section types in the cross-section library

Cross-Section Type

The program displays the type of cross-section that will be used for the classification according to [1] Clause 5.1.2.1.

Max. Design Ratio

This column is shown only after the calculation. It is useful for the optimization: By means of the design ratios and colored relation scales, you can see which cross-sections are little utilized and thereby oversized, and overloaded and for this reason undersized.

Optimize

Details...

It is possible to optimize every cross-section from the library. The program searches the cross-section that comes as close as possible to a user-defined maximum utilization ratio. You can specify this maximum ratio in the *Details* dialog box (see Figure 3.1, page 19).

To optimize a cross-section, open the drop-down list in column D (resp. E) and select *From current row*. Recommendations on the optimization can be found in Chapter 7.2 on page 41.

Remark

This column shows remarks as footers. They are explained below the cross-section list.

Member with Tapered Cross-Section

For tapered members with different cross-sections at the member start and member ends, the module displays both section numbers in two rows, according to the definition in RFEM or RSTAB.

RF-/STEEL NBR also designs tapered members, provided that the section at the member start has the same number of stress points as the cross-section at the member end. If the two cross-sections have different numbers of stress points, the intermediate values cannot be interpolated. In this case, the calculation is neither possible in RFEM/RSTAB nor in RF-/STEEL NBR.

The stress points including their numbering can be checked graphically: Select the cross-section in Window 1.3 and click the [Info] button. The dialog box shown in Figure 2.10 appears.

Info About Cross-Section

Ð

0

In the *Info About Cross-Section* dialog box, you can check on the cross-section properties, stress points, and c/t-parts.

Info About Cross-Section VS 300x46	NBR 5884				×
Cross-Section Property	Symbol	Value	Unit		VS 300x46 NBR 5884
Depth	d	300.0	mm		
Width	b	180.0	mm		
Web thickness	tw	4.8	mm		
Flange thickness	tf	12.5	mm		+ 180.0
Cross-sectional area	A	58.10	cm ²		+
Shear area	Ay	37.52	cm ²		<u>si</u>
Shear area	Az	13.17	cm ²	Ξ	÷
Shear area according to EC 3	A _{V,Y}	45.04	cm ²		
Shear area according to EC 3	A _{v,z}	13.06	cm ²		
Plastic shear area	A pl,y	45.00	cm ²		
Plastic shear area	A pl,z	13.66	cm ²		00
Moment of inertia	Iy	10128.00	cm ⁴		сл <u>У</u>
Moment of inertia	Iz	1215.00	cm ⁴		
Governing radius of gyration	ry	132.1	mm		4.8
Governing radius of gyration	rz	45.7	mm		
Polar radius of gyration	ro	139.8	mm		
Radius of gyration of flange plus 1/5 of we	rzg	49.2	mm		
Volume	V	5810.00	cm ³ /m		+
Weight	wt	45.6	kg/m		Z
Surface	Asurf	1.311	m²/m		
Section factor	Am/V	225.559	1/m		
Torsional constant	J	24.42	cm ⁴		Imal
Warping constant	Cw	251068.00	cm ⁶		
Elastic section modulus	Sy	675.00	cm ³		III III 🔊 Stress points
Elastic section modulus	Sz	135.00	cm ³		C III C/t-Parts
147	IM .	1040 63	4	Ŧ	
					Close

Figure 2.10: Dialog box Info About Cross-Section

The buttons below the cross-section graphic have the following functions:

Click the solutions find detailed information on the *Stress points* (centroidal distances, statical moments of area, warping constants etc.) or *c/t-Parts*, respectively.

Stres	s Poir	nts of VS 300	x46 NBR 58	84					×
		A	В	С	D	E	F	G	VS 300x46
Stre	essP	Coord	nates	Statical Mom	ents of Area	Thickness	Wan	bing	
N	۱o.	y [mm]	z [mm]	Qy [cm ³]	Q _z [cm ³]	t [mm]	W _{no} [cm ²]	Qw [cm 4]	
	1	-90.0	-150.0	0.00	0.00	12.5	129.38	0.00	
	2	-2.4	-150.0	-156.68	-50.48	12.5	3.41	-727.23	
	3	0.0	-150.0	-160.68	-50.62	12.5	0.00	-727.73	
	4	2.4	-150.0	-156.68	50.48	12.5	-3.41	727.23	1 23 5
	5	90.0	-150.0	0.00	0.00	12.5	-129.38	0.00	
	6	-90.0	150.0	0.00	0.00	12.5	-129.38	0.00	
	7	-2.4	150.0	-156.68	50.48	12.5	-3.41	-727.23	
	8	0.0	150.0	-160.68	50.62	12.5	0.00	-727.73	
	9	2.4	150.0	-156.68	-50.48	12.5	3.41	727.23	13 y
	10	90.0	150.0	0.00	0.00	12.5	129.38	0.00	
	11	0.0	-137.5	-324.11	0.00	4.8	0.00	0.00	
	12	0.0	137.5	-324.11	0.00	4.8	0.00	0.00	
	13	0.0	0.0	-368.34	0.00	4.8	0.00	0.00	6 7 <mark>8 10</mark>
									z
2		1							Close

Figure 2.11: Dialog box Stress Points of VS 300x46

2.4 Intermediate Lateral Restraints

In Window 1.4, you can define lateral restraints for members. In RF-/STEEL NBR, this kind of support acts perpendicular to the z-axis of the cross-section (the minor axis, see Figure 2.10). Thus, you can manipulate the effective lengths of the members for the stability design concerning flexural buckling and lateral-torsional buckling.

Figure 2.12: Window 1.4 Intermediate Lateral Restraints

In the upper table, you can assign up to nine lateral restraints to each member. The *Settings* section below shows a column overview for the member selected above.

To define the restraints of a specific member, select the *Lateral Restraints* check box in column A. Then the other columns will be accessible where you can enter the parameters. To graphically select the member, click 3.

In column C, you can specify the *Number* of the intermediate restraints. Depending on the specification, one or more of the following *Intermediate Lateral Restraints* columns will be available for the definition of the x-locations.

☑ Relatively (0...1) When the *Relatively (0...1)* check box is activated, you can define the support points by their relative spacings. The positions of the intermediate restraints result from the member length and the relative distances from the member start. When you clear the *Relatively (0...1)* check box, you can define the absolute distances.

2.5 Design Parameters

This window controls specific parameters that are relevant for the design according to [1].

L.5 Design	Parameters							
	А	B	С	D			E	
Member	Gross Area	Net Area	Reduction	Effective Area				
No.	Ag [cm ²]	An [cm ²]	Factor Ct [-]	A _e [cm ²]			Comments	
1	58.10	58.10	1.000	58.10				
2	58.10	58.10	1.000	58.10				
3	43.80	43.80	1.000	43.80				
4	58.10	58.10	1.000	58.10				
5	58.10	58.10	1.000	58.10				
6	58.10	58.10	1.000	58.10				
7	58.10	58.10	1.000	58.10				
8	43.80	43.80	1.000	43.80				
11	58.10	58.10	1.000	58.10				
12	706.86	706.86	1.000	706.86				-
								💐 😽 🔇 🔍
Settings -	Member No. 1							VS 300x46 NBR 5884
Cross-	Section			1 - VS	300x46	VBR 5884		
Gross	Area		1	Ag 🛛	58.10	cm ²		
Net An	ea		1	An	58.10	cm ²		
Reduc	tion Factor		0	Ct	1.000			190.0
Effectiv	ve Area		ŀ	Ae	58.10	cm ²		100.0
Comme	ent							+
								12.5
								g
								Y Y
								4.8
								z
C Set ing	put for members N	0.:						[mm]
					3	All		1

Figure 2.13: Window 1.5 Design Parameters

For each member, the *Gross Area* of the section is listed. The values can be modified in the *Net Area* column, e.g. when there are holes in the section. The net area A_n is required for the design of members for tension according [1] Clause 5.2.

The *Reduction Factor* C_t is related to the plastic behavior of the section. It can be specified according to [1] Clause 5.2.5.

In the last column, the *Effective Area* A_e of the cross-section is shown for each member. The values are determined from the data of the two previous columns.

The window consists of two parts. The upper table presents a summary of all length factors of buckling, torsional buckling and lateral-torsional buckling as well as the respective member lengths. The effective lengths defined in RFEM or RSTAB are preset. In the *Settings* section, additional information about the member selected in the upper table is given.

You can make any changes in the upper table as well as in the Settings tree.

Click 🚯 to select a member graphically and show its row.

	А	B	С	D	E	F	G	Ι H		J	K	L	М	N	_
/lember	Buckling	Bu	ckling About	Axis y	Bu	ckling About	Axis z	Tor	sional Buc	kling	L.T	.В.	Modification		
No.	Possible	Possible	Ky	KyLy [m]	Possible	Kz	KzLz [m]	Possible	Kx	K _x L _x [m]	Possible	Lь [m]	Factor C b [-]	Comment	
1	√	•	1.000	6.000	2	1.000		V	1.000		v		1.000		-
2	2	V	1.000	6.000	2	1.000	6.00		1.000	6.000	v	6.000	1.000		
3	2	V	1.000	3.011	V	1.000	3.01	V	1.000	3.011	V	3.011	1.000		
4		•	1.000	3.262	2	1.000	3.26	2 🗹	1.000	3.262	2	3.262	1.000		_
5		V	1.000	6.274	V	1.000	3.13	7 🗹	1.000	3.137	2	3.137	1.000		
6		V	1.000	6.274	<	1.000	6.274	I	1.000	6.274	V	6.274	1.000		
7	V	V	1.000	3.262	☑	1.000	3.26	2 🗹	1.000	3.262		3.262	1.000		
8	V	V	1.000	3.011	\checkmark	1.000	3.01		1.000	3.011	V	3.011	1.000		
11	✓	v	1.000	6.000	✓	1.000	6.00		1.000	6.000	V	6.000	1.000		
12	✓	V	1.000	6.000	✓	1.000	6.00		1.000	6.000	V	6.000	1.000		
Settings -	Member No.	1				1.151		5004				VS 3	300x46 NBR 588	34	
Cross-	Section					1 - VS 3	300x46 NBI	R 5884				_			
Length	1				L		6.000 m					_			
Bucklin	ng Possible	A : D	4.1				<u> </u>					_			
- Bucklir	ng About Maj	or Axis y Po	ossible		V							_	180.0		
Effe	ctive Length	Factor			Ky I		000 m					_		I	
E Bucklin	on About Min	or Avie z Po	reeible		KyLy		0.000 j III						÷.		
Effe	ctive Length	Factor	Jaalule		K-		1 000						12		
El Torsior	hal Buckling F	Possible			112		1.000					-			
Effe	ctive Length	Factor (for	Torsional Bu	cklina)	Kx		1 000					_	0.0		
- Lateral	-Torsional Bu	ckling Pos	sible									_	ж Ж		1
Modific	ation Factor				Сь		1.000 -					_	4.	8	
Comme	ent											_			
														~~~~	
													z		
Set in	put for membe	ers No.:													[r
						<b></b>							l		ſ
						3	V AI							3 <b>1</b>	- H

Figure 2.14: Window 1.6 Effective lengths - Members

The effective lengths for buckling about the minor z-axis and torsional as well as lateral-torsional buckling are aligned automatically with the settings of Window *1.4 Intermediate Lateral Restraints* (see Chapter 2.4). If intermediate lateral restraints divide the member into segments of different lengths, no values are displayed in the table columns G, J, and L.

You can enter the effective lengths manually in the table and in the *Settings* tree, or define them graphically in the work window by clicking the button. The button is active when you place the cursor in the text box (see Figure 2.14).

The Settings tree includes the following parameters:

- Cross-Section
- Length of the member
- Buckling possible for the member (cf. column A)
- Buckling about Major Axis y Possible (cf. columns B to D)
- Buckling about Minor Axis z Possible (cf. columns E to G)
- Torsional Buckling Possible (cf. columns H to J)
- Lateral-Torsional Buckling Possible (cf. columns K and L)
- Modification Factor (cf. column M)

The table controls for which members an analyis of buckling, torsional or lateral-torsional buckling is to be performed. In addition, the *Effective Length Factor* and the *Modification Factor* can be adjusted for the respective designs. If you modify the factor, the equivalent member length is adjusted automatically, and vice versa.

You can also define the effective length of a member in a separate dialog box. To open it, click the separate below the upper table.

Select Effective Length Factor	
Buckling About Axis y	Buckling About Axis z
$\mathbb{R}$ Rigid - free $k_{r,y} = 2.0$ $\mathbb{B}$ Hinged - hinged $k_{r,y} = 1.0$ $\mathbb{R}$ Rigid - hinged $k_{r,y} = 0.2$ $\mathbb{R}$ Rigid - rigid $k_{r,y} = 0.5$ $\mathbb{D}$ User-defined $k_{r,y} =$	Bigid - free         K _{cr,z} = 2.0         Hinged - hinged         K _{cr,z} = 1.0         Rigid - hinged         K _{cr,z} = 0.7         Rigid - rigid         K _{cr,z} = 0.5         Uger-defined         K _{cr,z} =
Import from add-on module RF-STABILITY     (Eigenvalue Analysis)     RF-STABILITY-Case:     CA1 - Stability analysis     The stability analysis	Import from add-on module RF-STABILITY (Eigenvalue Analysis)      RF-STABILITY-Case:      CA1 - Stability analysis
Buckling mode No.:	Buckling mode No.:
Export effective length factor kor,y : 1.000 📩 [-]	Export effective length factor $k_{cr,z}$ : 1.000 $rac{}{\sim}$ [-]
٦	OK Cancel

Figure 2.15: Dialog box Select Effective Length Factor

For each direction, you can select one of the four Euler buckling modes or apply a *User-defined* effective length factor  $k_{cr}$ . If an eigenvalue analysis has been performed in the RF-STABILITY or RSBUCK add-on module, you can import the *Buckling mode* in order to determine the factor.

#### **Buckling Possible**

The stability analysis for flexural and lateral-torsional buckling requires compressive forces to be included. Members for which this is not possible due to their member types (tension members, elastic foundations, rigid couplings) are disabled by default. The corresponding rows are dimmed, and a note appears in the *Comment* column.

The *Buckling possible* check boxes in table row A and in the *Settings* tree allow you to control the stability analyses: They determine whether the analyses for a member are to be performed or not.

#### Buckling About Axis y / Buckling about Axis z

The *Possible* columns control whether there is a buckling risk about the y-axis and/or z-axis. Those axes represent the local member axes, where the y-axis is the "major" and the z-axis is the "minor" member axis. You can freely define the effective length factors K_y and K_z for buckling about the major or the minor axis.

٩

You can check the position of the member axes in the cross-section graphic in the *1.3 Cross-Sections* Window (see Figure 2.8, page 9). To access the RFEM or RSTAB work window, click the [View Mode] button. There you can display the local member axes by using the shortcut menu of the member or the *Display* navigator (see Figure 2.16).



Figure 2.16: Displaying member axes in Display navigator of RFEM

If buckling is possible about one or both member axes, you can enter either the effective length factors (columns C and F) or the effective lengths (columns D and G). The same is possible in the *Settings* tree.

When specifying the effective length factor *K*, the program determines the effective length *KL* by multiplying the member length *L* by the effective length factor. The *K* and *KL* boxes are interactive.

#### **Torsional Buckling**

Column H controls whether a torsional buckling design is to be performed. The effective length factors,  $K_x$ , and the torsional buckling lengths,  $K_x L_x$ , can be defined in columns I and J. The *x*-axis represents the center line of a member.



Figure 2.17: Member axes

#### L.T.B.

Column K controls whether a lateral-torsional buckling analysis is to be carried out. The lateral-torsional buckling lengths  $L_b$  can be defined in column L.

#### **Modification Factor**

In column M, the modification factor  $C_b$  for bending according to [1] Clauses 5.4.2.3 or 5.4.2.4 can be defined for each member.

#### Comment

In the last column, you can enter your own comments for each member, for example to describe the selected buckling lengths.

#### Set Input for Members No.

Below the *Settings* table, you find the *Set input for members No.* check box. If you select this check box, the <u>subsequent</u> settings will be applied to the selected members or *All* members (you can enter the member numbers manually or select them graphically with the button). This option is useful when you want to assign identical boundary conditions to several members (see https://www.dlubal.com/en/support-and-learning/support/knowledge-base/000726).



With this function, you cannot change the settings you have already made.

#### 2.7 Effective Lengths - Sets of Members

This window controls the effective lengths for sets of members. It is only displayed when you have selected one or more sets of members for design in the *1.1 General Data* Window (see Figure 2.2, page 5).

		г в г				- I		H			K		м	I N	
Set	Buckling	Buc	ckling About	Axis y	Buc	kling About	Axis z	Tors	ional Bud	kling	L.T	.B.	Modification		_
No.	Possible	Possible	Ky	KyLy [m]	Possible	Kz	KzLz [m]	Possible	Kx	K _x L _x [m]	Possible	Lь [m]	Factor C b [-]	Commer	nt
1	√)	•	1.000	6.000	<b>v</b>	1.000	6.00		1.000	6.000	<b>V</b>	6.000	1.000		_
2	2		0.500	6.274	2	0.500	6.274		1.000	12.548	2	12.548	1.000		
3	2	- -	1.000	12.548	2	0.500	6.274		1.000	12.548	- -	12.548	1.000		
4	-	- -	1.000	6.546	2	1.000	6.54		1.000	6.546	-	6.546	1.000		
5		- -	1.000	7.094	2	1.000	7.094		1.000	7.094	- -	7.094	1.000		_
															-
														<b>B</b>	
ettings -	- Set of Memb	ers No. 3										VS 4	400x34   NBR 588	34	
Set of	Members											<b>^</b>			
🗆 Men	nber 41														
S	tart					3 - VS 4	400x34   NBI	R 5884							
- E	nd					2 - VS :	300x46   NBI	R 5884					, 160.0		
Men	nber 42 - Cros	s-Section			_	2 - VS 3	300x46   NBI	R 5884						1	
Men	nber 43 - Cros	s-Section				2 - VS 300x46   NBR 5884							t <del>sta</del>		
Length	1				L		12.548 m						εċ		
Bucklin	ng Possible						<u> </u>								
- Bucklin	ng About Maje	or Axis y Po	ssible			_	<b>U</b>					=	9		
Effe	ctive Length	Factor			Ky		1.000						400		•
Effe	ctive Length				KyLy		12.548 m							•	
Bucklin	ng About Mine	or Axis z Po	ssible				<b>U</b>							<u> </u>	
Effe	ctive Length	Factor			Kz		0.500								
Effe	ctive Length				KzLz		6.274 j m						+		
- I orsion	nal Buckling F	ossible		1.6	14		<b>U</b>						÷		
Effe	ctive Length	Factor (for	Torsional Bu	ckling)	Kx		1.000						z		
Effe	ctive Length	(for Torsion	al Buckling)		K _x L _x		12.548 m								
_ Latera	I-Torsional Bu	ckling Poss	sible				<b>V</b>								
LTB	Length				Lb		12.548 m					-			
Set in	put for sets N	0.:													[m
_													-		-

Figure 2.18: Window 1.7 Effective Lengths - Sets of Members

The concept of the window is similar to the previous *1.6 Effective Lengths - Members* Window. Here you can define the effective lengths for buckling, torsional buckling and lateral-torsional buckling for sets of members, as described in Chapter 2.6.

#### 2.8 Serviceability Data

The last input window controls the settings for the serviceability limit state design of specific objects. It is available when you have selected one or more load cases or combinations in the Serviceability Limit State tab of Window 1.1 (see Chapter 2.1.2, page 6).

8 Servic	eability Data							
	A	В	C	D	E	F	G	Н
		Member	Referer	nce Length	Direc-	Precamber		
No.	Reference to	No.	Manually	L [m]	tion	w _{o, v} [mm]	Beam Type	Comment
1	Set of Members	2		12.548	y, z	0.0	Beam	
2	Set of Members	5		7.094	y, z	0.0	Beam	
3	Member	82		7.094	y, z	0.0	Beam	
4	Member	81	<b>V</b>	4.546	y, z	0.0	Cantilever End Free	
5	Member	83	<b>V</b>	4.546	y, z	0.0	Cantilever End Free	
6	Member	15		6.274	y, z	0.0	Beam	
7	Member	16		6.274	y/u, z/v	0.0	Beam	
8	Member	25		6.274	y/u, z/v	0.0	Beam	
9	Member	26		6.274	y/u, z/v	0.0	Beam	
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
								<b>(</b>

Figure 2.19: Window 1.8 Serviceability Data



In Column A, you define whether the deformation refers to single members, lists of members, or sets of members.

For a list or set of members, the orientation and rotation of all contained members must be identical. This will guarantee that the components of the deformation are taken into account correctly.

In column B, you can specify the numbers of the members or sets of members that are to be analyzed. The 🔜 button enables you to select the objects graphically in the work window. In column D, the Reference Length of each object is shown. The geometrical lengths of the members, lists or sets of members are set by default. If necessary, you can adjust those values after having selected the Manually check box in column C.



Column E controls the governing Direction for the deformation analysis. You can select the directions of the local member axes y and z (or u and v for unsymmetrical cross-sections). You can consider a *Precamber* w_c in column F, if applicable. The reference to the axes is controlled



Beam Type Beam Cantilever Start Free Cantilever End Free Details...

by the specification in the *Details* dialog box (see Figure 3.1, page 19). The Beam Type is important for the correct reference to the limit deformations. In column G, you

can specify whether a beam or a cantilever is to be analyzed. For the latter, you can define which end has no support.

The Details dialog box controls whether the deformations are related to the undeformed system or the shifted ends of the members or sets of members (see Figure 3.1, page 19).

## **3** Calculation

#### 3.1 Detail Settings

Details...

Before you start the calculation, it is recommended to check the design details. You can access the corresponding dialog box in all windows of the add-on module by clicking [Details].

Details		×
Coefficients of Resistance, Tab. 3	Limit Values for Special Cases	Display Result Windows
Yielding, buckling and instability ya1 1.100	Do not consider small moments if:	2.1 Design by Load Case
Rupture ya2 1.350 🚔	Bending M _{y,Sd} / M _{y,Rd} ≤ 0.010 🚔	2.2 Design by Cross-Section
	Mz,Sd / Mz,Rd ≤ 0.010 🚔	2.3 Design by Set of Members
		2.4 Design by Member
Check of Maximum Effective Slenderness Ratio	Do not consider small axial forces if:	2.5 Design by x-Location
Members with KL / r	Tension $N_{t,Sd} / N_{t,Rd} \le 0.010$	☑ 3.1 Governing Internal Forces by Member
- Tension: 300 👻	Compression Nc,Sd / Nc,Rd ≤ 0.010 🚔	✓ 3.2 Governing Internal Forces by Set of Members
- Compression / flexure: 200 🚔		3.3 Member Slendernesses
Display slenderness check for all member types	Do not consider small shear forces if:	
	Shear V _{y,Sd} / V _{y,Rd} ≤ 0.010 🚔	✓ 4.1 Parts List by Member
Serviceability (Deflections)	V _{z,Sd} / V _{z,Rd} ≤ 0.010 🚔	✓ 4.2 Parts List by Set of Members
Limiting deflection: L / 360 🚔 Lc / 180 🚔	Contractions for some southers with	Only for members / sets to be designed
	Limit shear stress for cross-sections with:	Of all members / sets of members
Deformation relative to:	Torsion tSd/tRd ≤ 0.010 ₩	
Shifted member ends / set of members ends	Crean Continuation	
Undeformed system		
	Max allowable design ratio: 1.000 👻	
	Direction of Broosmber	
	Consider another in suit	
	Consider precamber in axis	
	© Z/V	
	© y/u	
		OK Cancel

Figure 3.1: Dialog box Details

#### **Coefficients of Resistance**

The factors of the material resistance are preset according to [1] Table 3 regarding yielding, buckling, instability ( $\gamma_{a1}$ ) and rupture ( $\gamma_{a2}$ ). If required, those coefficients can be adjusted.

#### **Check of Maximum Effective Slenderness Ratio**

According to [1] Clause 5.2.8, the slenderness ratio *KL* / *r* preferably should not exceed 300 for tension members. For members with compression or flexure, the slenderness ratio should not exceed 200 (cf. [1] Clause 5.3.4). If required, the limit ratios can be adjusted.

By default, the slenderness ratios are not checked for specific member types, such as "Tension" and "Cable" members. It is possible, however, to activate the check for all member types.

The limit ratios are compared to the real member slendernesses in Window 3.3. That window is available after the calculation (see Chapter 4.8, page 28) when the corresponding option has been checked in the *Display Result Windows* section of the *Details* dialog box.

#### Serviceability (Deflections)

For the SLS design, the limiting deflections can be separately defined for beams (default: L/360) and cantilevers (default: L/180). Annex C of the Standard [1] gives recommendations on the maximum values for deflections.

The options below specify whether the deformations are related to the shifted member ends or set of members ends (line between start and end nodes of deformed model) or to the undeformed original system. The difference is illustrated by an example in the *Knowledge Base* at our Web site: https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001081

#### **Limit Values for Special Cases**

For a simplified design, it is possible to neglect small bending moments, axial or shear forces as well as shear stresses due to torsion. The limit ratios of the moments, forces or stresses can be entered in this section of the dialog box.



Those limit settings are <u>not</u> part of the Standard [1]. Changing the limits is in the responsibility of the user.

#### **Cross-Section Optimization**

By default, the optimization is targeted on the maximum design ratio of 100 %. If required, you can change the limit value in this text box.

#### **Direction of Precamber**

When you specify two directions in column E of the 1.8 *Serviceability Data* Window and apply a precamber in column F, you can determine for which direction the precamber is to be considered.

#### **Display Result Windows**

In this dialog section, you can select which result windows including parts list are to be displayed in the output. Those windows are described in Chapter 4.

Window 3.3 Member Slendernesses is deactivated by default.

#### 3.2 Starting Calculation

Calculation

In all input windows of RF-/STEEL NBR, you can start the design via the [Calculation] button.

The add-on module searches for the results of the load cases, load and result combinations that are to be designed. If they are not available yet, RF-/STEEL NBR starts the calculation in RFEM or RSTAB to determine the relevant internal forces.

You can follow the process of the design in a separate dialog box.

## **4 Results**

Window 2.1 Design by Load Case appears immediately after the calculation.

RE-STEEL NBR - [Hall]														X
File Edit Settings Help														
The care bearings help														
CA1 - Design of steel members 👻	2.1 Desigi	n by Load Case												
Input Data		A	В	С	D	E				F				G
General Data	Load-		Member	Location	Design									
Materials	ing	Description	No.	x [m]	Ratio				Desig	n According to	Formula			DS
Cross-Sections		Ultimate Limit State Design												
Design Deservations	CO3	1.35*LC1 + LC8 + LC9 + LC1	68	3.125	0.91	≤1	341) Combined	forces ac	c. to 5.5.1					
Effective Lengths Members	CO9	1.35*LC1 + 1.5*LC2 + LC8 +	22	6.000	1.00	) ≤1	112) Bending at	oout y-axi	s, LTB, sem	i compact type				
Effective Lengths - Nembers	C013	1.35*LC1 + 1.5*LC2 + LC9 +	22	6.000	1.00	1 2 1	112) Bending at	oout y-axi	s, LIB, sem	i compact type				
Serviceability Data														
Results	DCD	Serviceability Limit State Desig	n	0.500		21	(01) Dealers fee			Arren C. Defle	a stille a la se dise	ation (Dama	<b>`</b>	
Design by Load Case	RC2	SLS - Quasi-permanent	99	2.500	0.84	1 2 1	401) Design for	serviceat	plinty acc. to	Annex C - Den	ection in z-dire	ction (beam	)	
Design by Cross-Section														
Design by Set of Members														
Design by Member									-	-				
···· Design by x-Location				Max:	1.00	≤1	۲	9	₽.	5	> 1,0	- 7	2 🍕 🕅	3 🔍
Governing Internal Forces by №														
···· Governing Internal Forces by S	Details -	Member 68 - x: 3.125 m - CO3									9 - VS 40	0x37   NBR	5884	
Member Slendernesses		ial Properties - Steel G-30   ABN	T NBR 88	00:2008										
Parts List by Member	Cross-	-Section Properties - VS 400x3	7   NBR 58	84										
· Parts List by Set of Members	E Desig	n Internal Forces			N		70.50	1.51						
	- Ax02	al Force			IN Sd		/9.59	KIN			- 1	180.0	<u>,</u>	
	She	sar Force			Vy V		0.01	KIN IzN				Ι.	T	
	Tor	sional Moment			Ter		0.00	kNm	_		- 1	2	1 N N N N	
	Flee	rural Moment			Mu		72.52	k Nm			-	~		
	Flex	kural Moment			Mz		0.00	kNm			-			
	FT Cross	Section Type									- 9			
	Design	n Ratio									- 4			Y
	- Axia	al Force			NSd		79.59	kN				4	.8	
	- Axia	al Resistance			NRd		1281.82	kN						
	Rat	tioNsd / NRd			n		0.062		≤ 0.2					
	- Mor	ment			My,s	d	72.52	kNm						
	- Mor	ment Resistance			My,F	td 🛛	82.37	kNm		Annex G		2		
	Rat	tio My,sd / My,Rd			my		0.880				_			
	Des	sign Ratio			η		0.91		≤1	5.5.1.2 b)	_			
									_		-			
									_		-			[mm]
													X	- M
<														
	Calculat	ion Details				nobice						OK		ancel
	Calculat	Detalls			G	apriles	,							pricer
Design Internal Forces														

Figure 4.1: Result window with design results and details

The designs results are shown in Windows 2.1 to 2.5, sorted by different criteria.

Windows 3.1 and 3.2 list the governing internal forces, Window 3.3 gives information on the member slendernesses. The last two Windows 4.1 and 4.2 show the parts lists by member and set of members.



Every window can be selected by clicking the corresponding entry in the navigator. To set the previous or next input window, use the buttons shown on the left. You can also use the function keys to select the next [F2] or previous [F3] window.



[OK] saves the results. RF-/STEEL NBR is closed and you return to the main program.

Chapter 4 describes the different result windows one by one. The evaluation and checking of the results is described in Chapter 5 starting on page 31.





The upper part provides a summary of the results, sorted by load case, load and result combinations of the governing designs. Furthermore, the list is split into *Ultimate Limit State Design* and *Serviceability Limit State Design* results.

Δ

The *Details* section below includes specific information on the cross-section properties, internal forces, and design parameters for the load case or combination selected in the upper table.



Figure 4.2: Window 2.1 Design by Load Case

#### Description

This column shows the descriptions of each designed load case, load or result combination.

#### Member No.

In this column, the number of each member is given that has the maximum design ratio of the respective loading.

#### Location **x**

The column shows the x-location of each member where the maximum design ratio occurs. For the tabular output, the program uses the following member locations *x*:

- Start and end nodes
- Division points according to optionally defined member divisions (see RFEM Table 1.16 or RSTAB Table 1.6)
- Member divisions according to specification for member results (see RFEM/RSTAB dialog box *Calculation Parameters*, tab *Global Calculation Parameters*)
- Extreme values of internal forces

#### **Design Ratio**

Max: 0.98 ≤1 🥹

Columns D and E show the design conditions according to [1].

The lengths of colored bars represent the respective design ratios.

#### **Design According to Formula**

This column lists the references of the Standard [1] according to which the different types of design have been performed.

#### DS

The last column provides information on the respective design situations.

## 4.2 Design by Cross-Section

2.2 Design	by Cross	-Section											
	A	В	С	D	F					F			
Section	Member	Location	Load-	Design									
No.	No.	x [m]	ing	Ratio				Des	ign Accor	ding to Formula			
1	VS 550x8	8 I NBR 588	4	1					-	-			
	31	0.000	CO13	0.07	≤1	102) Compression w	ithout buckling a	acc. to 5.3.	2				
	22	6.000	CO9	0.74	≤1	110) Bending about	y-axis acc. to 5.	4.2.2					
	22	6.000	CO9	0.93	≤1	112) Bending about	y-axis, LTB, sen	ni compact	type				
	22	6.000	CO9	0.74	≤1	114) Bending about	y-axis, LFB, con	pact type					
	22	6.000	CO9	0.74	≤1	117) Bending about	y-axis, LWB, co	mpact type					
	22	6.000	CO13	0.01	≤1	130) Bending about	z-axis acc. to 5	4.2.2					
	22	6.000	CO13	0.01	≤1	134) Bending about	z-axis, LFB, con	npact type					
	32	0.750	CO13	0.43	≤1	171) Shear in z-axis	acc. to 5.4.3						
	22	6.000	CO9	0.05	≤1	201) Torsion - Open	ed cross-section	s					-
			Max:	0.99	≤1	۲		9	2	🗈 🗐	> 1,0	- 🤊 💕 🛐 🕻	3
Details - I Materia Cross-	Image:												
- Axia	I Force					Nsd	-131.73	kN					
She	ar Force					Vy	0.25	kN				200.0	
- She	ar Force					Vz	129.57	kN				-	
Tors	sional Morr	nent				Tsd	-0.32	kNm				16.0	
Flex	ural Mome	nt				My	439.48	kNm					
- Flex	ural Mome	nt				Mz	-1.15	kNm					
Eross-	Section Ty	pe									20.0		·•
Design	n Ratio												Y
- Mor	nent					My,Sd	439.48	kNm				6.3	
Yiel	d Stress					fy	255.00	MPa					
Res	idual Com	pression in Fl	anges			σr	76.50	MPa		Tab. G1 5)			
Elas	tic Section	n Modulus				Wy	2340.00	cm ³				÷	
Ben	ding Mom	ent Correspo	nding to the	Start of Yielding		M _{y,r}	417.69	kNm		Tab. G1		z	
- Moo	dification F	actor				Сь	1.000			5.4.2.3			
- Plas	tic Bendin	g Moment				M _{pl,y}	652.45	kNm					
- Coe	fficient of	Resistance				γa1	1.100			Tab. 3			
- Mor	nent Resis	tance				M _{y,Rd}	470.45	kNm		Annex G			[mm]
Des	ign Ratio					ηιтв	0.93		≤1	5.4.1.3	0	s i	
<u> </u>							-		-				

Figure 4.3: Window 2.2 Design by Cross-Section

This window lists the maximum ratios of all members and loadings selected for design, sorted by cross-section. For each section, the results are given for cross-section design, stability analysis, and serviceability limit state design.

If there is a tapered member, the cross-sections of the member start and end are listed separately.

## 4.3 Design by Set of Members

Desigr	n by Set of	Members														
	A	B	С	D	E					F						
Set	Member	Location	Load-	Design												
No.	No.	x [m]	ing	Ratio					Design Acc	ording to Form	ula					
2	Set 2 (Me	mber No. 13	-15)													
	14	0.000	CO13	0.05	≤1	102) Compression	without buckli	ng acc. to	5.3.2							
	15	6.274	CO13	0.73	≤1	110) Bending abou	ut y-axis acc. t	o 5.4.2.2								Ξ
	13	0.000	CO13	0.99	≤1	112) Bending about	ut y-axis, LTB,	semi com	pact type							
	13	0.000	CO13	0.73	≤1	114) Bending abou	ut y-axis, LFB,	compact	type							
	15	6.274	CO13	0.70	≤1	115) Bending abou	ut y-axis, LFB,	semi com	pact type							
	13	0.000	CO13	0.73	≤1	117) Bending abou	ut y-axis, LWB	, compact	t type							
	15	0.000	CO9	0.06	≤1	130) Bending abou	ut z-axis acc. t	o 5.4.2.2								
	13	2.008	CO9	0.02	≤1	134) Bending abou	ut z-axis, LFB,	compact	type							
	15	0.000	CO9	0.04	≤1	135) Bending abou	ut z-axis, LFB,	semi com	pact type							-
			Max:	0.99	≤1	۹		٩	1 🔍	<b>3</b>	F)	> 1,0	•	7 😂	<b>B</b>	>
etails -	Member 15	- x: 6 274 n	- 0013									2 . VS 6	00v61	I NBR 588	84	_
- Tr	ickness					tw	63	mm				2-000	000001	THDIA DOG	-	
Lir	nith/t					(b/t)lim	41 728			Tab E1						
b/	t ratio					(b/t)	76.349		> (b/t) lin							
Par	ameters of	Table G 1				(0.14)			a (ar chin							
— Ulti	mate Limit S	State LTB											+	250.0	+	
La	teral torsion	nal buckling	enath			Lb	6.274	m					<u> </u>			
Ra	adius of Gvi	ration				[7	56.4	mm					9.5		-	
- SI	endemess i	parameter co	rresponding	a to plastification l	ТВ	λο	49,290			Tab. G.1				' I -		
- SI	endemess	parameter co	rresponding	a to vielding LTB		λr	131.376			Tab. G.1						
- SI	endemess	parameter LT	в			λ	111.233		≤λr			0.0				
— Ültii	mate Limit	State LFB										-			7	1
— - Ha	alf of Full Fl	ange Width				b	125.0	mm			E			6.3		
Tr	nickness	-				tr	9.5	mm								
- SI	endemess	parameter co	rresponding	g to plastification l	FB	λρ	10.642			Tab. G.1			––		-	
- SI	endemess	parameter co	rresponding	g to yielding LFB		λr	27.783			Tab. G.1				1		
- SI	endemess	parameter LF	B			λ	13.158		≤λr					z		
— Ulti	mate Limit S	State LWB														
— - He	eight of We	b				h	481.0	mm								
Tr	ickness					tw	6.3	mm								
SI	- Slendemess parameter corresponding to plastification LWB				λρ	105.301			Tab. G.1					Im		
SI	- Slendemess parameter corresponding to yielding LWB				λr	159.632			Tab. G.1					[m	mi	
- 9	Slendemess parameter LWB					λ	76.349		≤λp		+	0			🔺 🚰 🖸	X

Figure 4.4: Window 2.3 Design by Set of Members

This result window is displayed when you have selected at least one set of members for the design. It lists the maximum design ratios sorted by set of members.

The *Member No.* column shows the number of the member within the set which has the maximum ratio with respect to the specific design criterion.

The output by set of members clearly presents the design for an entire structural group, e.g. a frame.

.4 Desigr	n by Membe	r											
	A	В	С	D	[				E				
Member	Location	Load-	Design										
No.	x [m]	ing	Ratio					Design <i>i</i>	According	to Formula			
99	Cross-section	n No. 12 -	TO 80/80/4.5/4	.5/4.5	/4.5								
	5.000	CO9	0.02	2 ≤1	102) Compress	sion without buck	ling acc. to 5.3	.2					
	5.000	CO13	0.72	! ≤1	110) Bending a	about y-axis acc.	to 5.4.2.2						
	5.000	CO13	0.72	2 ≤1	112) Bending a	about y-axis, LTB	, semi compact	type					
	5.000	CO13	0.72	! ≤1	114) Bending a	about y-axis, LFB	compact type						
	5.000	CO13	0.72	2 ≤ 1	117) Bending a	about y-axis, LWE	<ol><li>compact type</li></ol>	в					
	5.000	CO9	0.2	5 ≤1	130) Bending a	about z-axis acc.	to 5.4.2.2						
	5.000	CO9	0.25	5 ≤1	134) Bending a	about z-axis, LFB	compact type						
	5.000	CO9	0.25	5 ≤1	137) Bending	about z-axis, LWE	8, compact type	e					
	0.000	CO9	0.03	8 ≤1	1/1) Shear in :	z-axis acc. to 5.4.	3						~
		Max:	0.99	≤1	۲			<b>%</b>	<b>e</b> -	<b>:</b>	> 1,0	- 7 😂 💐	3
Details - I	Member 99 - : al Properties - Section Properties - Internal Ford	x: 5.000 m Steel CG- erties - TC	- CO13 26   ABNT NBR 2 80/80/4.5/4.5/	8800:2 4.5/4	2008 5						12 - TO	80/80/4.5/4.5/4.5/4.5	
Axia	Force					Nsa	-5.22	kN					
She	ar Force					Vv	0.84	kN				80.0	+
She	ar Force					Vz	1.11	kN				4.5	4.5
- Tors	sional Momen	t				Tsd	0.15	kNm				II I	[ .
- Flex	ural Moment					My	6.43	kNm			- int		
- Flex	ural Moment					Mz	-2.24	kNm			4		40.0
Cross-	Section Type										9		
Design	n Ratio										8		Y
- Mor	nent					M _{y,Sd}	6.43	kNm					
- Sec	tion Modulus					Wy	38.52	cm ³					
Yiel	d Stress					fy	255.00	MPa			4.5		
Coe	fficient of Re	sistance				7a1	1.100			Tab. 3	I '	40.0	
- Mor	nent Resistar	ice				My,Rd	8.93	kNm		5.4.2.2		40.0	
- Des	ign Ratio					η	0.72		≤1	5.4.1.3			
													[mm]
											0	X	F 🕅

Figure 4.5: Window 2.4 Design by Member

This result window lists the maximum ratios of the individual designs for each member. The columns are described Chapter 4.1 on page 22.

## 4.5 Design by x-Location

2.5 Design	.5 Design by x-Location												
	A	В	C	D	(				F				
Member	Location	Load-	Design										
No.	x [m]	ing	Ratio					De	sign Accordin	ng to Formula			
	3.429	CO9	0.09	≤1	321) Torsiona	al buckling acc.	to 5.3.2						
	4.286	CO9	0.05	≤1	102) Compre	ssion without bu	ickling acc. to	5.3.2					
	4.286	CO9	0.36	≤1	110) Bending	about y-axis ac	c. to 5.4.2.2						
	4.286	CO9	0.45	≤1	112) Bending	about y-axis, L	TB, semi comp	act type	)				
	4.286	CO9	0.36	≤1	114) Bending	) about y-axis, L	FB, compact t	ype					
	4.286	CO9	0.36	≤1	117) Bending	) about y-axis, L	WB, compact	type					
	4.286	CO9	0.01	≤1	130) Bending	about z-axis ac	c. to 5.4.2.2						
	4.286	CO9	0.01	≤1	134) Bending	) about z-axis, L	FB, compact t	ype					
	4.286	CO9	0.33	≤1	171) Shear in	z-axis acc. to 5	5.4.3						
	4.286	CO9	0.04	≤1	201) Torsion	- Opened cross	sections						-
		Max:	0.99	≤1	۲			[	Y 🏝	<b>3</b>	1	> 1,0 🔹 🦞 🛃 👌	\$ <b>@</b>
Detella 1													
Details - I	Member 22 - 3	C 4.286 M	- 009			-	<b>CO O</b>					1 - VS 550x88   NBR 5884	
- Na	idius or Gyrati	on amotor oor	manandina ta ala	ntifican	tion I TP	Tz 1	10 200	mm		Tab. G 1			
- Sie	andemess par	ameter co	responding to pia:	dina l		Ap	125.099			Tab. G.1			
- Sle	endemess par	ameter I T	R	ungi		2	98.618		< 2 .	1ab. G. 1			
Ultin	nate Limit Sta	te I FB	0			~	00.010					250.0	
- Ha	of Full Fland	e Width				b	125.0	mm				+	
- Th	ickness					tr	16.0	mm				99	
Sle	endemess par	ameter co	responding to pla:	stifica	tion LFB	λρ	10.642			Tab. G.1		-	
Sle	endemess par	ameter co	responding to yiel	ding l	LFB	λr	27.783			Tab. G.1			
Sle	enderness par	ameter LFI	В			λ	7.812		≤λp		1	200	
Ultin	nate Limit Sta	te LWB										6	У
He	ight of Web					h	518.0	mm				6.3	
- • Th	ickness					tw	6.3	mm					
Sle	endemess par	ameter co	rresponding to pla	stifica	tion LWB	λρ	105.301			Tab. G.1			
Sle	endemess par	ameter co	rresponding to yiel	ding l	LWB	λr	159.632			Tab. G.1			
Sle	enderness par	ameter LV	/B			λ	82.222		≤λp		=	Z	
Design	n Ratio				ata :=			1					
Mon	nent					My,Sd	213.17	kNm					
- Plas	tic Bending N	Ioment				Mpl,y	652.45	ĸNm		<b>T</b> 1 0			
- Coe	fricient of Res	sistance				Ya1	1.100	1.81		Tab. 3			[mm]
Mon	nent Hesistan	се				My,Rd	593.13	ĸNm		Annex G			<b>→</b>
- Des	ign Katio					ηlwb	0.36		51	5.4.1.3			

Figure 4.6: Window 2.5 Design by x-Location

4



- Start and end nodes
- Division points according to optionally defined member division (see RFEM Table 1.16 or RSTAB Table 1.6)
- Member divisions according to specification for member results (see RFEM/RSTAB dialog box Calculation Parameters, tab Global Calculation Parameters)
- Extreme values of internal forces

#### 4.6 Governing Internal Forces by Member

	A	B	C	D	E	F	G	Н	
ember	Location	Load-		Forces [kN]		M	oments [kNm]		
No.	x [m]	ing	N	Vy	Vz	MT	My	Mz	Design According to Formula
1	Cross-section	No. 1 - VS	550x88   NBR	5884					
	0.000	CO13	-126.61	0.14	-56.11	0.00	134.02	0.48	102) Compression without buckling acc. to 5.3.2
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	110) Bending about y-axis acc. to 5.4.2.2
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	112) Bending about y-axis, LTB, semi compact type
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	114) Bending about y-axis, LFB, compact type
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	117) Bending about y-axis, LWB, compact type
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	130) Bending about z-axis acc. to 5.4.2.2
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	134) Bending about z-axis, LFB, compact type
	1.714	CO13	-106.40	0.17	-56.88	0.00	37.27	0.21	171) Shear in z-axis acc. to 5.4.3
	6.000	CO9	-57.76	0.58	-55.17	0.03	-202.88	-0.46	201) Torsion - Opened cross-sections
	0.000	CO13	-126.61	0.14	-56.11	0.00	134.02	0.48	302) Flexural buckling about z-axis acc. to 5.3.2
	0.000	CO13	-126.61	0.14	-56.11	0.00	134.02	0.48	321) Torsional buckling acc. to 5.3.2
	6.000	CO13	-57.90	0.15	-55.50	-0.01	-204.33	-0.51	341) Combined forces acc. to 5.5.1
2	Cross-section	No. 1 - VS	550x88   NBR	5884					
	0.000	CO9	-127.76	-0.08	60.82	-0.01	-153.48	-0.77	102) Compression without buckling acc. to 5.3.2
	6.000	CO9	-59.00	0.14	59.82	-0.21	213.99	0.77	110) Bending about y-axis acc. to 5.4.2.2
	6.000	CO9	-59.00	-0.33	60.29	-0.21	213.99	0.77	112) Bending about y-axis, LTB, semi compact type
	6.000	CO9	-59.00	0.14	59.82	-0.21	213.99	0.77	114) Bending about y-axis, LFB, compact type
	6.000	CO9	-59.00	0.14	59.82	-0.21	213.99	0.77	117) Bending about y-axis, LWB, compact type
	6.000	CO9	-59.00	0.14	59.82	-0.21	213.99	0.77	130) Bending about z-axis acc. to 5.4.2.2
	6.000	CO9	-59.00	0.14	59.82	-0.21	213.99	0.77	134) Bending about z-axis, LFB, compact type
	2.571	CO9	-97.47	-0.23	61.75	-0.10	4.29	-0.18	171) Shear in z-axis acc. to 5.4.3
	6.000	CO9	-59.00	0.14	59.82	-0.21	213.99	0.77	201) Torsion - Opened cross-sections
	0.000	CO9	-127.76	-0.08	60.82	-0.01	-153.48	-0.77	301) Flexural buckling about y-axis acc. to 5.3.2
	0.000	CO9	-127.76	-0.08	60.82	-0.01	-153.48	-0.77	302) Flexural buckling about z-axis acc. to 5.3.2
	0.000	CO9	-127.76	-0.08	60.82	-0.01	-153.48	-0.77	321) Torsional buckling acc. to 5.3.2
	0.000	CO3	-91.09	0.02	22.26	0.00	-56.28	-0.09	341) Combined forces acc. to 5.5.1
11	Cross-section	No. 1 - VS	550x88   NBR	5884					
	0.000	CO13	-152.64	0.06	-91.91	0.00	194.72	0.33	102) Compression without buckling acc. to 5.3.2
	6.000	CO13	-92.86	0.16	-89.66	-0.07	-357.78	-0.52	110) Bending about y-axis acc. to 5.4.2.2
	6.000	CO13	-92.86	0.16	-89.66	-0.07	-357.78	-0.52	112) Bending about y-axis, LTB, semi compact type
	6.000	CO13	-92.86	0.16	-89.66	-0.07	-357.78	-0.52	114) Bending about y-axis, LFB, compact type

Figure 4.7: Window 3.1 Governing Internal Forces by Member

For all designed members, the internal forces are listed that effectuate the maximum ratios of each type of design.

#### Location **x**

This column shows the x-locations where the maximum design ratios occur.

#### Loading

This column displays the numbers of the load case, load or result combination whose internal forces result in the maximum design ratios.

#### **Forces / Moments**

For each member, these columns present the axial and shear forces as well as the torsional and bending moments which give the maximum ratios in the respective cross-section designs, stability analyses, and serviceability limit state designs.

#### **Design According to Formula**

The final column informs you about the design types and equations by which the designs have been performed according to the Standard [1].

## 4.7 Governing Internal Forces by Set of Members

	A	В	C	D	E	F	G	Н	
Set	Location	Load-		Forces [kN]		Ň	oments [kNm	]	
No.	x [m]	ing	N	Vy	Vz	MT	My	Mz	Design According to Formula
1	Set 1 (Membe	er No. 51,5	2)						
	0.000	CO13	-136.26	-0.04	0.27	-0.02	-0.45	1.06	102) Compression without buckling acc. to 5.3.2
	0.000	CO9	-136.25	-0.70	2.19	-0.02	-8.36	-0.71	110) Bending about y-axis acc. to 5.4.2.2
	0.000	CO9	-136.25	-0.70	2.19	-0.02	-8.36	-0.71	112) Bending about y-axis, LTB, semi compact type
	0.000	CO9	-136.25	-0.70	2.19	-0.02	-8.36	-0.71	114) Bending about y-axis, LFB, compact type
	0.000	CO9	-136.25	-0.70	2.19	-0.02	-8.36	-0.71	117) Bending about y-axis, LWB, compact type
	3.000	CO9	-99.71	-0.10	1.63	-0.02	-1.73	1.39	130) Bending about z-axis acc. to 5.4.2.2
	3.000	CO9	-99.71	-0.10	1.63	-0.02	-1.73	1.39	134) Bending about z-axis, LFB, compact type
	3.000	CO9	-99.71	-0.69	2.22	-0.02	-1.73	1.39	171) Shear in z-axis acc. to 5.4.3
	0.000	CO9	-52.10	-0.10	0.60	-0.11	-1.95	1.08	201) Torsion - Opened cross-sections
	0.000	CO13	-136.26	-0.04	0.27	-0.02	-0.45	1.06	301) Flexural buckling about y-axis acc. to 5.3.2
	0.000	CO13	-136.26	-0.04	0.27	-0.02	-0.45	1.06	302) Flexural buckling about z-axis acc. to 5.3.2
	0.000	CO13	-136.26	-0.04	0.27	-0.02	-0.45	1.06	321) Torsional buckling acc. to 5.3.2
	0.000	CO3	-129.34	-0.14	1.90	-0.01	-6.93	0.07	341) Combined forces acc. to 5.5.1
2	Set 2 (Membe	er No. 13-1	5)						
	0.000	CO13	-93.87	-0.95	68.85	-0.13	-134.68	-1.07	102) Compression without buckling acc. to 5.3.2
	6.274	CO13	-86.75	0.64	-1.96	-0.45	234.50	1.71	110) Bending about y-axis acc. to 5.4.2.2
	0.000	CO13	-96.86	-0.25	78.87	-0.37	-358.16	-0.45	112) Bending about y-axis, LTB, semi compact type
	0.000	CO13	-96.86	-0.25	78.87	-0.37	-358.16	-0.45	114) Bending about y-axis, LFB, compact type
	6.274	CO13	-86.75	0.64	-1.96	-0.45	234.50	1.71	115) Bending about y-axis, LFB, semi compact type
	0.000	CO13	-96.86	-0.25	78.87	-0.37	-358.16	-0.45	117) Bending about y-axis, LWB, compact type
	0.000	CO9	-88.67	0.05	54.47	0.20	67.90	2.64	130) Bending about z-axis acc. to 5.4.2.2
	2.008	CO9	-94.27	-0.87	72.46	-0.16	-204.52	-1.65	134) Bending about z-axis, LFB, compact type
	0.000	CO9	-88.67	0.05	54.47	0.20	67.90	2.64	135) Bending about z-axis, LFB, semi compact type
	0.000	CO13	-96.86	-0.25	78.87	-0.37	-358.16	-0.45	171) Shear in z-axis acc. to 5.4.3
	3.262	CO9	-92.91	-1.03	54.72	0.17	69.10	2.41	181) Shear in y-axis acc. to 5.4.3
	6.274	CO9	-87.39	0.64	-2.12	-0.45	234.43	1.74	201) Torsion - Opened cross-sections
	0.000	CO13	-93.87	-0.95	68.85	-0.13	-134.68	-1.07	301) Flexural buckling about y-axis acc. to 5.3.2
	0.000	CO13	-93.87	-0.95	68.85	-0.13	-134.68	-1.07	302) Flexural buckling about z-axis acc. to 5.3.2
	0.000	CO13	-93.87	-0.95	68.85	-0.13	-134.68	-1.07	321) Torsional buckling acc. to 5.3.2
	0.000	RC2	0.00	0.00	0.00	0.00	0.00	0.00	400) Design for serviceability - Negligible deflections
	3.137	RC2	0.00	0.00	0.00	0.00	0.00	0.00	401) Design for serviceability acc. to Annex C - Deflection in z-c

#### 3.2 Governing Internal Forces by Set of Members

Figure 4.8: Window 3.2 Governing Internal Forces by Set of Members

For each set of members, this window shows the internal forces that result in the maximum design ratios. The respective equations according to [1] are referred to in the last column.





Window 3.3 is shown when you have selected the respective check box in the *Details* dialog box (see Figure 3.1, page 19).

.3 Memb	er Slendernesses								
	А	В	C	D	E	F	G	H	
Member		Length		Major Axis y			Minor Axis z		
No.	Under Stress	L [m]	ky[-]	iy [mm]	λy[-]	k _z [-]	iz [mm]	λz [-]	
1	Compression / Flexure	6.000	1.000	239.0	25.099	1.000	60.8	98.618	
2	Compression / Flexure	6.000	1.000	239.0	25.099	1.000	60.8	98.618	
11	Compression / Flexure	6.000	1.000	239.0	25.099	1.000	60.8	98.618	
16	Compression / Flexure	6.274	1.000	210.3	29.830	1.000	56.4	111.236	
17	Compression / Flexure	3.262	1.000	210.3	15.512	1.000	56.4	57.843	
18	Compression / Flexure	3.011	1.000	210.3	14.318	1.000	56.4	53.390	
21	Compression / Flexure	6.000	1.000	239.0	25.099	1.000	60.8	98.618	
22	Compression / Flexure	6.000	1.000	239.0	25.099	1.000	60.8	98.618	
31	Compression / Flexure	3.000	1.000	239.0	12.550	1.000	60.8	49.309	
32	Compression / Flexure	3.000	1.000	239.0	12.550	1.000	60.8	49.309	
39	Compression / Flexure	3.000	1.000	239.0	12.550	1.000	60.8	49.309	
66	Compression / Flexure	6.250	1.000	168.3	37.144	1.000	40.7	153.617	
67	Compression / Flexure	6.250	1.000	168.3	37.144	1.000	40.7	153.617	
68	Compression / Flexure	6.250	1.000	168.3	37.144	1.000	40.7	153.617	
69	Compression / Flexure	6.250	1.000	168.3	37.144	1.000	40.7	153.617	
81	Compression / Flexure	6.546	1.000	85.6	76.481	1.000	49.1	133.250	
82	Compression / Flexure	7.094	1.000	85.6	82.883	1.000	49.1	144.405	
83	Compression / Flexure	6.546	1.000	85.6	76.481	1.000	49.1	133.250	
99	Compression / Flexure	5.000	1.000	30.9	161.930	1.000	30.9	161.930	
100	Compression / Flexure	5.000	1.000	30.9	161.930	1.000	30.9	161.930	
				Membe Max KyL / ry	rs with compres	sion / flexure: ≤ 200 🔮			
				Max K _z L / r _z	: 161.930	≤ 200 🕲		E)	🛐 🐧 💌

Figure 4.9: Window 3.3 Member Slendernesses

The table lists the effective slenderness ratios of the designed members for both directions of the principal axes. They are determined in compliance with the load type.

Details...

Below the list, you find a comparison of the most unfavorable values with the limit values that have been defined in the *Details* dialog box (see Figure 3.1, page 19).

Members of the types 'tension' or 'cable' are not included in this table.



This window is only informative. It does not provide any stability analysis of slendernesses.

#### 4.9 Parts List by Member

Finally, RF-/STEEL NBR provides a summary of all cross-sections contained in the design case.

	A	B	C	D	E	F	G	H	
art	Cross-Section	Number of	Length	Total Length	Surface Area	Volume	Unit Weight	Weight	Total Weight
D.	Description	Members	[m]	[m]	[m ² ]	[m ³ ]	[kg/m]	[kg]	[t]
	1 - VS 550x88   NBR 5884	5	6.00	30.00	62.62	0.34	88.39	530.35	2.65
	2 - VS 500x61   NBR 5884	1	6.27	6.27	12.47	0.05	61.07	383.17	0.3
	2 - VS 500x61   NBR 5884	1	3.26	3.26	6.48	0.03	61.07	199.25	0.19
	2 - VS 500x61   NBR 5884 3 - VS 550x75	1	3.01	3.01	6.14	0.03	68.06	204.95	0.2
	1 - VS 550x88   NBR 5884	3	3.00	9.00	18.79	0.10	88.39	265.17	0.7
	9 - VS 400x37   NBR 5884	4	6.25	25.00	37.76	0.12	36.90	230.59	0.9
	6 - CS 200 x 41   NBR 5884	2	6.55	13.09	15.50	0.07	41.21	269.78	0.5
	6 - CS 200 x 41   NBR 5884	1	7.09	7.09	8.40	0.04	41.21	292.36	0.2
	12 - TO 80/80/4.5/4.5/4.5/4.5	2	5.00	10.00	3.20	0.01	10.67	53.34	0.1
)	13 - RD 24	2	7.81	15.62	1.18	0.01	3.55	27.71	0.0
m		22		122.35	172.54	0.78			6.1

Figure 4.10: Window 4.1 Parts List by Member

By default, this list contains only the designed members. If you need a parts list for all members of the model, select the corresponding option in the Details dialog box (see Figure 3.1, page 19).

#### Part No.

Details...

The program automatically assigns item numbers to members with identical features.

#### **Cross-Section Description**

This column lists the cross-section numbers and descriptions.

#### Number of Members

Column B shows how many similar members are used for each part.

#### Length

This column shows the respective length of an individual member.

#### **Total Length**

In this column, the product determined from the two previous columns is given.

#### Surface Area



For each item, the program gives the surface area relative to the total length. This area is determined from the Surface Area of the cross-sections. It can be checked in Windows 1.3 and 2.1 to 2.5 in the cross-section properties (see Figure 2.10, page 11).



The volume of a part is determined from the cross-sectional area and the total length.

#### **Unit Weight**

The unit mass of a cross-section is related to the length of one meter. For tapered sections, the program averages both cross-section masses.

#### Weight

The values of this column represent the products of the entries in columns C and G.

#### **Total Weight**

The final column gives the total mass of each sectional part.

#### Sum

At the end of the list, you find a summary of the values in the columns B, D, E, F, and I. The last row of the *Total Weight* column shows the total amount of required steel.

#### 4.10 Parts List by Set of Members

	A	B	C	D	E	F	G	H	
	Set of Members	Number	Length	Total Length	Surface Area	Volume	Unit Weight	Weight	Total Weigh
	Description	of Sets	[m]	[m]	[m ² ]	[m ³ ]	[kg/m]	[kg]	[t]
	Set 1	1	6.00	6.00	10.70	0.07	92.16	552.95	0.5
	Set 2	1	12.55	12.55	25.09	0.10	62.75	787.37	0.7
	Set 3	1	12.55	12.55	25.09	0.10	62.75	787.37	0.
1		3		31.10	60.88	0.27			2.1

Figure 4.11: Window 4.2 Parts List by Set of Members

The last result window is displayed when you have selected at least one set of members for design. It represents the parts list of structural groups (for example horizontal beams).

Details on the various columns can be found in Chapter 4.9. If a set of members consists of different cross-sections, the program averages the surface area, volume, and cross-section weight.

## **5 Results Evaluation**

You can evaluate the design results in different ways. For this, the buttons below the tables are very useful.

5 A	Desig	Inc	 ma la ca

	A	B	С	D				E				
Member	Location	Load-	Design								_	
No.	x [m]	ing	Ratio				Design A	ccording	to Formula			4
2	Cross-sectio	n No. 1 - V	S 550x88   NBR !	5884								
	0.000	CO9	0.04	≤1	102) Compression without a	buckling acc. to 5.3	2					
	6.000	CO9	0.36	≤1	110) Bending about y-axis	acc. to 5.4.2.2						
	6.000	CO9	0.45	≤1	112) Bending about y-axis,	LTB, semi compact	type					Т
	6.000	CO9	0.36	≤1	114) Bending about y-axis,	LFB, compact type						Т
	6.000	CO9	0.36	≤1	117) Bending about y-axis,	LWB, compact type	•					Т
	6.000	CO9	0.01	≤1	130) Bending about z-axis	acc. to 5.4.2.2						
	6.000	CO9	0.01	≤1	134) Bending about z-axis,	LFB, compact type						
	2.571	CO9	0.15	≤1	171) Shear in z-axis acc. to	5.4.3						4
		Max:	1.06	>1	8		9	2.		> 1,0	- 7 🐸 🖪 🗞 💿	1
					-			¥		· ·		1
Details - I	Member 2 - x	: 0.000 m -	CO9							1 - VS 550	0x88   NBR 5884	Т
	al Properties	- Steel CG-2	26   ABNT NBR 8	800:2	008							
	Section Prop	erties - VS	550x88   NBR 58	84								
Design	n Internal For	ces										
— Axia	al Force				Nsd	-127.76	kN				+ 250.0	
- She	ar Force				Vy	-0.08	kN			L .		
- She	ar Force				Vz	60.82	kN			I	9.9	
- Tors	sional Momer	nt			Tsd	-0.01	kNm				÷	
- Flex	ural Moment				My	-153.48	kNm					
- Flex	tural Moment				Mz	-0.77	kNm			0.0		
(	Section Type	•								33	Y	
Design	n Ratio										6.3	
— Axia	al Force				N _{c,Sd}	127.76	kN					
- Gro	ss Area of M	ember			Ag	112.60	cm ²					
- Yiel	d Stress				fy	255.00	MPa			· •		
- Coe	fficient of Re	sistance			7a1	1.100			Tab. 3		*	
Axia	al Force Resi	stance			N _{c,Rd}	2871.30	kN		5.3.2		-	
- Des	ign Ratio				η	0.04		≤1			[mm]	
L												
										0	🍝 📬 🏹	
												-

Figure 5.1: Buttons for results evaluation

The buttons have the following functions:

Button	Description	Function
<b>Y</b>	Ultimate Limit State Design	Shows or hides the results of the ULS design
<b>e</b>	Serviceability Limit State Design	Shows or hides the results of the SLS design
	Result Combination	Creates a new result combination from the governing load cases and load combinations
E.	Color Bars	Shows or hides the colored relation scales in the tables
> 1,0 • > 1,0 Max Define	Filter Parameters	Describes the filter criterion for the output in the tables: Design ratios greater than 1, maximum value or user-defined limit
7	Apply Filter	Displays only rows where the filter parameters are valid (ratio > 1, maximum, user-defined limit)
2	Result Diagrams	Opens the Result Diagram on Member Window $\rightarrow$ Chapter 5.2, page 35
	Excel Export	Exports the table to MS Excel $\rightarrow$ Chapter 7.4.3, page 44
<b>N</b>	Member Selection	Option to select a member graphically for tabular results
۲	View Mode	Jumps to the RFEM/RSTAB work window to change the view

Table 5.1: Buttons in Windows 2.1 to 2.5



You can also evaluate the design results in the work window of RFEM or RSTAB.

#### Background graphic and view mode

The work window of RFEM or RSTAB in the background is useful for you to find the location of a particular member in the model: There, the member selected in the RF-/STEEL NBR result window is highlighted. Furthermore, an arrow indicates the relevant location x on this member.



Figure 5.2: Indication of member and relevant *Location x* in RFEM model



If you cannot improve the display by moving the RF-/STEEL NBR module window, click the solution to activate the *view mode*. Thus, you hide the module window so that you can change the view in the user interface of RFEM or RSTAB. In the view mode, you can use the functions of the *View* menu, e.g. zoom, move, or rotate the view. The arrow will remain visible when doing so.

Click [Back] to return to the RF-/STEEL NBR module.

#### **RFEM/RSTAB** work window

Graphics

You can also check the design ratios graphically in the RFEM/RSTAB model: Click [Graphics] to quit the design module. In the work window of RFEM or RSTAB, the design ratios are now displayed like the internal forces of a load case.

In the *Results* navigator, you can select whether the ratios of the ULS and/or SLS designs are to be displayed.



Figure 5.3: Results navigator for Ultimate Limit State and Serviceability Limit State designs



To turn the display of the design ratios on or off, use the [Show Results] button which is familiar from the display of internal forces. To switch the result values on or off, click the [Show Values] button next to it.

The tables of RFEM or RSTAB are of no relevance for the steel design results. You can set the relevant RF-/STEEL NBR design case in the list of the toolbar.

RF-STEEL NBR CA1 - Beams	Ţ,
LC1 - Self-weight	2
LC2 - Imposed loads	
RC1 - 1.35*LC1/p + 1.5*LC2	
RF-STEEL NBR CA1 - Beams	
RESTEEL NBB CA2 - Columns	

The graphical representation of the design results can be controlled in the *Display* navigator, item **Results**  $\rightarrow$  **Members**. The ratios are shown *Two-Colored* by default.



Figure 5.4: Display navigator: Results  $\rightarrow$  Members

When you have selected a multicolor display (options *With/Without Diagram* or *Cross-Sections*), the color panel is available. It provides the common control functions which are described in detail in the RFEM/RSTAB manual, Chapter 3.4.6.

5



Figure 5.5: Design ratios with display option Without Diagram

The graphics of the design results can be transferred to the printout report (see Chapter 6.2, page 38).

RF-STEEL NBR

To return to the add-on module, use the [RF-/STEEL NBR] button in the panel.

#### 5.2 Result Diagram

You can graphically evaluate the design ratios in a result diagram, without using the work window of RFEM or RSTAB.

Select the member (or set of members) in the RF-/STEEL NBR result window by clicking in the relevant table row. Then click the get button to open the *Result Diagram on Member* dialog box. This button is located below the upper table (see Figure 5.1, page 31).

In the work window of RFEM or RSTAB, the result diagram can be accessed from the menu

#### Results ightarrow Result Diagrams for Selected Members

I

or via the toolbar button shown on the left.

A new window opens. It presents the distribution of the maximum design values on the member or set of members.



Figure 5.6: Dialog box Result Diagram on Member

You can switch the ULS and SLS results on or off in the Results navigator.

Use the list in the toolbar to select the relevant RF-/STEEL NBR design case.

RF-STEEL NBR CA1 - Beams LC1 - Self-weight LC2 - Imposed loads RC1 - 1.35°LC1/p + 1.5°LC2 RF-STEEL NBR CA1 - Beams RF-STEEL NBR CA2 - Columns

The Result Diagram on Member dialog box is described in the RFEM or RSTAB manual, Chapter 9.5.





The RF-/STEEL NBR result windows allow you to sort the results by various criteria. In addition, you can use the filter options for the tables (see Figure 5.1, page 31) to reduce the numerical output according to specific ratios. This function is described in the *Knowledge Base* at our Web site: https://www.dlubal.com/en/support-and-learning/support/knowledge-base/000733

Furthermore, you can apply the filter options described in Chapter 9.9 of the RFEM manual or Chapter 9.7 of the RSTAB manual to evaluate the results graphically.



You can also use the *Visibility* options for RF-/STEEL NBR to filter the members and evaluate them (see RFEM manual, Chapter 9.9.1 or RSTAB manual, Chapter 9.7.1).

#### **Filtering design ratios**



The design ratios can be used as filter criteria in the RFEM/RSTAB work window which you access by clicking [Graphics]. To apply this filter function, the panel must be displayed. If it is not, select.

#### View ightarrow Control Panel (Color scale, Factors, Filter)



or use the toolbar button shown on the left.

The panel is described in the RFEM/RSTAB manual, Chapter 3.4.6. The filter settings for the results can be defined in the first tab (Color scale). As this tab is not available for the two-colored results display, you have to set the display option *Colored With/Without Diagram* or *Cross-Sections* in the *Display* navigator (see Figure 5.4, page 33).

As seen in the figure to the left, the color spectrum can be set in such a way that only ratios greater than 0.50 are shown in the color ranges between blue and red.

#### **Filtering members**

In the *Filter* tab of the control panel, you can specify the numbers of particular members to display their results exclusively, i.e. filtered. This function is described in the RFEM manual, Chapter 9.9.3 or RSTAB manual, Chapter 9.7.3.



Figure 5.7: Filtering design ratios of one frame

Unlike the *Visibility* function, the entire model is displayed. Figure 5.7 shows the design ratios of one frame only. All other members are displayed in the model, but they have no design results.

## **6** Printout

#### 6.1 Printout Report

Similarly to RFEM or RSTAB, the program generates a printout report for the RF-/STEEL NBR results which can be supplemented by graphics and descriptions. The selection in the printout report controls which data of the design module are included in the final printout.



The printout report is described in the RFEM or RSTAB manual. In particular, Chapter 10.1.3.5 *Selecting Data of Add-on Modules* describes how the input and output data of add-on modules can be selected.

A Printout report - PR1: Inpu	it data and reduced results*				_ 0 %				
Eile View Edit Setting	r Jasart Hala								
D D D D M	insert Heip		9.0						
Printeut Papart Navigator			🥪 🚾						
Printout Report				In according to NER 8800					
💮 💼 RFEM		2.4 DESIGN BT IVE							
RF-STEEL NBR		No. x [m] RC	Formula						
E-S CA1 - Beams	Data	1 Cross-section No. 1 - VS 550 0.000 CO13	x88   NBR 5884 0.04 ≤ 1 102) (	Compression without buckling acc. to 5	.3.2				
1.1 General		6.000 CO13	0.34 ≤1 110) I 0.42 ≤1 112) I	Bending about y-axis acc. to 5.4.2.2					
	Printout Report Selection - PR1								
1.5 Design	Program	Global Selection Input Data Results							
🛅 1.7 Effectiv	RF-STEEL NBR	Display							
1.8 Service	RF-STABILITY				Set				
		2.1 Design by Load Case		No. Selection (e.g. 1-5,20)					
1.4 Des		2.2 Design by Cross-Section	Cross-sections:	All					
E CA2 - Column		2.3 Design by Set of Members	Sets:	All	- 🖏 🔍 🗆				
		2.4 Design by Member	Members:	All	- 🖏 💽 🗆				
		2.5 Design by x-Location	Members:	All					
		3.1 Governing Internal Forces	Select Intermediate Results		~ %				
		3.2 Governing Internal Forces	Distant Dennet		- <b></b>				
		3.3 Member Slendernesses	With intermediate marks	Form: @ Chard	- 1				
			Vitri intermediate results	Form: Short					
		🔲 4. 1 Parts List by Member							
		🔲 4.2 Parts List by Set of Members	Chapters to Display		T				
		Filter settings	Cross-Section Properties						
			Cross-Section Type						
		× 1,0	Design Internal Forces						
			Design						
	Diselari			OK Cancel					
	Cover sheet								
	Contents								
	Info pictures								
	Uppercase titles								
	2				OK Cancel				
		0.000 CO13	0.08 ≤1 171)	Shear in z-axis acc. to 5.4.3					
	•		_		4				
		RF-STEEL NB	K		Pages: 65 Page: 47				

Figure 6.1: Selecting designs and intermediate results in printout report



Click the [Details] button when you want to include all or specific intermediate results in the printout report. They can be documented in a *Short* (compact list) or *Long* (descriptive list) form.



If you work on complex models featuring many design cases, you can split the data into several printout reports, thus allowing for a clearly arranged documentation.

#### 6.2 Graphic Printout

In RFEM or RSTAB, you can add any picture of the work window to the printout report or send it directly to the printer. In this way, the design ratios shown on the RFEM/RSTAB model can be used for the documentation.



The printing of graphics is described in the RFEM or RSTAB manual, Chapter 10.2.

To print the currently displayed graphic of the design ratios, click

 $\textbf{File} \rightarrow \textbf{Print Graphic}$ 

 -	-
Δ.	<u>b</u>
104	- 14
0	0

or use the toolbar button shown on the left.

4⊳	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Insert	<u>C</u> alculate	<u>R</u> esults	Tools	Ta <u>b</u> le	<u>O</u> ptions
	2	33	<b>.</b> 8		50	₿ 🍕	Q 🔁		<u>•</u> 3
9	- 9⁄	× -	¶7+	Print	Graphic	- <u>9^xx</u> 🖭	1 🛍 -	-	📬 - 🗊

Figure 6.2: [Print Graphic] button in RFEM toolbar

The Graphic Printout dialog box appears.

Graphic Printout		×							
General Options Color Scale Factors Border and Stretch Factors									
Graphic Picture	Window To Print	Graphic Scale							
O Directly to a printer	Current only	As screen view							
To a printout report:	O More	Window filling							
To the Clipboard	Mass print	◎ To scale 1: 100 -							
© To 3D PDF									
-									
Graphic Picture Size and Rotation	Options								
Vse full page width	Show results for selected x-location in result diagram								
Use full page height	Lock graphic picture (without update)								
● Height: 40 → [% of page]		,							
	Show printout report on [OK]								
Rotation: 0 🚔 [*]									
Header of Graphic Picture									
Design Ratio									
		OK Cancel							

Figure 6.3: Dialog box Graphic Printout, tab General

The dialog box is described in the RFEM or RSTAB manual, Chapter 10.2. This chapter also describes the other tabs of the dialog box.

You can move a graphic anywhere within the printout report by using the drag-and-drop function.

Remove from Printout Report						
Start with New Page						
Selection						
Properties >						
Properties						

If you want to modify an image in the printout report, right-click the relevant entry in the navigator of the printout report. The *Properties* option in the shortcut menu opens the *Graphic Printout* dialog box again. It offers you several options to adjust the image.

## **7 General Functions**

This chapter describes the menu functions and export options for the design results.

#### 7.1 Design Cases

Design cases allow you to arrange members for specific analyses. In this way, you can combine groups of structural components or analyze members with particular design specifications, e.g. modified materials, coefficients, cross-sections.

It is no problem to analyze the same member or set of members in different design cases.



To calculate a RF-/STEEL NBR design case, you can also use the load case list in the toolbar of RFEM or RSTAB.

#### Create design case

To create a new design case, use the RF-/STEEL NBR menu and select

File ightarrow New Case.

The following dialog box appears.

New RF-ST	EEL NBR Case
No.	Description Design of steel members according to NBR
D	OK Cancel

Figure 7.1: Dialog box New RF-STEEL NBR Case

Enter a *No.* (one that is still available) for the new design case and an optional *Description*. It facilitates the selection in the load case list.

Then click [OK] to open the *1.1 General Data* Window of RF-/STEEL NBR where you can enter the data of the new design case.

#### Rename design case

To change the description of a design case, use the RF-/STEEL NBR menu and select

#### $\mathbf{File} \rightarrow \mathbf{Rename} \ \mathbf{Case}.$

The following dialog box appears.

Rename RI	F-STEEL NBR Case	×
No.	Description	
	New description	
		OK Cancel

Figure 7.2: Dialog box Rename RF-STEEL NBR Case

You can specify a different Description as well as a different No. for the design case.

#### Copy design case

To copy the input data of the current design case, use the RF-/STEEL NBR menu and select

File ightarrow Copy Case.

The following dialog box appears.

Copy RF-S	TEEL NBR Case
Copy from	n Case
CA1 - De	esign of steel members according to NBR 🔹 🔻
New Cas	e
No.:	Description:
3	Reduced material strength 👻
D	OK Cancel

Figure 7.3: Dialog box Copy RF-STEEL NBR Case

Define the No. and, if necessary, a Description of the new case.

#### **Delete design case**

To delete a design case, use the RF-/STEEL NBR menu and select

```
File 
ightarrow Delete Case.
```

The following dialog box appears.

C	Delete C	ases
	Availab	le Cases
	No.	Description
	1	Design of steel members according to NBR
	2	New description
	3	Reduced material strength
	٢	OK Cancel

Figure 7.4: Dialog box Delete Case

Select the design case in the list of Available Cases. To delete this case, click [OK].



Opti-	
mize	
No	•
No	
From current row	

The design module offers you the option to optimize overstressed or little utilized cross-sections. Open the drop-down list in column D resp. E in Window *1.3 Cross-Sections* (see Figure 2.8, page 9) and select the optimization option *From current row*.

You can also start the optimization in the result windows via the shortcut menu.

.4 Design	by Membe	r								
	A	В	С	D		E				
Member	Location	Load-	Design							
No.	x [m]	ing	Ratio			Design According to Formula				
1	Cross-section No. 1 - VS 550x88   NBR 5884									
	0.000	0.000 CO13 0.04 ≤ 1 102) Compression v			without buckling acc. to 5.3.2					
	6.000	CO13	0.34	≤1	110) Bending abou	t y-axis acc. to 5.4.2.2				
	6.00					y-axis, LTB, semi compact type				
	6.00	<u>G</u> o to 0	pross-Section		Doubleclick	y-axis, LFB, compact type				
	6.00	Info Al	out Cross-Secti	on		y-axis, LWB, compact type				
	6.00	0.0				z-axis acc. to 5.4.2.2				
	6.00	Optim	ize Cross-Section		2	z-axis, LFB, compact type				
	1.71	Cross-	Section Optimiz	ation	Parameters	acc. to 5.4.3				
	6 000 1	CO3	0.00	$\leq 1$	201) Lorsion - Oper	ned cross-sections				

Figure 7.5: Shortcut menu to Optimize Cross-Section

During the optimization, the module determines the section that fulfills the analysis requirements in the "optimal" way, i.e. comes as close as possible to the maximum allowable design ratio specified in the *Details* dialog box (see Figure 3.1, page 19). The required cross-sectional properties are calculated with the internal forces of RFEM or RSTAB. If a different cross-section proves to be more favorable, it will be used for the design. In this case, the graphic in Window 1.3 shows two cross-sections – the original section from RFEM or RSTAB and the optimized one (see Figure 7.7).

When you optimize a parametric cross-section, the following dialog box appears:

Thin-Wall	ed Cross-Section:	s - Symmetric I-	Section : Optin	nize			x
Cross-Se	ection Optimization	Parameters					
Opti- mize	Current	Minimum	Maximum	Increment			
✓ h:		200.0 🜩 🕨	500.0 🜩 🕨	10.0 🜩 🕨	[mm]		
<b>b</b> :	140.0 🜩 🕨				[mm]		
<b>s</b> :	5.0 🜩 🕨	* >	* >		[mm]		
🗖 t:	8.0 🜩 🕨		* +	A V	[mm]	, b ,	
🗖 a:	0.0				[mm]		
Кеер	current side propor	tions				IS 250/140/5/8/0	
<b>D</b>	9					OK Cancel	

Figure 7.6: Dialog box Thin-Walled Cross-Sections - Symmetric I-Section: Optimize

By selecting the check box(es) in the *Optimize* column, you decide which parameter(s) you want to modify. They activate the *Minimum* and *Maximum* columns where you can specify the upper and lower limits of each parameter. The *Increment* column controls the interval in which the value of the parameter varies during the optimization.

If you want to *Keep current side proportions*, select the corresponding check box. In addition, you have to select at least two parameters for the optimization.

Cross-sections composed of combined rolled cross-sections cannot be optimized.



Please note that the optimization does <u>not</u> recalculate the internal forces with the modified cross-sections: It is up to you to decide which sections should be transferred to RFEM or RSTAB for a new analysis. As a result of optimized cross-sections, the internal forces may vary considerably because of the changed stiffnesses of the model. Therefore, it is recommended to recalculate the internal forces resulting from the modified cross-sections after the first optimization, and then to optimize the sections once again.

To export the modified cross-section(s) to RFEM or RSTAB, go to Window 1.3 Cross-Sections and select

#### Edit $\rightarrow$ Export All Cross-Sections to RFEM.

You can also use the shortcut menu in Window 1.3 to export one or all optimized cross-sections to RFEM or RSTAB.



Figure 7.7: Shortcut menu in Window 1.3 Cross-Sections

Before the modified cross-sections are transferred to RFEM or RSTAB, a confirmation is required as to whether the RFEM/RSTAB results should be deleted.

	RF-STEEL NBR Information No. 53426
Do you If so, th	want to transfer the changed cross-sections to RFEM? e results of RFEM and RF-STEEL NBR will be deleted.
	Yes No

Figure 7.8: Confirmation when exporting cross-sections

Calculation

By approving the confirmation and starting the [Calculation] in the RF-/STEEL NBR module, the internal forces of RFEM or RSTAB as well as the design ratios will be determined in one single calculation run.

If the modified cross-sections have not been exported to RFEM or RSTAB yet, you can reimport the original sections in the design module by using the last two menu options shown in Figure 7.7. Please note that this shortcut menu is only available in Window 1.3 Cross-sections.



When optimizing a tapered member, the program modifies the cross-sections of the member start and member end. For the intermediate locations, the second moments of area are linearly interpolated. Since those values are considered with the fourth power, the designs may be inaccurate if the depths of the start and end cross-sections differ considerably. It is then recommended to divide the taper into several members, thus modeling the taper layout manually.

### 7.3 Units and Decimal Places

The units and decimal places of RFEM or RSTAB and of all add-on modules are managed in one dialog box. To define the units for RF-/STEEL NBR, select

Settings  $\rightarrow$  Units and Decimal Places.

The dialog box which is familiar from RFEM or RSTAB appears. RF-/STEEL NBR is preset in the *Program / Module* list.

Inits and Decimal Places					<b>— X</b>
Program / Module	RF-STEEL NBR				
RFEM 🔺	Output Data		Darta Liat		
···· RF-STEEL Surfaces	Output Data		Parts List		
···· RF-STEEL Members		Unit Dec. places		Unit	Dec. places
···· RF-STEEL EC3	Stresses:	MPa 🔻 2 ≑	Lengths:	m 🔻	2 🌲
···· RF-STEEL AISC	Desire estina.		Tatal lanathay		2
RF-STEEL IS	Design ratios.		rotai lengtris.	• •	2 💌
- RF-STEEL SIA	Dimensionless:	- 🚽 3 🚔	Surface areas:	m^2 ▼	2 🌩
- RF-STEEL BS			Volumos		2
RF-STEEL GB			voidilles.	<u> </u>	4
RF-STEEL CSA			Weight per length:	kg/m 🔫	2 🌩
			Weight:		2
RF-STEEL NIC-DF			weight.	Kg 🔹	2
RF-STEEL SP			Total weight:	t 🔻	3 ≑
RF-STEEL Plastic					
DE STEEL SANS					
DE STEEL NDD					
DE ALLIMINIU IM					
DE-EL-DI					
BE-C-TO-T					
PLATE-BUCKLING					
BE-CONCRETE Membr					
BE-CONCRETE Colum					
RF-PUNCH					
RF-PUNCH Pro					
) () () () () () () () () () () () () ()	1			OK	Canaci
	J			UK	Cancel

Figure 7.9: Dialog box Units and Decimal Places

🖹 (ک

You can save the settings as a user-defined profile to reuse them in other models. Those functions are described in the RFEM or RSTAB manual, Chapter 11.1.3.

#### 7.4 Data Transfer

#### 7.4.1 Exporting Materials to RFEM/RSTAB

If you have modified the materials in RF-/STEEL NBR for the design, you can export those materials to RFEM or RSTAB in a similar way as you export cross-sections: Open the *1.2 Materials* Window and then select

```
Edit \rightarrow Export All Materials to RFEM/RSTAB.
```

You can also export the modified materials to RFEM or RSTAB by using the shortcut menu in Window 1.2.



Figure 7.10: Shortcut menu of Window 1.2 Materials

#### Calculation

Before the modified materials are transferred to RFEM or RSTAB, a confirmation is required as to whether the results of the main program should be deleted. When you approve this confirmation and then start the [Calculation] in RF-/STEEL NBR, the new internal forces and design ratios will be determined in one single calculation run.

If the modified materials have not been exported to RFEM or RSTAB yet, you can transfer the original materials to the design module via the last two menu options shown in Figure 7.10. Please note that this shortcut menu is only available in Window *1.2 Materials*.

#### 7.4.2 Exporting Effective Lengths to RFEM/RSTAB

If you have adjusted the effective lengths in RF-/STEEL NBR for the design, you can export the modified values to RFEM or RSTAB in a similar way as you export cross-sections: Go to Window *1.5 Effective Lengths - Members* and then select

```
Edit \rightarrow Export All Effective Lengths to RFEM/RSTAB.
```

You can also use the corresponding option on the shortcut menu of Window 1.5.

```
Export Effective Length to RFEM
Export All Effective Lengths to RFEM
Import Effective Length from RFEM
Import <u>A</u>ll Effective Lengths from RFEM
```

Figure 7.11: Shortcut menu of Window 1.5 Effective Lengths - Members

Before the modified effective lengths are transferred to RFEM or RSTAB, a confirmation has to be approved as to whether the results of the main program should be deleted.

#### 7.4.3 Exporting Results

The RF-/STEEL NBR results can also be used by other programs.

#### Clipboard

To copy cells selected in the result windows to the Clipboard, use the keys [Ctrl]+[C]. Press [Ctrl]+[V] to insert the cells, for example, in a word processing program. The headers of the table columns will not be transferred.

#### **Printout Report**

You can print the data of RF-/STEEL NBR to the printout report (see Chapter 6.1, page 37). To export the tables and graphics, then select the printout report menu

```
\textbf{File} \rightarrow \textbf{Export to RTF}.
```

The function is described in the RFEM or RSTAB manual, Chapter 10.1.11.

#### Excel

RF-/STEEL NBR provides a function for the direct data export to MS Excel or the CSV file format. To open the corresponding dialog box, select

 $\textbf{File} \rightarrow \textbf{Export Tables}.$ 

Table Parameters       App         Image: Second	cation icrosoft Excel SV file format							
Viith table header       Image: Comparison of the comparison o	icrosoft Excel SV file format							
Only marked rows  Transfer Parameters  Export table to active workbook Export table to active worksheet  Rewrite existing worksheet  Selected Tables  All tables  Input tables  Input tables	SV file format							
Transfer Parameters         Export table to active workbook         Export table to active worksheet         Rewrite existing worksheet         Rewrite existing worksheet         All tables         Input tables								
Transfer Parameters         Export table to active workbook         Export table to active worksheet         Rewrite existing worksheet         Selected Tables         All tables         Input tables								
Export table to active workbook  Export table to active worksheet  Rewrite existing worksheet  Selected Tables  All tables  Input tables  In								
Export table to active worksheet     Ø Rewrite existing worksheet  Selected Tables      Active table     All tables     Jinput tables								
	Export table to active worksheet							
Selected Tables  Active table  All tables  Input tables								
Active table     All tables     Input tables								
All tables Input tables	xport hidden columns							
✓ Input tables	xport tables with details							
Result tables								

Figure 7.12: Dialog box Export of Tables

When you have selected the relevant options, you can start the export by clicking [OK]. Excel will be started automatically, i.e. you do not have to open the program before.

	🚽 🤊 <del>-</del> (e	×   <del>-</del>		Tak	ole1 -	Micros	oft Excel						2	2
F	ile Hor	ne Insert	Page Layou	ut Formula	as	Data	Review	View	Add-l	ins	∞ 🧉		ē	23
	B3	B3 - fx Cross-section No. 1 - VS 550x88   NBR 5884												٧
	А	В	С	D	Е				F					F
1	Member	Location	Load-	Design										
2	No.	x [m]	ing	Ratio			D	esign A	According	to Formul	a			
3	1	Cross-sectio	n No. 1 - VS	550x88 NB	SR 58	84								]
4		0,000	CO13	0,04	≤1	102) C	ompressio	on witho	out buckli	ing acc. to !	5.3.2			
5		6,000	CO13	0,34	≤1	110) E	ending abo	out y-ax	kis acc. to	5.4.2.2				
6		6,000	CO13	0,43	≤1	112) B	ending abo	out y-ax	kis, LTB, s	emi compa	act type			
7		6,000	CO13	0,34	≤1	114) B	ending abo	out y-ax	kis, LFB, o	ompact typ	be			
8		6,000	CO13	0,34	≤1	117) E	ending abo	out y-ax	kis, LWB,	compact ty	/pe			
9		6,000	CO13	0,00	≤1	130) E	ending abo							
10		6,000	CO13	0,00	≤1	134) Bending about z-axis, LFB, compact type								
11		1,714	CO13	0,14	≤1	171) S	171) Shear in z-axis acc. to 5.4.3							
12		6,000	CO9	0,00	≤1	201) T	orsion - Op	oened c	ross-sect	ions				
13		0,000	CO13	0,09	≤1	302) F	lexural buo	ckling a	bout z-ax	is acc. to 5	.3.2			
14		0,000	CO13	0,07	≤1	321) T	orsional bu	uckling	acc. to 5.3	3.2				
15		6,000	CO13	0,46	≤1	341) 0	ombined f	orces a	cc. to 5.5.	1				
16														
17	2	Cross-sectio	n No. 1 - VS	550x88   NB	8R 58	84								
18		0,000	CO9	0,04	≤1	102) 0	ompressio	n with	out buckli	ing acc. to !	5.3.2			
19		6,000	CO9	0,36	≤1	110) E	ending abo	out y-ax	kis acc. to	5.4.2.2				
20		6,000	CO9	0,45	≤1	112) E	ending abo	out y-ax	kis, LTB, s	emi compa	act type			
21		6,000	CO9	0,36	≤1	114) E	ending abo	out y-ax	kis, LFB, o	ompact typ	be			
22		6,000	CO9	0,36	≤1	117) E	ending abo	out y-ax	kis, LWB,	compact ty	pe			-
H 4	▶ ₩ 2.4	Design by M	ember 🧷 🔁	/			14						- ▶ [	ī
Rea	dy									00 % 🗩			÷	) .::

Figure 7.13: Results in Excel





[1] *NBR 8800:2008: Design of steel and composite structures for buildings*. Associação Brasileira de Normas Técnicas, 2008.

Index

## 

|--|

#### © DLUBAL SOFTWARE 2017

B

#### В

Α

Background graphic	32
Beam type	18
Buckling	15
Buttons	31

#### r

L	
Calculation	19
Cantilever1	8, 20
Clipboard	44
Coefficients of resistance	19
Color bars	31
Color scale	36
Comment	5, 16
Control Panel	36
Cross-section	9, 41
Cross-section design	23
Cross-section info	11
Cross-section library	9
Cross-section optimization	0, 41
Cross-section type	10

#### D

Ε

F

Decimal places	
Deflection	
Deformation analysis	
Design	.6, 21, 22, 24, 25, 27
Design case	
Design colored	
Design parameters	
Design ratio	
Detail settings	
Display navigator	

#### Ν Navigator

Navigator	• • •	• •	1	•	1	1	•	1	1	1	1	1	1	1	•	1	1	1	1	•	•	•	•	•	•	•	•	•	•	4
Net area .		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•			•	1	3

#### 0

Optimization	10	, 20,	41, 42
--------------	----	-------	--------

#### Ρ

Panel	34, 36
Parametric cross-section	41
Part	
Parts list	29, 30
Precamber	
Print graphic	
Printout report	

#### Flexural buckling ...... 12, 15

#### G

General data	4
Graphic printout	88
Graphics	33
Gross area1	3

#### L

Installation
Intermediate lateral restraints
Internal forces

#### L

Lateral restraints
Lateral-torsional buckling 12, 16
Length
Limit values
List of member
Load case
Load combination
Loading
Location x 22

#### Μ

erial	. 7, 44
erial description	7
erial library	8
erial properties	7,8
າber	5
1ber slenderness	28
lification factor	15,16

#### R

Reduction factor	13
Reference length	6
Relatively	12
Remark	10
Rendering	
Result combination	6, 31
Result diagram	35
Result values	33
Result window	21
Results display	
Results evaluation	31
RF-STABILITY	15
RFEM/RSTAB graphic	
RSBUCK	

#### S

Selecting windows	4
Serviceability limit state6,	18, 31
Set of members 5, 17, 18, 24,	27, 30
Shifted members ends	20
Slenderness	28
Slenderness ratio	19
Special cases	20
Stability analysis	15, 23
Stainless steel	8

# Start calculation20Start RF-/STEEL NBR3Stress point11Sum30Surface area29

B

#### Т

Taper	 	• • •	 10, 23, 4	12
Torsional buckling	 		 1	6

#### U

Ultimate limit state	31
Undeformed system	20
Units	43
User profile.	.43

#### V

View mode	31, 32
Visibility	36
Volume	30

#### X

x-Location	, 26
------------	------

#### W

Weight	
Window	4
Work window	. 32, 33, 36