

Fassung Mai 2017

Zusatzmodul

RF-SOILIN

Ermittlung von Bettungskennwerten

Programmbeschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten. Ohne ausdrückliche Genehmigung der DLUBAL SOFTWARE GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Dlubal Software GmbH 2017 Am Zellweg 2 D-93464 Tiefenbach Deutschland

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com Web: www.dlubal.de ⊿ Dlubal

Inhalt

Inhalt

Seite

1.	Einleitung	2
1.1	Zusatzmodul RF-SOILIN	2
1.2	Gebrauch des Handbuchs	2
1.3	Aufruf von RF-SOILIN	3
2.	Theorie	4
2.1	Allgemeines	4
2.2	Boden-Bauwerkinteraktion	4
3.	Eingabedaten	6
3.1	Basisangaben	6
3.2	Böden	9
3.2.1	Boden-Materialien	9
3.2.2	Bodenproben	. 12
3.2.3	Bodenschichten	. 12
3.3	Zusätzliche geologische Regionen	. 13
4.	Berechnung	14
4.1	Detaileinstellungen	. 14
4.2	Start der Berechnung	. 16
5.	Ergebnisse	17
5.1	Spannungen und Setzungen	. 17
5.2	Bettungskoeffizienten	. 20
5.3	Grafische Ergebnisse	. 21
6.	Ausdruck	. 22
6.1	Ausdruckprotokoll	. 22
6.2	Grafikausdruck	. 23
7.	Allgemeine Funktionen	24
7.1	Bemessungsfall	24
7.2	Einheiten und Dezimalstellen	. 25
7.3	Export der Ergebnisse	. 25
Α.	Literatur	. 26
В.	Index	. 27

1 Einleitung

1.1 Zusatzmodul RF-SOILIN

Für die statische Analyse von Bauwerken ist es wichtig, die Baugrundverhältnisse zu erfassen und im Modell entsprechend abzubilden. Mit dem Zusatzmodul RF-SOILIN für RFEM bietet DLUBAL die Möglichkeit, Bettungskennwerte von Flächen aus den Baugrunddaten zu ermitteln und für die Analyse zu nutzen.

In der Baupraxis wird häufig das WINKLERsche Bettungsmodell verwendet. Dieses Modell geht von einem linearen Zusammenhang zwischen Bodenpressung und Setzung aus. Die Bettungszahl *C* wird als Konstante angenommen. Dieser Ansatz wird der Realität jedoch nur in sehr vereinfachter Weise gerecht. Anspruchsvolle Bauwerke erfordern eine genauere Analyse der Interaktion zwischen Bauwerk und Baugrund. Nicht zuletzt übt die Gründung eine nicht unerhebliche Wirkung auf die Schnittgrößen im Bauwerk aus.

Im Programm RFEM ist ein verbessertes, mehrparametrisches Bettungsmodell implementiert. Damit können sehr realistische Setzungsberechnungen durchgeführt werden. Ein Problem ist es jedoch, genaue Werte für die Parameter C_{u,z}, C_{v,xz} und C_{v,yz} zu finden.

Für die Lösung dieser Aufgabe bietet RF-SOILIN Unterstützung: Aus den Belastungen und Daten des Baugrundgutachtens (Steifeziffer oder E-Modul und Querdehnzahl, Wichte, Schichtdicken) werden die Bettungsparameter für jedes finite Element in einem nichtlinearen Verfahren berechnet. Die Parameter sind lastabhängig und üben ihrerseits wieder einen Einfluss auf das Verhalten des Bauwerks aus – daher der iterative Prozess. Das Ergebnis sind realistische Setzungen und genauere Schnittgrößen im Bauwerk.

Wir wünschen Ihnen viel Freude und Erfolg mit RF-SOILIN.

Ihr DLUBAL Team

1.2 Gebrauch des Handbuchs

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RFEM-Handbuch erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit dem Zusatzmodul RF-SOILIN ergeben.

2

Das Handbuch orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. Im Text sind die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Anwenden]. Zugleich sind sie am linken Rand abgebildet. Die **Begriffe**, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben, damit die Erläuterungen gut nachvollzogen werden können.

Am Ende des Handbuchs befindet sich ein Stichwortverzeichnis. Sollten Sie dennoch nicht fündig werden, können Sie die Suchfunktion auf unserer FAQ-Website nutzen, um unter den Beiträgen eine Lösung zu finden: https://www.dlubal.com/de/support-und-schulungen/support/faq

1.3 Aufruf von RF-SOILIN

In RFEM bestehen folgende Möglichkeiten, das Zusatzmodul RF-SOILIN zu starten.

Menü

Der Programmaufruf kann erfolgen über das RFEM-Menü

Zusatzmodule \rightarrow Sonstige \rightarrow RF-SOILIN.

Bild 1.1: Menü Zusatzmodule ightarrow Sonstige ightarrow RF-SOILIN

Navigator

RF-SOILIN kann im Daten-Navigator aufgerufen werden über den Eintrag

```
\textbf{Zusatzmodule} \rightarrow \textbf{RF-SOILIN}.
```


Bild 1.2: Daten-Navigator: *Zusatzmodule* \rightarrow *RF-SOILIN*

2 Theorie

2.1 Allgemeines

Die Sohlpressung unter Gründungskörpern ist abhängig von der Verformbarkeit des Gründungskörpers und des Untergrundes. Es lassen sich die Grenzfälle *,schlaffes Lastbündel*' und *,starre Platte*' unterscheiden: Das schlaffe Lastbündel schmiegt sich der durch sie hervorgerufenen Setzungsmulde an; die Sohlspannung ist konstant. Bei einer starren Platte hingegen entstehen Spannungsspitzen an den Rändern.

Bild 2.1: Sohlspannung $\sigma_{\rm s}$ in Abhängigkeit von der Steifigkeit des Gründungskörpers

Die Bettungsparameter als Eigenschaft des Bodens sind auch von der Sohlpressung abhängig, die sich unter der Fundamentplatte einstellen kann. Die Steifigkeit des Fundaments und des gesamten Bauwerks hat somit einen entscheidenden Einfluss auf die Verteilung der Bettungsparameter. Die Bettungsparameter wiederum üben einen Einfluss auf die Schnittgrößen des Bauwerks aus.

2.2 Boden-Bauwerkinteraktion

Die Verteilung der Bettungsparameter unter der Fundamentplatte wird für die Berechnung der Sohlspannungen benötigt. Gleichzeitig ist sie von diesen Pressungen abhängig. Aufgrund der komplexen Interaktion zwischen Boden und Bauwerk ist es nicht möglich, die Bettungsparameter in einem einfachen Rechengang zu ermitteln.

Die Berechnung der Bettungsparameter in RF-SOILIN verläuft iterativ. Für den ersten Iterationsschritt ist es erforderlich, dass die Startwerte für die Bettungsparameter intern vom Programm gewählt werden. Mit diesen Startwerten kann eine Finite-Elemente-Analyse des Modells in RFEM durchgeführt werden. Als Ergebnis steht die Verteilung der Sohlspannungen zur Verfügung.

Die Sohlspannungen des ersten Iterationsschritts gehen als Eingangsgröße in die RF-SOILIN-Berechnung ein. Zusammen mit den Steifemoduli der eingegebenen Bodenschichten kann für jedes finite Element die Setzung berechnet werden. Aus der Setzung und der Sohlpressung werden die Bettungsparameter berechnet. Beim nächsten Iterationsschritt ersetzen die neuen Bettungsparameter die alten und eine neue Finite-Elemente-Analyse wird in Gang gesetzt, welche wiederum eine neue Sohlspannungsverteilung liefert. Als Konvergenzkriterium wird die neue Verteilung der Spannungen mit der alten verglichen. Solange die Abweichung eine bestimmte Konvergenzschranke nicht unterschreitet, geht die neue Spannungsverteilung in RF-SOILIN in die Berechnung neuer Bettungsparameter ein.

Wird die Differenz der Sohlspannungsverteilung zweier aufeinanderfolgender Iterationsschritte zum ersten Mal unterschritten, wird die Iteration beendet. Als Ergebnis werden die Bettungsparameter des letzten Iterationsschritts in RF-SOILIN ausgegeben.

Bild 2.2 zeigt den schematischen Ablauf der Berechnung mit RF-SOILIN.

Bild 2.2: Berechnungsablauf mit RF-SOILIN

Eine entscheidende Zwischengröße bei der iterativen Berechnung der Bettungsparameter sind die Setzungen s_z . Für die Spannungsausbreitung infolge Auflast idealisiert RF-SOILIN den Baugrund als einen homogenen Halbraum mit linear-elastischem, isotropem Material gemäß dem Modell nach BOUSSINESQ.

Die Spannung wird schichtweise integriert. Zusammen mit dem zugehörigen Steifemodul werden die Setzungen berechnet.

Bild 2.3: Spannungsausbreitung im elastischen Halbraum bis zu einer Grenztiefe

Mit der Sohlpressung σ_z und den Setzungen s_z werden die Bettungsparameter berechnet.

In folgendem DLUBAL-Blog werden die Ergebnisse unterschiedlicher Bodenmodelle mit RF-SOILIN verglichen: https://www.dlubal.com/blog/23356

Das Thema "Bodenmodelle für Fundamentplatten" ist auch in [1] Kapitel 6 ausführlich behandelt.

3 Eingabedaten

Nach dem Aufruf des Zusatzmoduls erscheint ein neues Fenster. Links wird ein Navigator angezeigt, der die verfügbaren Masken verwaltet.

Die Last- und Bodenparameter sind in zwei Eingabemasken zu definieren. Beim ersten Aufruf von RF-SOILIN werden die Lastfälle und Lastkombinationen aus RFEM eingelesen.

OK

Eine Maske lässt sich durch Anklicken des Eintrags im Navigator aufrufen. Mit den links dargestellten Schaltflächen wird die vorherige bzw. nächste Maske eingestellt. Das Blättern durch die Masken ist auch mit den Funktionstasten [F2] (vorwärts) und [F3] (rückwärts) möglich.

Abbrechen

[OK] sichert die Eingaben. RF-SOILIN wird beendet und es erfolgt die Rückkehr in das Hauptprogramm. [Abbrechen] beendet das Zusatzmodul, ohne die Daten zu speichern.

3.1 Basisangaben

In Maske 1.1 Basisangaben sind die elastisch gebetteten Flächen und die maßgebende Belastung festzulegen. Des Weiteren kann eine Norm ausgewählt werden, auf deren Grundlage die Bodenparameter ermittelt werden.

RF-SOILIN - [Betonmodell]		×
Datei Einstellungen Hilfe		
Eingabedaten	1.1 Basisangaben	
Basisangaben Böden, Bodenproben und -schie	Fundament erzeugen von Nach Norm	
	Flächen Nr.:	:2004 ~
	1,2	1 marshall
	Vorhandene Lastfälle / Kombinationen Maßgebender Lastfall / Maßgebender	Je Lastkombination
	C LF1 Eigengewicht LK20 · LF1 + LF2	
	Ow LF3 Wind in +X	
	Qw LF4 Wind in +Y	
	Imp LF5 Imperfektion in +X	
	Imp LF6 Imperfektion in +Y	
	GZ1 LK1 1.35°LF1	
	CZT LK2 1.30 LFI + LF0	
	GZT LK4 1.35"LF1 + 1.5"LF2	
	GZT LK5 1.35*LF1 + 1.5*LF2 + LF5	
	GZT LK6 1.35*LF1 + 1.5*LF2 + LF6	
	GZT LK7 1.35*LF1 + 1.5*LF2 + 0.9*LF3	
	GZT LK8 1.35°LF1 + 1.5°LF2 + 0.9°LF3 + LF5	and the second se
	CZL LK3 I.30 LFI + I.5 LF2 + U.9 LF4	
	GZT LK11 1.35°LF1 + 1.5°LF3	The second se
	GZT LK12 1.35*LF1 + 1.5*LF3 + LF5	
	GZT LK13 1.35*LF1 + 1.5*LF4	Interaction maintenant
	GZT LK14 1.35*LF1 + 1.5*LF4 + LF6	Boden und Struktur
	GZT LK15 1.35*LF1 + 1.05*LF2 + 1.5*LF3	von Fundament-
	C221 LK16 1.35"LF1 + 1.05"LF2 + 1.5"LF3 + LF5	Flächen
	C71 K18 135* F1 + 1.05 LF2 + 1.5 LF4	
	G Ch LK19 LF1	1
	G Ch LK20 LF1 + LF2 v	
	Alle (37)	
	Kommentar	
	LK mit ständigen und quasi-ständigen Gebrauchslasten	
	v .	
< >		
	Berechnung Details Grafik	OK Abbrechen

Bild 3.1: Maske 1.1 Basisangaben

Fundament erzeugen von

In diesem Abschnitt ist anzugeben, für welche Flächen die Interaktion zwischen Boden und Bauwerk untersucht werden soll. Die Nummern der Flächen können im Eingabefeld eingetragen oder über die Schaltfläche [Auswählen] grafisch im RFEM-Arbeitsfenster festgelegt werden.

3

Alternativ können die relevanten Flächen bereits bei der Definition der Flächenlagerung in RFEM festgelegt werden.

Neues Flächenla	iger X
Lager Nr. 1 Berechnung dei	An Flächen Nr.
Automatisch zwischen Bo	mit Zusatzmodul RF-SOILIN (Interaktion den und Struktur)
Lagerbedingung	en
Lager u _x u _y u _z	Federkonstante Cu,x: 1000.00 [kN/m³] Cu,y: 1000.00 [kN/m³] Nichtlinearität Cu,z: \$>>\$ [kN/m³] Ausfall falls Kontaktspannung in z negati Image: Ima
Schub Vxz Vyz	C v , yz : [kV/m] C v , yz : [kV/m]
* *	
Kommentar	
D	00 OK Abbrechen

Bild 3.2: RFEM-Dialog Neues Flächenlager

Wird im RFEM-Dialog *Neues Flächenlager* das Kontrollfeld *Automatisch mit Zusatzmodul RF-SOILIN* angehakt, so erscheint diese Fläche in Maske 1.1 von RF-SOILIN voreingestellt.

Nach Norm

Die Berechnung der Bettungsparameter kann normunabhängig oder nach drei Normen erfolgen. In der Liste dieses Abschnitts bestehen folgende Auswahlmöglichkeiten:

Vorhandene Lastfälle / Kombinationen

In diesem Abschnitt sind alle Lastfälle und Lastkombinationen aufgelistet, die in RFEM angelegt wurden.

Mit der Schaltfläche *lasst sich ein selektierter Eintrag nach rechts als Maßgebender Lastfall / Maßgebende Lastkombination* übertragen. Die Übergabe kann auch per Doppelklick erfolgen.

Falls die Nummer eines Lastfalls rot dargestellt ist wie z. B. LF 5 oder LF 6 im Bild 3.1, so kann dieser nicht bemessen werden: Hier handelt es sich um einen Lastfall ohne Lastdaten oder um einen Imperfektionslastfall. Bei der Übergabe erscheint eine entsprechende Warnung.

Maßgebender Lastfall / Maßgebende Lastkombination

In der rechten Spalte sind die für den Nachweis ausgewählten Lastfälle, Last- und Ergebniskombinationen aufgelistet. Auch in dieser Liste kann die relevante Belastung ausgewählt werden.

Maßgebender Lastfall / Maßgebende Lastkombination					
LK20 - LF1 + LF2	~				
LK8 1.35*LF1 + 1.5*LF2 + 0.9*LF3 + LF5	^				
LK9 1.35*LF1 + 1.5*LF2 + 0.9*LF4					
LK10 1.35*LF1 + 1.5*LF2 + 0.9*LF4 + LF6					
LK11 1.35*LF1 + 1.5*LF3					
LK12 1.35*LF1 + 1.5*LF3 + LF5					
LK13 1.35*LF1 + 1.5*LF4					
LK14 1.35*LF1 + 1.5*LF4 + LF6					
LK15 1.35*LF1 + 1.05*LF2 + 1.5*LF3					
LK16 1.35*LF1 + 1.05*LF2 + 1.5*LF3 + LF5					
LK17 1.35*LF1 + 1.05*LF2 + 1.5*LF4					
LK18 1.35*LF1 + 1.05*LF2 + 1.5*LF4 + LF6					
LK19 LF1					
LK20 LF1 + LF2					
LK21 LF1 + LF2 + 0.6*LF3					
LK22 LF1 + LF2 + 0.6*LF4					
LK23 LF1 + LF3					
LK24 LF1 + LF4					
LK25 LF1 + 0.7*LF2 + LF3					
LK26 LF1 + 0.7*LF2 + LF4					
LK27 LF1					
LK28 LF1 + 0.6*LF2					
LF1 Eigengewicht					
LF2 Nutzlast					
LF3 Wind in +X					
LF4 Wind in +Y	¥				

Bild 3.4: Abschnitt Maßgebender Lastfall / Maßgebende Lastkombination

Bei der Analyse der Boden-Bauwerkinteraktion werden für jedes einzelne finite Element Federn berechnet. Es wird also in die Modelldaten eingegriffen. Die Größe der Federn ist abhängig von der Belastung. Das heißt: Die Berechnung ist nur für einen eindeutigen Lastzustand möglich. Deshalb kann nur ein Lastfall oder eine Lastkombination ausgewählt werden.

kombination

Da Ergebniskombinationen an jeder Stelle immer zwei Werte (Minimum und Maximum) aufweisen, kommen diese Kombinationen für RF-SOILIN nicht infrage. Aus dem gleichen Grund können in RF-SOILIN auch nicht mehrere "Bemessungsfälle" angelegt werden, wie es in anderen Modulen möglich ist.

Für die Tragwerksanalyse ist es meist erforderlich, unterschiedliche Lastkombinationen zu bilden. RF-SOILIN bedeutet in dieser Hinsicht keine Einschränkung für den Anwender. Aus den verschiedenen Kombinationen muss nur eine ausgewählt werden, die für die Berechnung der Bettungskoeffizienten verwendet wird: Diese wird in der Regel eine Lastkombination mit ständigen und quasi-ständigen Gebrauchslasten sein. Die Stahl- oder Stahlbetonnachweise können dann wie gewohnt mit den Kombinationen für die Tragsicherheit erfolgen.

Kommentar

In diesem Eingabefeld sind benutzerdefinierte Anmerkungen möglich, um z. B. die Auswahl der maßgebenden Lastkombination zu erläutern.

3.2 Böden

In dieser Maske sind die charakteristischen Bodenkennwerte, die Stellen der Bodenproben und die jeweiligen Bodenprofile zu definieren.

Die Einheiten und Nachkommastellen der Bodenkennwerte und Schichtdicken lassen sich über das Menü **Einstellungen** \rightarrow **Einheiten und Dezimalstellen** anpassen (siehe Kapitel 7.2, Seite 25).

Bild 3.5: Maske 1.2 Böden

3.2.1 Boden-Materialien

Zunächst sind in der Tabelle *1.2.1 Böden* für alle vorkommenden Böden die bodenmechanischen Kennwerte zu definieren. Eine Zeile entspricht einer Bodenart. Die weiteren Eingaben in der Tabelle *1.2.3 Bodenschichten* beziehen sich dann auf diese Zeilennummern.

Jedem Bodenmaterial wird in der Spalte B eine Farbe zugewiesen. Sie wird ebenfalls in der Tabelle 1.2.3 Bodenschichten verwendet.

Unabhängig von der Norm und der Definitionsart ist die Wichte anzugeben. Dabei bedeuten:

- γ spezifisches Gewicht des Bodens
- $\gamma_{\rm sat}$ spezifisches Gewicht des mit Wasser gesättigten Bodens

Die weiteren Eingabemöglichkeiten sind von der Norm abhängig, die in Maske 1.1 Basisangaben einstellt wurde.

Keine Norm / EN 1997-1 [2]

Bei diesen Vorgaben sind der *Elastizitätsmodul* E_{def} und die *Querdehnzahl* ν der jeweiligen Böden anzugeben (siehe Bild 3.5).

Definitionsart:

Steifemodul

Elastizitätsmodul und Querdehnzahl $\, imes \,$

DIN 4019-1 [3]

Für diese Norm bestehen folgende Definitionsmöglichkeiten:

- Definition durch den Steifemodul E,
- Definition durch den *Elastizitätsmodul* E_{def} und die *Querdehnzahl* ν

Bei der ersten Möglichkeit ist in der Tabelle nur die Eingabe des Steifemoduls E_s erforderlich. Bei der zweiten Option sind der Elastizitätsmodul E_{def} und die Querdehnzahl ν anzugeben.

Es besteht folgende Beziehung zwischen E_s und E_{def} :

$$E_{\rm s} = \frac{E_{\rm def} \cdot (1 - \nu)}{(1 + \nu) \cdot (1 - 2\nu)} \tag{3.1}$$

ČSN 73 1001 [4]

Bei dieser Norm ist neben der Definition von *Elastizitätsmodul* E_{def} und *Querdehnzahl* ν die Eingabe des *Koeffizienten* m (Korrekturfaktor für zusätzliche Lasten) erforderlich.

Materialbibliothek

Viele Bodenmaterialien sind in einer Datenbank hinterlegt. Diese ist zugänglich über die Schaltfläche im Feld der Spalte A (siehe Bild 3.5) oder die Schaltfläche [Bibliothek].

Material aus Bibliothek übernehme	'n			×
Filter	Material zum Übernehmen			
Materialkategorie-Gruppe:	Materialbezeichnung	Norm		^
Boden	Kies, aleichkörnia	Keine	Norm	
boden	Kies, sandig	Keine	Norm	
Material-Kategorie:	Sand, deichkörnig (Grobsand)	Keine	Norm	
Boden 🗸	Sand, gleichkörnig (Erinsand)	Keine	Norm	
	Sand	Keine	Norm	
Norm-Gruppe:	Schluff, geringplastisch	Keine	Norm	
Alle 🗸		Keine	Norm	
Norma	Schluff oder Top, organisch	Keine	Norm	
Norm:		Keine	Norm	
Alle		Keine	Norm	
		Keine	Norm	
		Keine	Norm	
	Kies, gielchkornig (GE)	DIN 1	8196:2011-05	
	Kies, sandig, wenig Feinkorn (Gvv, GI)	DIN 1	8196:2011-05	
	Kies, sandig, tonig, schluffig (GU, GT)	DIN 1	8196:2011-05	
Inklusive ungültiger	Kies-Sand-Feinkorngemisch, Sprengung des Korngeru	IS DIN 1	8196:2011-05	_
Eavoritengruppe:	Sand, gleichkornig (SE)	DIN 1	8196:2011-05	~
	Sand, out abdestuff, Sand, kiesio (SW, SD		8196:2011-05	\sim
Beton - DIN	Suchen:			\sim
Materialkennwerte		Sand, gleichk	örnig (SE) DIN	18196:2011-05
Haupt-Kennwerte				
Elastizitatsmodul		E G	3.00	kN/cm ²
Poissonsche Zahl (Querdebozahl)	v	0.280	KIN/CIII~
Spezifisches Gewicht	1	γ	16.00	kN/m ³
Zusätzliche Kennwerte			10.00	
Koeffizient		m	0.200	
- Kohäsion		Ck	0.00	kN/cm ²
Reibungswinkel		Φk	32	•
Totalkohasion		Cuk	0.00	kN/cm ²
Deformationsmodul des Baugnung	440	7sat Educ	19.50	kN/m°
Deronnationanioual dea Badgiane		- del	5.00	Kito Gili
2 0.00			ОК	Abbrechen

Bild 3.6: Bibliothek mit Bodenmaterialien

3 Eingabedaten

Im Abschnitt *Filter* ist die Materialkategorie *Boden* fest voreingestellt. Die gewünschte Materialgüte kann im Abschnitt *Material zum Übernehmen* ausgewählt werden; die Kennwerte lassen sich im unteren Abschnitt überprüfen.

Mit [OK] oder [-] wird das gewählte Material in die Tabellenzeile von RF-SOILIN übergeben.

Das Kapitel 4.3 des RFEM-Handbuchs beschreibt, wie Materialien gefiltert, ergänzt oder neu sortiert werden können.

Bodenstörung

Dieses Kontrollfeld steht bei allen Normen außer DIN 4019-1 zur Verfügung. Damit besteht die Möglichkeit, Singularitätseffekte infolge des Aushubs zu berücksichtigen, die sich in den Bodenschichten knapp unterhalb der Gründung einstellen. Hierzu ist die *Tiefe* der Störung anzugeben.

Anzahl der Bodenschichten

Mit diesem Eingabefeld wird gesteuert, wie viele Eingabezeilen in der Tabelle 1.2.3 Bodenschichten verfügbar sind.

Liegt eine unterschiedliche Anzahl an Bodenschichten für die diversen Bodenproben vor, so ist das Kontrollfeld *Zusätzliche geologische Regionen* anzuhaken. Danach kann die von der Standardvorgabe abweichenden Schichtenanzahl in Maske *1.3 Zusätzliche geologische Regionen* für bestimmte Bereiche definiert werden (siehe Kapitel 3.3).

Grundwasser

Wenn das Grundwasser für die Ermittlung der Bettungsparameter eine Rolle spielt, ist dieses Kontrollfeld anzuhaken. Die Lage des Grundwasserspiegels kann dann im Eingabefeld festgelegt werden.

Der Grundwasserspiegel wird für alle Bodenproben einheitlich angesetzt. In der RFEM-Grafik wird die Lage des Grundwassers symbolisch dargestellt.

Gestein unterhalb der letzten Schicht

Falls unterhalb der letzten Schicht der Bodenproben ein nicht komprimierbarer Boden (z. B. Fels) ansteht, kann dies mit dem Kontrollfeld erfasst werden. Diese Störung des elastischen, isotropen Halbraums beeinflusst den Verlauf der Spannungsverteilung mit zunehmender Tiefe.

Auch diese Option wird einheitlich für alle Bodenproben angesetzt und im Arbeitsfenster von RFEM symbolisch dargestellt.

Zusätzliche geologische Regionen

Dieses Kontrollfeld ermöglicht es, eine von der Standardvorgabe abweichende Anzahl von Bodenschichten zu verwenden. Hierzu können in Maske *1.3 Zusätzliche geologische Regionen* Bereiche definiert werden, denen jeweils eine spezifische Anzahl von Schichten zugewiesen werden kann (siehe Kapitel 3.3).

OK

Symbole für Grundwasser und Gestein

3.2.2 Bodenproben

RF-SOILIN Ort der Bodenprobe wählen. Die Eingabe der Stellen wird durch die grafische Auswahlmöglichkeit im Arbeitsfenster erleichtert, die über die Schaltfläche 💽 zugänglich ist. Die grafisch ausgewählten Koordinaten werden in die aktuelle Tabellenzeile übernommen.

In der Tabelle 1.2.2 Bodenproben sind die Koordinaten der einzelnen Bodenproben anzugeben.

.2.2 Bodenproben							1.2.3 Boo	denschichten der Probe Nr. 2			
	A	B	С	D	E	~		A	В	C	D
Probe	Bode	enprobe-Koordina	aten	Region			Schicht			Schicht-	Ordinate UK
Nr.	X [m]	Y [m]	Z [m]	Nr.	Kommentar		Nr.	Boden		dicke ∆d [m]	Z [m]
1	12.600	1.850	-0.750	-			1	1 - Sand, gleichkömig (SE)]	1.200	1.200
2	9.200 🛨	9.000	-0.750	-			2	2 - Schluff, gering plastisch (UL)		1.800	3.000
3	12.700	10.800	-0.750	-			3	4 - Ton, mittelplastisch (TM)		0.600	3.600
4	3.500	9.200	-0.750	-			4	3 - Kies, sandig, wenig Feinkom (GW, GI)		6.000	9.600
5	2.000	2.500	-0.750	1					Г		
6	13.398	-3.161	-0.750	-		1					
7											
8											
9						1					
10											
11											
12											
13											
14											
15											
16						V					
	1										

Bild 3.7: Bodenproben und Bodenschichten

Die Koordinate Z bezieht sich auf den globalen Ursprung von RFEM. Falls dieser Ursprung auf Höhe der Gründungssohle liegt, ist der Aushub entsprechend zu berücksichtigen.

Die Bodenproben dürfen auch außerhalb der Gründungsfläche des Bauwerks liegen, um die Senkmulde (siehe Bild 2.1, Seite 4) im Modell zu erfassen.

Wenn sich die Probe in einer zusätzlichen geologischen *Region* befindet, wird deren Nummer in Spalte D angegeben.

3.2.3 Bodenschichten

Die aktuelle Tabelle verwaltet die Schichten der Bodenprobe, der in der Tabelle *1.2.2 Bodenproben* selektiert ist (siehe Bild 3.7). Vor der Eingabe der Schichtenfolge muss daher der Cursor in die relevante Zeile der Bodenprobe gesetzt werden!

Es stehen so viele Eingabezeilen zur Verfügung wie Schichten im Abschnitt 1.2.1 Boden-Materialien bzw. in Maske 1.3 Zusätzliche geologische Regionen festgelegt wurden. Da in den Bereichen zwischen den Bodenproben der Schichtaufbau aus den eingegebenen Proben interpoliert wird, ist es notwendig, dass alle Proben die gleiche Schichtenabfolge haben. Daher wird auch der letzte eingegebene Schichtaufbau automatisch für alle Proben übernommen.

Boden
1 - Sand, gleichkömig (SE)
2 - Schluff, gering plastisch (UL)
1 - Sand, gleichkömig (SE)
2 - Schluff, gering plastisch (UL)
3 - Kies, sandig, wenig Feinkom (GW, GI)
4 - Ton, mittelplastisch (TM)

Schichten, die bei einzelnen Bodenproben nicht vorkommen, können mit einer Dicke von 0,0 m eingegeben werden.

In der Spalte *Boden* können die definierten Bodenarten in der Liste ausgewählt oder durch Eingabe der Bodennummer festgelegt werden.

Die Schichtdicke Δd ist in Spalte C einzugeben.

Zur Kontrolle der Eingaben wird in Spalte D die *Ordinate UKZ* angegeben, die jeweils die Unterkante der Schicht darstellt.

3.3 Zusätzliche geologische Regionen

Diese Maske erscheint nur, wenn in Maske *1.2 Böden* die Option *Zusätzliche geologische Regionen* aktiviert ist. Hier können Bereiche definiert werden, deren Bodenproben eine von der globalen Vorgabe abweichende Anzahl an Schichten aufweisen.

	A	B	C	D	E	F	G	H		J	K
egion	Region			Koordinater	n der zusätzliche	en geologischer	n Region			Anzahl	
Nr.	Form	X1 [m]	Y1 [m]	X ₂ [m]	Y2 [m]	X3 [m]	Y3 [m]	X4 [m]	Y4 [m]	Schichten	Kommentar
1	Viereck 💽 🗟	0.000	0.000	0.000	5.000	5.000	5.000	5.000	0.000	2	
2	Viereck	5.000	0.000	5.000	5.000	12.000	5.000	12.000	0.000	3	
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											

Bild 3.8: Maske 1.3 Zusätzliche geologische Regionen

Region Form

In der Liste dieser Spalte kann ausgewählt werden, ob die geologische Region als *Viereck* oder als *Kreis* definiert werden soll.

Koordinaten

In den Spalten B bis I werden die Koordinaten des Bereichs hinterlegt. Bei einem Kreis sind die Koordinaten des Mittelpunkts und der Radius anzugeben, bei einem Viereck die X- und Y-Koordinaten der vier Eckpunkte.

Über die Schaltfläche 🗟 in Spalte A (siehe Bild 3.8) lassen sich die Koordinaten grafisch bestimmen: Bei einem Viereck sind die vier Definitionspunkte des Polygons nacheinander im RFEM-Arbeitsfenster anzuklicken.

Die zusätzlichen Regionen werden in der Grafik des Arbeitsfensters dunkelbraun dargestellt.

Bode Kc Regior X [m] Y [m] Z [m] Nr. 12.600 1.850 0.000 38.517 0.510 0.000 12.700 10.800 0.000 3.500 9.200 0.000 2.000 2 500 0 0 0 0 2.900 2.600 0.000 10.200 3.300 0.000

Tabelle 1.2.2 Bodenproben

In Spalte J kann für jeden Bereich eine separate Anzahl an Bodenschichten festgelegt werden, für die dann in Maske *1.2 Böden* der Aufbau definiert werden kann.

Die Region der entsprechenden Bodenproben wird in der Tabelle 1.2.2 Bodenproben angegeben.

Anzahl Schichten

4 Berechnung

4.1 Detaileinstellungen

Details...

Vor dem Start der Berechnung sollten die Berechnungsdetails überprüft werden. Der entsprechende Dialog ist in jeder Maske des Zusatzmoduls über die Schaltfläche [Details] zugänglich.

4

Bild 4.1: Dialog Details

Setzungsmulde

Für die realitätsnahe Ermittlung der Bodenkennwerte ist es notwendig, einen gewissen Bereich um das eigentliche Bauwerk herum mit zu berücksichtigen (siehe Bild 2.1, Seite 4).

Wird beispielsweise ein *Randabstand* von 5,00 m vorgegeben, dann wird zu den Teilen des Modells und zu den Bodenproben mindestens dieser Abstand eingehalten.

Der Bereich der Setzungsmulde wird in der Grafik durch eine Punktlinie gekennzeichnet.

Bild 4.2: Bereich der Setzungsmulde

4 Berechnung

Dieser Abschnitt verwaltet die Rasterpunkte, für die in Maske 2.1 die Spannungen und Setzungen ausgegeben werden.

Der *Rasterursprung* kann manuell eingetragen oder mit der Schaltfläche 🔊 grafisch im Arbeitsfenster festgelegt werden. In den beiden *Rasterabstand*-Eingabefeldern kann die "Maschenweite" des Rasters gemäß Grafikskizze festgelegt werden.

Sofern erforderlich, kann auch eine *Rasterdrehung* erfolgen. Ein positiver Winkel β bewirkt die Drehung des Rasters im Uhrzeigersinn.

Diverses

Werden bei der Definition des Flächenlagers in RFEM keine horizontalen Federn angegeben (siehe Bild 3.2, Seite 7) und sind keine anderen horizontalen Lager vorhanden, so ist das System bei der Berechnung instabil. Um diesen Fall auszuschließen, können in diesem Abschnitt horizontale Federn definiert werden, die diese Instabilität unterbinden.

Wie das Bild 2.2 auf Seite 5 zeigt, verläuft die Ermittlung der Bettungskoeffizienten in einem iterativen Prozess. Wird die *Maximale Anzahl der Iterationen* erreicht, ohne dass sich ein Gleichgewicht einstellen konnte, so wird die Berechnung abgebrochen. In diesem Fall erscheint eine Abfrage, ob die Ergebnisse auch ohne Einhaltung des Konvergenzkriteriums ausgegeben werden sollen.

RFEM64 Hinweis Nr. 35662
Bei der Berechnung wurde die maximale Anzahl der Iterationen erreicht, ohne dass jedoch das Konvergenzkriterium erzielt wurde. Erhöhen Sie deshalb bitte im Dialog Details im Modul RF-SOILIN die maximale Anzahl der Iterationen und führen Sie die Berechnung emeut durch. Möchten Sie sich trotzdem die Zwischenergebnisse des letzten Iterationsschrittes anzeigen lassen?
Ja Nein

Bild 4.3: Hinweis bei Berechnungsabbruch

Der Beiwert für die Festlegung der maximalen Bettungskoeffizienten steuert, wie groß die maximale Federsteifigkeit C_{u,z} werden kann, die von RF-SOILIN iterativ bestimmt wird. Dieser Faktor ist auf den programminternen Startwert C_{u,z} = 10 MN/m³ bezogen.

Der Faktor 100 bedeutet also eine maximale Federkonstante $C_{u,z} = 100 \cdot 10 \text{ MN/m}^3 = 1000 \text{ MN/m}^3$ für die Analyse. Der Iterationsprozess, der die Federsteifigkeiten bis zum Erreichen der Konvergenz laufend korrigiert, lässt damit keine höheren Konstanten für $C_{u,z}$ zu.

In jeder Eingabemaske des Moduls RF-SOILIN kann die [Berechnung] über die gleichnamige Schaltfläche gestartet werden.

Die Berechnung kann auch in der RFEM-Oberfläche gestartet werden: Im Dialog *Zu berechnen* (Menü **Berechnung** \rightarrow **Zu berechnen**) sind die Bemessungsfälle der Zusatzmodule wie Lastfälle oder Lastkombinationen aufgelistet.

Nicht berechnete Nr. (221 LK12 1.35"LF1+1.5"L (221 LK13 1.35"LF1+1.5"L (221 LK14 1.35"LF1+1.5"L (221 LK15 1.35"LF1+1.05"L (221 LK16 1.35"LF1+1.05"L (221 LK16 1.35"LF1+1.05"L (221 LK18 1.35"LF1+1.05"L (201 LK18 1.35"LF1+1.05"L (201 LK12 LF1+LF2 (201 LK24 LF1+LF2 (201 LK25 LF1+0.7"LF2+ (201 LK26 LF1+0.7"LF2+ (202 LK1 GZT (STR/GE0 (203 LK2 LF1+0.6"LF2 (204 LF1+0.6"LF2 <	Bezeichnung						
Nr. I.35"LF1+1.5"L (221) LK12 1.35"LF1+1.5"L (221) LK13 1.35"LF1+1.5"L (221) LK15 1.35"LF1+1.05"L (221) LK15 1.35"LF1+1.05"L (221) LK15 1.35"LF1+1.05"L (221) LK16 1.35"LF1+1.05"L (221) LK16 1.35"LF1+1.05"L (221) LK17 1.35"LF1+1.05"L (221) LK18 1.35"LF1+1.05"L (201) LK19 LF1 (201) LK12 LF1+LF2 (201) LK21 LF1+LF2 (201) LK22 LF1+LF2+0.6"L (201) LK23 LF1+LF3 (201) LK24 LF1+0.7"LF2+0.6"L (201) LK25 LF1+0.7"LF2+0.6"L (201) LK26 LF1+0.7"LF2+0.6"L (201) LK27 LF1 (201) LK26 LF1+0.6"LF2 (202) LK28 <	Bezeichnung		Zur Be	erechnung ausge	ewählt		
Image: Control of the state of the		^	Nr.		Bezeich	nung	
GRI LK13 1.35"LF1+1.5"L GRI LK14 1.35"LF1+1.5"L GRI LK15 1.35"LF1+1.05" GRI LK17 LS1"LF1+1.05" GRI LK17 LS1"LF1+1.05" GRI LK17 LS1"LF1+1.05" GRI LK17 LS1"LF1+1.05" GRI LK20 LF1+LF2 GRI LK21 LF1+LF2 GRI LK22 LF1+LF2+0.6" GRI LK23 LF1+LF3 GRI LK24 LF1+0.7"LF2+ GRI LK25 LF1+0.7"LF2+ GRI LK28 LF1+0.6"LF2 GRI LK28 LF1+0.6"LF2 GRI GZT STR/GE0 GRI EX2 LF1+0.6"LF2 GRI EX3 GZG-0.0000000 GRI <td>'LF3 + LF5</td> <td></td> <td></td> <td>FA1 RF-SOI</td> <td>LIN - Nachweis der Intera</td> <td>ktion zwischen Boden</td> <td>und Str.</td>	'LF3 + LF5			FA1 RF-SOI	LIN - Nachweis der Intera	ktion zwischen Boden	und Str.
earl LK14 1.35"LF1 + 1.5"L earl LK15 1.35"LF1 + 1.05" earl LK16 1.35"LF1 + 1.05" earl LK16 1.35"LF1 + 1.05" earl LK17 1.35"LF1 + 1.05" earl LK18 1.35"LF1 + 1.05" earl LK18 1.35"LF1 + 1.05" earl LK18 LS15"LF1 + 1.05" earl LK12 LF1 + LF2 earl LF1 + LF2 LF1 earl LF1 + LF2 + 0.6" SC6 earl LF1 + LF2 LF1 + 0.7"LF2 + earl LF1 + 0.7"LF2 + SC6 earl LF1 + 0.6"LF2 SC6 earl LF1 + 0.6"LF2 SC6 earl LF1 + 0.6"LF2 SC6 earl GZG - Charackter SC7 earl EAR CZG - Charackter earl	'LF4						
221 LK15 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK16 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK17 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK17 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK17 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK18 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK18 $1.35^{-1}LF1 + 1.05^{-1}$ 221 LK19 LF1 226 LK12 LF1 + LF2 231 LF1 + LF2 LF1 241 LF1 + LF2 LF1 242 LF1 + LF2 LF1 243 LF1 + LF2 LF1 244 LF1 + LF2 LF1 245 LF1 + 0.7^{-1}LF2 + 246 LF1 + 0.6^{-1}LF2 254 LF1 QCT (STR/GE0 246 EK1 QZT (STR/GE0 247 EK1 QZT (STR/GE0 248 LF1 - 0.7^{-1}LF2 244 LF1 - 0.7^{-1}LF2	'LF4 + LF6						
221 LK16 $1.35^{+}LF1 + 1.05^{-}$ 221 LK17 $1.35^{+}LF1 + 1.05^{-}$ 221 LK18 $1.35^{+}LF1 + 1.05^{-}$ 221 LK19 LF1 226 LK12 LF1 + LF2 226 LK12 LF1 + LF2 + 0.6^{-} 226 LF1 + LF2 LF1 + LF3 237 LF1 + LF3 LF1 + LF4 238 LF1 + 0.7^{+}LF2 + 1.05^{-} 246 LF1 + 0.7^{+}LF2 + 1.05^{-} 256 LK27 LF1 256 LK27 LF1 256 LK28 LF1 + 0.6^{-}LF2 251 EK1 GZT (STR/GE0 256 EK3 GZG - Charakter 257 EA3 DZ -	5*LF2 + 1.5*LF3						
221 LK17 1.35"LF1 + 1.05" 221 LK18 1.35"LF1 + 1.05" 221 LK18 1.35"LF1 + 1.05" 221 LK18 LF1 125 LK19 LF1 126 LK20 LF1 + LF2 + 0.6" 126 LK21 LF1 + LF2 + 0.6" 126 LK23 LF1 + LF3 126 LK24 LF1 + LF3 126 LK25 LF1 + 0.7"LF2 + 126 LK26 LF1 + 0.7"LF2 + 126 LK27 LF1 126 LK28 LF1 + 0.6"LF2 126 LK28 LF1 + 0.6"LF2 126 LK28 LF1 + 0.6"LF2 127 EK1 GZT (STR/GE0 126 EK2 GZG - Charakter 126 F1 LF1 - D.5"LF2	5*LF2 + 1.5*LF3 + LF5						
221 LK18 1.35"LF1 + 1.05" 1.15"LF1 + 1.05" LF1 LF1 1.16"LK20 LF1 + LF2 LF1 1.16"LK21 LF1 + LF2 + 0.6" LF1 + LF2 + 0.6" 1.16"LK23 LF1 + LF3 LF1 + LF3 1.16"LK24 LF1 + LF4 LF1 + LF4 1.16"LK25 LF1 + 0.7"LF2 + LF1 + 0.7"LF2 + 1.16"LK26 LF1 + 0.7"LF2 + LF1 + 0.6"LF2 1.16"LK26 LF1 + 0.6"LF2 LF1 + 0.6"LF2 1.16"LK26 <td>5*LF2 + 1.5*LF4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5*LF2 + 1.5*LF4						
ich LK19 LF1 ich LK20 LF1 + LF2 ich LK21 LF1 + LF2 + 0.6' ich LK21 LF1 + LF2 + 0.6' ich LK22 LF1 + LF3 ich LK23 LF1 + LF4 ich LK24 LF1 + LF4 ich LK25 LF1 + 0.7'LF2 + ich LK26 LF1 + 0.7'LF2 + ich LK27 LF1 ich LK28 LF1 + 0.6'LF2 ich LK28 LF1 + 0.6'LF2 ich EK2 GZG · Charakter ich EK3 GZG · Oussistäi	5*LF2 + 1.5*LF4 + LF6						
Ch LF1 LF2 Ch LF1 LF1 LF2 0.6' Ch LK2 LF1 LF2 0.6' Ch LK2 LF1 LF2 0.6' Ch LK2 LF1 LF3 LF1 Ch LK2 LF1 LF1 Ch Ch LK2 LF1 0.7'LF2 Ch Ch LK2 LF1 0.7'LF2 Ch LK2 LF1 0.7'LF2 Ch LK2 LF1 0.6''LF2 Ch LK2 LF1 0.6''LF2 Ch LK2 LF1 0.6''LF2 Ch			>				
Ch LF1 LF2 0.6' Ch LK22 LF1 LF2 0.6' Ch LK23 LF1 LF3 LF1 Ch LK24 LF1 LF1 LF3 Ch LK25 LF1 0.7'LF2 LF1 Ch LK26 LF1 0.7'LF2 LF1 Ch LK26 LF1 0.7'LF2 LF1 Ch LK26 LF1 0.7'LF2 LF1 Ch LK28 LF1 0.6''LF2 LF1 Ch EK2 GZG · Charakter COL LF1 Ch EK3 GZG · Charakter CA DF DF			>>				
Ch LK22 LF1 + LF2 + 0.6° Ch LK23 LF1 + LF3 Ch LK24 LF1 + LF4 Ch LK25 LF1 + 0.7°LF2 + Ch LK26 LF1 + 0.7°LF2 + Ch LK26 LF1 + 0.7°LF2 + Ch LK26 LF1 + 0.6°LF2 Ch LK28 LF1 + 0.6°LF2 Ch K28 LF1 + 0.6°LF2 Ch EX1 GZT (STR/GE0 Ch EX2 GZG - Charakter Ch EX3 DZ - DTO N DACH	5*LF3						
Chi LK23 LF1 + LF3 Chi LK24 LF1 + LF4 Chi LK25 LF1 + 0.7*LF2 + Chi LK26 LF1 + 0.7*LF2 + Chi LK26 LF1 + 0.6*LF2 Chi LK28 LF1 + 0.6*LF2 Chi LK28 LF1 + 0.6*LF2 Chi LK28 LF1 + 0.6*LF2 Chi EK2 GZG - Charakter Chi EK3 GZG - Clussi + ctai Chi DF DF TON LB20 LF1	5*LF4						
Ch LK24 LF1 + LF4 Ch LK25 LF1 + 0.7"LF2 + Ch LK26 LF1 + 0.7"LF2 + CS LK27 LF1 OS LK28 LF1 + 0.6"LF2 CH LF1 + 0.6"LF2 LF1 + 0.6"LF2 CH EK1 GZT (STR/GE0 Ch EK2 GZG - Charakter CH EX3 DZ - DTO ADAD			4				
Ch LK25 LF1+0.7*LF2+ Ch LK26 LF1+0.7*LF2+ CS LK27 LF1 OS LK27 LF1 OS LK27 LF1 OS LK28 LF1+0.6*LF2 CH GZT (STR/GEO Ch CH GZG - Charakter CGZG - Quasi-state CH DS DS DS			44				
Ch LK26 LF1 + 0.7*LF2 + Cs LK27 LF1 Cs LK28 LF1 + 0.6*LF2 Cs LK28 LF1 + 0.6*LF2 Cs EK1 GZT (STR/GE0 Ch EK2 GZG - Quasi-stär GZG - Quasi-stär Cs EK3 GZG - Quasi-stär	+ LF3	L					
QS LK27 LF1 QS LK28 LF1 + 0.6°LF2 QI EK1 GZT (STR/GE0 Ch EK2 GZG - Charakter QS EK3 GZG - Quasi-stär	+ LF4						
QS LK28 LF1 + 0.6*LF2 QI EK1 GZT (STR/GE0 Ch EK2 GZG - Charakter QS EK3 GZG - Quasi-stär							
ZII EK1 GZT (STR/GEO Ch EK2 GZG - Charakter OS EK3 GZG - Quasi-stär							
Ch EK2 GZG - Charakter Qs EK3 GZG - Quasi-stär	0) - Ständig / vorübergehend - Gl. 6.10						
Qs EK3 GZG - Quasi-stär	ristisch						
EA1 DE DETON DE-	ándig						
FAT RF-BETON Flac	chen - Stahlbeton-Bemessung						
FA1 RF-BETON Stab	be - Unterzug						
FA2 RF-BETON Stäb	be - Stützen	~					
Alle ~							

Bild 4.4: RFEM-Dialog Zu berechnen

	Alle
	Alle
LF	Lastfälle
LK	Lastkombinationen
EK	Ergebniskombinationen
	Zusatzmodule

Falls der RF-SOILIN-Fall in der Liste *Nicht berechnete* fehlen, ist die Selektion am Ende der Liste auf *Alle* oder *Zusatzmodule* zu ändern.

Mit der Schaltfläche Nird der selektierte RF-SOILIN-Fall in die rechte Liste übergeben. [OK] startet dann die Berechnung.

Der Ablauf der Berechnung kann anschließend in einem Dialog verfolgt werden.

Ein Lastfall oder eine Lastkombination kann in RFEM auch ohne RF-SOILIN-Ergebnisse berechnet werden. In diesem Fall startet zunächst automatisch die Analyse mit RF-SOILIN zur Ermittlung der Bettungskennwerte.

5 Ergebnisse

Unmittelbar nach der Berechnung erscheint die Maske 2.1 Spannungen und Setzungen (siehe Bild 5.1).

Die Resultate werden in zwei Ergebnismasken ausgegeben, die sich durch Anklicken des Eintrags im Navigator ansteuern lassen. Mit den Schaltflächen 🗊 und 🖾 oder den Funktionstasten [F2] und [F3] wird die vorherige bzw. nächste Maske eingestellt.

[OK] sichert die Ergebnisse und beendet RF-SOILIN. Es erfolgt die Rückkehr zu RFEM.

5.1 Spannungen und Setzungen

In dieser zweigeteilten Maske wird der Verlauf der Sohlspannungen und Setzungen ausgegeben. Die Auflistung erfolgt nach Rasterpunkten geordnet.

2.1 Spann	ungen und S	Setzungen							
	A	B	C I	D	F	F	(Spappuposverlauf in Z
Raster	Fläche	Rasterp	unkt-Koordinat	ten [m]	Aushub	Sohlspannung	Seta	zung	Fläche Nr.: 1 x: 13.000 m
Punkt	Nr.	X	Y	Z	[m]	σz,0 [kN/m ²]	Sz,0	[mm]	Rasterpunkt Nr.: 1 y: 2.000 m
1	1	13.000	2.000	0.100	0.850	15.0	3	2.69	
2	2	15.000	2.000	0.100	0.850	17.54	1	3.30	
3	1	1.000	4.000	0.100	0.850	10.9	1	0.15	
4	1	3.000	4.000	0.100	0.850	17.40)	0.49	
5	1	5.000	4.000	0.100	0.850	28.40)	0.81	1360 1360 1360
6	1	7.000	4.000	0.100	0.850	15.30)	3.66	
7	1	9.000	4.000	0.100	0.850	15.8	7	3.60	23.90 15.57
8	1	11.000	4.000	0.100	0.850	20.8	5	4.02	30.59
9	1	13.000	4.000	0.100	0.850	14.9	1	3.21	37.28
10	1	1.000	6.000	0.100	0.850	5.0	7	0.03 🗸	43.97
Connection	an and a set of the T	Clickle Ma	4 Desteres	ald Mar 4					55.30 14.40
Spannun	gsvenaut in z	- Flache Nr.	r - Rasterpu		E (c (6		
Punkt	Tiefe	Schichtdicke	Wichte	0	Sna	r I	G		64.64 12.62
Nr.	z [m]	∆ [m]	v [kN/m ³]	٨œr	σ ₇	0.2*σr	Graf	G7	
0	0,000	0,000	16.00	0.00	13.60	2 72	12.24	15.06	73.98
1	0.000	0.000	16.00	2.34	15.00	3.19	11.90	15.00	
2	0.644	0,140	16.00	7 97	23.90	4.78	10.79	15.57	82.32
3	1.026	0.400	17.50	6.69	30.59	6.12	9.89	16.00	
4	1.020	0.302	17.50	6.69	37.28	7.46	8.63	16.00	
5	1.700	0.382	17.50	6.69	43.97	8 79	7.01	15.80	92.66 8.04
6	2 000	0.209	21.00	4 40	48.37	9.67	5.85	15.50	
7	2 603	0.603	11.50	6.93	55.30	11.06	3.35	14 40	101.99
8	3 415	0.812	11.50	9.34	64 64	12.93	0.00	12.62	
9	4,227	0.812	11,50	9.34	73.98	14.80	0.00	10.88	111.33 6.02
10	5,039	0.812	11.50	9.34	83.32	16.66	0.00	9,34	
11	5.851	0.812	11.50	9.34	92.66	18.53	0.00	8.04	
12	6.663	0.812	11,50	9.34	101,99	20.40	0.00	6.94	120.07
13	7.475	0.812	11.50	9.34	111.33	22.27	0.00	6.02	
14	8.288	0.812	11.50	9.34	120.67	24.13	0.00	5.26	130.01 4.62
15	9.100	0.812	11.50	9.34	130.01	26.00	0.00	4.62	Tiefe z
									[kN/m²]
									💠 🔿 🐗 🎿 🔝

Bild 5.1: Maske 2.1 Spannungen und Setzungen

In der oberen Tabelle sind die Spannungen und Setzungen aufgelistet, die an der Oberfläche des Erdreichs vorliegen. Für jeden Rasterpunkt wird hier die *Sohlspannung* $\sigma_{z,0}$ und die *Setzung* $s_{z,0}$ ausgegeben.

Details...

OK

Der Dialog Details verwaltet die Vorgaben für das Raster der Ergebniswerte (siehe Bild 4.1, Seite 14).

Die untere Tabelle listet die Spannungen in den einzelnen Bodenschichten auf. Sie beziehen sich auf den Rasterpunkt, der in der oberen Tabelle selektiert ist. Die Spannungsdetails sind von der gewählten Norm abhängig (siehe Tabellen auf folgenden Seiten).

Sind Ergebniswerte rot gekennzeichnet, so erweist sich die definierte *Tiefe z* als nicht ausreichend. Nach [2] Abschnitt 6.6.2(6) empfiehlt es sich, bis zu der Tiefe zu rechnen, in der die wirksame Vertikalspannung aus der Fundamentbelastung 20 % der wirksamen Auflastspannung ausmacht ($\sigma_z \leq 0.2 \cdot \sigma_r$). In der Grafik dieser Maske wird $0.2 \cdot \sigma_r$ als graue Linie dargestellt, die Spannung σ_z als rote Linie. Der Schichtaufbau muss so tief definiert werden, dass sich beide Linien schneiden!

Keine Norm / EN 1997-1 [2]

In der Tabelle Spannungsverlauf in Z werden folgende Werte ausgegeben:

Wert	Bedeutung
Z	Lage des untersuchten Punkts bezogen auf Bauwerkssohle
${\it \Delta} {\sf d}$	Dicke der Schicht unter höhergelegenem Punkt
γ	Wichte des Bodens
$\Delta\sigma_{\sf r}$	Änderung der Überlagerungsspannung aus Eigenlast des Bodens - ohne Auftrieb: $\Delta \sigma_{\rm r} = \gamma \cdot \Delta d$ - mit Auftrieb: $\Delta \sigma_{\rm r} = \gamma' \cdot \Delta d = (\gamma_{\rm sat} - \gamma_{\rm Wasser})\Delta d$
σ_{r}	Überlagerungsspannung aus Eigenlast des Bodens $\sigma_{r,n} = \sigma_{r,n-1} + \Delta \sigma_r$ mit n: Schichtnummer
$0,2*\sigma_r$	20 %-Wert der Überlagerungsspannung aus Eigenlast zur Bestimmung der Grenztiefe
$\sigma_{\rm z,ef}$	effektive Spannung $\sigma_{\rm z,ef} = \sigma_{\rm z} - (0, 2 \cdot \sigma_{\rm r})$
$\sigma_{\rm z}$	Spannung infolge Bauwerkslast

Tabelle 5.1: Detailangaben nach EN 1997-1

DIN 4019-1 [3]

In der Tabelle Spannungsverlauf in Z werden folgende Werte ausgegeben:

Bedeutung
Lage des untersuchten Punkts bezogen auf Bauwerkssohle
Dicke der Schicht unter höhergelegenem Punkt
Wichte des Bodens
Änderung der Überlagerungsspannung aus Eigenlast des Bodens- ohne Auftrieb: $\Delta \sigma_{\ddot{u}} = \gamma \cdot \Delta d$ - mit Auftrieb: $\Delta \sigma_{\ddot{u}} = \gamma' \cdot \Delta d = (\gamma_{sat} - \gamma_{Wasser})\Delta d$
Überlagerungsspannung aus Eigenlast des Bodens $\sigma_{\ddot{u},n} = \sigma_{\ddot{u},n-1} + \Delta \sigma_{\ddot{u}}$ mit n: Schichtnummer
20 %-Wert der Überlagerungsspannung aus Eigenlast zur Bestimmung der Grenztiefe
Spannung infolge Bauwerkslast

Tabelle 5.2: Detailangaben nach DIN 4019-1

ČSN 73 1001 [4]

In der Tabelle Spannungsverlauf in Z werden folgende Werte ausgegeben:

Wert	Bedeutung
z	Lage des untersuchten Punkts bezogen auf Bauwerkssohle
${\it \Delta} {\sf d}$	Dicke der Schicht unter höhergelegenem Punkt
γ	Wichte des Bodens
$\Delta\sigma_{\rm Or}$	Änderung der Überlagerungsspannung aus Eigenlast des Bodens - ohne Auftrieb: $\Delta \sigma_{\text{Or}} = \gamma \cdot \Delta d$ - mit Auftrieb: $\Delta \sigma_{\text{Or}} = \gamma' \cdot \Delta d = (\gamma_{\text{sat}} - \gamma_{\text{Wasser}})\Delta d$
$\sigma_{ m Or}$	Überlagerungsspannung aus Eigenlast des Bodens $\sigma_{\rm Or,n}=\sigma_{\rm Or,n-1}+\Delta\sigma_{\rm Or}$ mit n: Schichtnummer
$m * \sigma_{Or}$	Spannung zur Bestimmung der Grenztiefe
$\sigma_{\rm z,ef}$	effektive Spannung $\sigma_{\rm z,ef} = \sigma_{\rm z} - ({\rm m} \cdot \sigma_{\rm Or})$
σz	Spannung infolge Bauwerkslast
	·

Tabelle 5.3: Detailangaben nach ČSN 73 1001

5

In dieser Maske werden für jedes gebettete finite Element die Bettungskoeffizienten ausgegeben.

	A	B	С	D	E	F	G	H		J
läche	Element	Elem	ent-Koordinater	n (m)	Horizonta	le Fedem		Vertikale Fedem		
Nr.	Nr.	X	Y	Z	C _{u,x} [kN/m ³]	C _{u,y} [kN/m ³]	C _{u,z} [kN/m ³]	C _{v,xz} [kN/m]	C _{v.yz} [kN/m]	
1	1	0.250	0.250	0.000	1000.00	1000.00	67412.50	2495.46	2495.46	
	2	0.250	0.750	0.000			67832.50	2932.84	2932.84	
	3	0.250	1.250	0.000			74292.10	2603.85	2603.85	
	4	0.250	1.750	0.000			77966.50	2251.94	2251.94	
	5	0.250	2.250	0.000			76936.60	2037.50	2037.50	
	6	0.250	2.750	0.000			76939.40	2031.56	2031.56	
	7	0.250	3.250	0.000			76909.00	2033.89	2033.89	
	8	0.250	3.750	0.000			77102.30	2223.87	2223.87	
	9	0.250	4.250	0.000			72369.10	2472.52	2472.52	
	10	0.250	4.750	0.000			65978.10	2899.94	2899.94	
	11	0.250	5.250	0.000			59407.60	3221.16	3221.16	
	12	0.250	5.750	0.000			48646.40	4464.90	4464.90	
	13	0.250	6.250	0.000			34346.00	6577.51	6577.51	
	14	0.250	6.750	0.000			26857.10	7483.65	7483.65	
	15	0.250	7.250	0.000			22998.60	7817.12	7817.12	
	16	0.250	7,750	0.000			21987.40	8124.74	8124.74	
	17	0.250	8.250	0.000			23086.80	8325.38	8325.38	
	18	0.250	8.750	0.000			25889.70	8132.00	8132.00	
	19	0.250	9.250	0.000			30014.50	7502.56	7502.56	
	20	0.250	9.750	0.000			35548.30	6643.93	6643.93	
	21	0.250	10.250	0.000			36889.60	6451.68	6451.68	
	22	0.250	10.750	0.000			39263.40	5826.72	5826.72	
	23	0.250	11.250	0.000			44081.90	4553.43	4553.43	
	24	0.250	11.750	0.000			57365.20	2812.49	2812.49	
	25	0.750	11.750	0.000			28962.40	5088.69	5088.69	
	26	1.250	11.750	0.000			20793.70	6512.62	6512.62	
	27	1.750	11.750	0.000			17410.10	7356.37	7356.37	
	28	2.250	11.750	0.000			15627.40	7739.17	7739.17	
	29	2.750	11.750	0.000			13628.90	8106.90	8106.90	
	30	3.250	11.750	0.000			10781.70	10786.90	10786.90	
	31	3,750	11,750	0.000			8519.81	9136 01	9136 01	
	32	4 250	11 750	0.000			7164 44	9147.28	9147.28	
	33	4 750	11 750	0.000			6574.82	8967.86	8967.86	
	34	5 250	11 750	0.000			6453.68	8715.94	8715.94	

Bild 5.2: Maske 2.2 Bettungskoeffizienten

Die einzelnen finiten Elemente sind durch ihre *Element Nr.* und *Element-Koordinaten* X, Y und Z gekennzeichnet.

Details...

In den Spalten E und F werden die Konstanten $C_{u,x}$ und $C_{u,y}$ der *Horizontalen Federn* angegeben, die im RFEM-Dialog *Neues Flächenlager* definiert wurden (siehe Bild 3.2, Seite 7). Sollten dort Null-Werte vorliegen, so werden die Werte des Dialogs *Details* verwendet (siehe Bild 4.1, Seite 14).

Die von RF-SOILIN ermittelten *Vertikalen Federn* werden in den Spalten G bis I ausgegeben. Die Bettungskoeffizienten $C_{u,z}$, $C_{v,xz}$ und $C_{v,yz}$ sind die wichtigsten Ergebnis des Moduls, da sie eine realistische Setzungsberechnung ermöglichen. Das Bettungsmodell von RFEM und die Bedeutung der drei Koeffizienten sind im RFEM-Handbuch, Kapitel 4.9 beschrieben.

Die Bettungskoeffizienten werden immer konstant für das finite Element angesetzt.

•

Die Bettungskoeffizienten lassen sich auch grafisch am Modell überprüfen: Klicken Sie die Schaltfläche [Grafik] an, um RF-SOILIN zu verlassen. Im Arbeitsfenster von RFEM werden nun die Werte der vertikalen Federn wie die Flächenschnittgrößen eines Lastfalls dargestellt.

Bild 5.3: Grafische Darstellung der Bettungskoeffizienten C_{u,z} im RFEM-Arbeitsfenster

Der *Ergebnisse*-Navigator ist an die Ergebnisse von RF-SOILIN angepasst. Damit lassen sich die Bettungskoeffizienten $C_{u,z}$, $C_{v,xz}$ und $C_{v,yz}$ grafisch überprüfen.

Analog zur Schnittgrößenanzeige blendet die Schaltfläche [Ergebnisse ein/aus] die Darstellung der Bettungskennwerte ein oder aus. Die RFEM-Tabellen haben für die Ergebnisse von RF-SOILIN keine Bedeutung.

Für die Ausgabe der *Werte an Flächen* lassen sich die Darstellungsmöglichkeiten von RFEM nutzen. Diese sind im Kapitel 9.4 des RFEM-Handbuchs beschrieben.

Ebenso steht das Farbpanel mit den üblichen Steuerungsmöglichkeiten zur Verfügung. Die Funktionen sind im Kapitel 3.4.6 des RFEM-Handbuchs beschrieben. Das erste Register des Panels ermöglicht es zudem, die Umgebung, Rasterpunkte, Hülle, Proben und Geologische Regionen einund auszublenden.

Die Grafiken der Bettungskoeffizienten können auch in das Ausdruckprotokoll übergeben werden (siehe Kapitel 6.2, Seite 23).

6 Ausdruck

6.1 Ausdruckprotokoll

Für die Daten des Moduls RF-SOILIN wird – wie in RFEM – ein Ausdruckprotokoll generiert, das mit Grafiken und Erläuterungen ergänzt werden kann. Die Selektion im Ausdruckprotokoll steuert, welche Daten des Zusatzmoduls schließlich im Ausdruck erscheinen.

6

Das Ausdruckprotokoll ist im RFEM-Handbuch beschrieben. Das Kapitel 10.1.3.5 *Selektion der Zusatzmodul-Daten* erläutert, wie die Ein- und Ausgabedaten von Zusatzmodulen für den Ausdruck aufbereitet werden können.

Ausdruckprotokoll - AD3: RE-SOILIN*									_		×
Datai Ansista Rascheiten Sinstellungen 5	infüran Hilfs										~
				2.0.1	A 🔊						
	• ••••••••••••••••••••••••••••••••••										
Ausdruckprotokoll											^
🚋 🚞 RFEM											
🗄 🛁 RF-SOILIN				IB Franz	z-Josef M	ustermann		\$	Seite:	1	10/19
- FA1 - Nachweis der Interaktion zwischen				Sesamst	raße 8, 1234	5 Musterstadt		E	ilat:		1
1.1 Basisangaben				,	www.mustermanr	1.com			RF-	SOIL	IN
1.2.1 beschleibung der boden											_
1.3 Zusätzliche geologische Regioner					Mo	dell: Betonmodell)atum:	11.05	2017
Ergebnisse								1.	atom.	11.00.	
2.1.1 Spannungen und Setzungen	• 1.2.2	- 1.2.3 E	BODENF	ROBEN	UND BO	DENSCHICH	ITEN				
2.2 Bettungskoeffizienten	Probe	Bodenpr	roben-Koordin	aten [m]	Region	Boo	ien	Schichto	licke	Ordinate	UK
Internet in the solution of th	• Nr.	X 12.600	Y 1850	Z .0 150	Nr.	- Sand, claichkörnig (S	E)	∆t [m	1500	Z [m]	1.500
		12.000		0.100	2	- Sand, gut abgestuft, S	Band, kiesig		1.200		2.700
					3	SW, SI) - Kies, sandig, wenig F	einkorn (GW,		7.250		9.950
	2	9.200	9.000	-0.150	- 1	31) - Sand, gleichkörnig (S	E)		1.200		1.200
					2	! - Sand, gut abgestuft, § SW, SI)	Band, kiesig		1.800		3.000
					3) - Kies, sandig, wenig F 31)	einkorn (GW,		6.000		9.000
	3	12.700	10.800	-0.150	- 1	- Sand, gleichkörnig (S	E) Band kiesin		1.200		1.200
					(SW, SI)	siskess (CW)		7.000		0.200
		0.500	0.000	0.450	Č.	SI)	enkom (Gw,		1.000		5.200
	4	3.000	9.200	-0.150	- 1	- Sand, gleichkornig (S - Sand, gut abgestuft, S	e) Band, kiesig		1.600		3.000
					3	SW, SI) - Kies, sandig, wenig F	einkorn (GW,		6.500		9.500
	5	2.000	2.500	-0.150	- 1	31) - Sand, gleichkörnig (S	E)		1.000		1.000
					2	- Sand, gut abgestuft, § SW, SI)	Band, kiesig		0.900		1.900
					3	- Kies, sandig, wenig F 31)	einkorn (GW,		6.000		7.900
	• 1 3 Z	ISÄTZI	ICHE G		SCHE R	EGIONEN					
	Region	Region		Koordi	naten der zusi	ätzlichen geologischen	Region [m]	A	nzahl	Kommer	ntar
	Nr.	Form	X ₁ / X _c	Y ₁ /Y _c	X2/R)	(2 X3	Y3 X4	Y ₄ Sci	nichten		
	1	Viereck	0.000	0.000	0.000	5.000 5.000	5.000 5.000	0.000	3		
	211	SPANN	UNGEN	UND SE		FN					
	Raster	Fläche	Raster	punkt-koordina	aten [m]	Aushub	Sohispannung	Setzung			
	punkt	Nr.	Х	Y	Z	[m]	σ _{z.0} [kN/m ²]	Sz.o [mm]			
	2	1	0.000	0.000	0.100	0.250	5.39 19.66	0.14	+		
	3 4	1	4.000 6.000	0.000	0.100	0.250	31.22 38.23	0.97	5		
	5	1	8.000	0.000	0.100	0.250	7.89 16.37	0.29			_
	7	1	12.000	0.000	0.100	0.250	27.37	0.78			_
	9	1	0.000	2.000	0.100	0.250	3.80	0.08			
	11	1	4.000	2.000	0.100	0.250	18.10	0.99			
	12	1	8.000	2.000	0.100	0.250	28.74 13.27	1.44			
	14	1	10.000 12.000	2.000	0.100	0.250	16.01 13.90	0.91			
	16	1	14.000	2.000	0.100	0.250	13.60 35.74	0.87			
	18	1	0.000	4,000	0.100	0.250	6.08 8.84	0.13			
	20	1	4.000	4.000	0.100	0.250	15.81	0.89			
< >>	< 1		0.000	4.000	0.100	1 0.250	23.73	1.33	· I		>
			RF-SOILIN	1				Seiten:	19	Seite: 10	

Bild 6.1: RF-SOILIN-Daten im Ausdruckprotokoll

6.2 Grafikausdruck

In RFEM kann jedes Bild, das im Arbeitsfenster angezeigt wird, in das Ausdruckprotokoll übergeben oder direkt zum Drucker geleitet werden. Somit lassen sich auch die am Modell gezeigten Bettungskoeffizienten für den Ausdruck aufbereiten.

Das Drucken von Grafiken ist im Kapitel 10.2 des RFEM-Handbuchs beschrieben.

Die aktuelle Grafik der Bettungskennwerte kann gedruckt werden über das Menü

Datei ightarrow Drucken

oder die entsprechende Schaltfläche in der Symbolleiste.

	3	RFEM 5.0	08.01 x64 - [B	etonmode	ell*]		
	4⊳	<u>D</u> atei	Bearbeite <u>n</u>	<u>A</u> nsicht	<u>E</u> infügen	Berechnung	Er <u>q</u> ebnisse
		23	3 🔒		<u>n</u> 2 /	3 🕹 🙆 🖄	2 🔲 🗖
-	9	- 97 1	% - 🦈 -	Grafik	drucken	💯 🖭 🛍 ·	- 🖬 - 📫 -

Bild 6.2: Schaltfläche Drucken in RFEM-Symbolleiste

Es wird folgender Dialog angezeigt.

Grafikausdruck		×
Allgemeine Einstellungen Optionen Farbskala	Faktoren Ränder und Streck	faktoren
Grafikbild ○ Sofort ausdrucken ● In Ausdruckprotokoll: ▲P3: F ∨ ○ In Zwischenablage ablegen ○ In 3D-PDF	Welche Fenster Nur das aktive Mehr Seriendruck	Grafikmaßstab Vie Bildschirm-Ansicht Fensterfüllend Im Maßstab 1: 10
Grafikbild-Größe und -Drehung ✓ Über gesamte Seitenbreite ○ Über gesamte Seitenhöhe ● Höhe: 50 ♀ [% der Seite] Drehung: 0 ♀ [%]	Optionen Im Ergebnisverlauf Werte a x-Stelle ausgeben Grafikbild sperren (ohne Ak Ausdruckprotokoll nach [0]	in gewünschter tualisierung) K] anzeigen
Grafik-Überschrift RF-SOILIN: C-u,z		OK Abbrechen

Bild 6.3: Dialog Grafikausdruck, Register Allgemeine Einstellungen

Der Dialog *Grafikausdruck* ist im Kapitel 10.2 des RFEM-Handbuchs beschrieben. Dort sind auch die übrigen Dialogregister erläutert.

Eine Grafik kann im Ausdruckprotokoll wie gewohnt per Drag-and-drop an eine andere Stelle geschoben werden.

Aus Protokoll entfernen Mit neuer Seite beginnen Selektion... Eigenschaften... Um eine Grafik nachträglich im Ausdruckprotokoll anzupassen, führen Sie einen Rechtsklick auf den entsprechenden Eintrag im Protokoll-Navigator aus. Die Option *Eigenschaften* im Kontextmenü ruft wieder den Dialog *Grafikausdruck* auf, in dem Sie die Anpassungen vornehmen können.

7 Allgemeine Funktionen

Dieses Kapitel beschreibt nützliche Menüfunktionen und stellt einige Exportmöglichkeiten für die Ergebnisse vor.

7.1 Bemessungsfall

Die Bettungskoeffizienten des Moduls RF-SOILIN sind ein wichtiger Bestandteil der Modelldaten. Im Gegensatz zu anderen Zusatzmodulen ist daher nicht möglich, mehrere "Bemessungsfälle" zu definieren. Die Daten der Belastung und Bodenproben werden in einem einzigen RF-SOILIN-Fall verwaltet.

RF-SOILIN-Fall umbenennen

Die Bezeichnung des RF-SOILIN-Falls wird geändert über das Menü

$\mathbf{Datei} ightarrow \mathbf{Fall}$ umbenennen.

Es erscheint folgender Dialog.

RF-SOILIN-Fall umbenennen	×
Nr. Bezeichnung 1 Neue Bezeichnung	• ~
D	OK Abbrechen

Bild 7.1: Dialog RF-SOILIN-Fall umbenennen

Hier kann eine andere Bezeichnung für den RF-SOILIN-Fall angegeben werden.

RF-SOILIN-Fall löschen

Die Daten des aktuellen RF-SOILIN-Falls können gelöscht werden über das Menü

$Datei \rightarrow Fall löschen.$

Vor dem endgültigen Löschen erscheint eine Sicherheitsabfrage.

Bild 7.2: Warnung vor Löschvorgang

7.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RFEM und die Zusatzmodule gemeinsam verwaltet. In RF-SOILIN ist der Dialog zum Anpassen der Einheiten zugänglich über das Menü

Einstellungen ightarrow Einheiten und Dezimalstellen

Es erscheint der aus RFEM bekannte Dialog. In der Liste *Programm / Modul* ist das Modul RF-SOILIN voreingestellt.

Einheiten und Dezimalstellen							×
Programm / Modul	Eingabedaten	Ergebnisse					
RF-HOLZ	Böden				Geometrie		
DE DYNAM D			Finheit	Dez -Stellen		Finheit	Dez -Stellen
RE-IOINTS	145-14				K. K. I	Liniter	
RF-STIRNPI	wichten:		kN/m°3 ∨	2 -	Koordinaten:	m ~	3 -
RF-VERBIND	Steifemodule:		MN/m^2 \vee	2 ≑	Schichtdicken:	m ~	3 🜩
	Querdebozabl	en:	• U	2	Winkel:	•	
RF-DSTV	Goordonnizani	on.	70 V	<u> </u>	TVI INCI.		
RF-STABDÜBEL	Koeffizienten i	n:	% ~	2 🜩			
RF-HOHLPROF							
RF-FUND							
RF-STABIL							
RF-DEFORM							
DE DEWEG Disebas							
REIMP							
RESOLUN							
BE-GLAS							
RF-LAMINATE							
RF-INFLUENCE							
RF-LIMITS							
····· RF-PIPING Design							
~							
	N						
2 2						OK	Abbrechen

Bild 7.3: Dialog Einheiten und Dezimalstellen, Register Eingabedaten

Für RF-SOILIN stehen die beiden Register Eingabedaten und Ergebnisse zur Verfügung.

3 🕼

Die geänderten Einstellungen können als Benutzerprofil gespeichert und in anderen Modellen verwendet werden. Diese Funktionen sind im Kapitel 11.1.3 des RFEM-Handbuchs beschrieben.

7.3 Export der Ergebnisse

Die Ergebnisse von RF-SOILIN lassen sich auch in anderen Programmen verwenden.

Zwischenablage

Markierte Zellen der Ergebnismasken können mit [Strg]+[C] in die Zwischenablage kopiert und dann mit [Strg]+[V] z. B. in ein Textverarbeitungsprogramm eingefügt werden. Die Überschriften der Tabellenspalten bleiben dabei unberücksichtigt.

Ausdruckprotokoll

Die Daten von RF-SOILIN können in das Ausdruckprotokoll gedruckt (siehe Kapitel 6.1, Seite 22) und dort exportiert werden über das Menü

$\textbf{Datei} \rightarrow \textbf{Export in RTF}.$

Diese Funktion ist im Kapitel 10.1.11 des RFEM-Handbuchs beschrieben.

Literatur

- [1] Christian Barth und Walter Rustler. *Finite Elemente in der Baustatik-Praxis*. Beuth, Berlin, 2. Auflage, 2013.
- [2] EN 1997-1: Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik Teil 1: Allgemeine Regeln. Beuth Verlag GmbH, Berlin, 2004.
- [3] *DIN 4019-1: Baugrund; Setzungsberechnungen bei lotrechter, mittiger Belastung.* Beuth Verlag GmbH, Berlin, 1979.
- [4] Zakládání staveb. Základová půda pod plošnými základy. Český normalizační institut, Praha, 1988.
- [5] Vladimír Kolář et al. Berechnung von Flächen- und Raumtragwerken nach den Methode der finiten Elemente. SMTL Prag, 1972. Tschechisch.
- [6] Vladimír Kolář et al. Berechnung von Flächen- und Raumtragwerken nach den Methode der finiten Elemente. Springer, Wien, New York, 1975.
- [7] Vladimír Kolář und Ivan Němec. *Modeling of Soil-Structure Interaction*. Elsevier Science Publishers with Academica Prague, Amsterdam, 2. Auflage, 1989.
- [8] P. L. Pasternak. Grundlagen einer neuen Methode der Berechnung von Fundamenten mittels zwei Bettungskoeffizienten. Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moskau, 1954. Russisch.
- [9] Vladimír Kolář et al. *Kurs für Statiker von Gründungsbauwerken und Erdkörpern*. Haus der Technik, Ostrau, 1983. Tschechisch.
- [10] Vladimír Kolář und Ivan Němec. *Contact stress and settlement in the structure-soil interface*. Acadamia Prag, 1991. Tschechisch.

Index

Α

Ausdruckprotokoll	. 22, 23
Aushub	12

R

Basisangaben	6
Beenden von RF-SOILIN	6
Bemessungsfall	8, 24
Benutzerprofil	25
Berechnung	14
Berechnung starten	16
Bettungskoeffizient	20, 21
Bibliothek	10
Blättern in Masken	6
Boden	9
Boden-Bauwerkinteraktion	4, 8
Bodenprobe	12
Bodenschicht	11, 12
Bodenstörung	11

D

Details	-
Dezimalstellen	,
Drucken	

Е

Einheiten	. 25
Elastizitätsmodul	9, 10
Ergebniskombination	7,8
Ergebnismasken	. 17
Export	. 25

F

Fels			 						. 1	1
Fundament	 						 			6

G

Geologische Region	11
Gestein	. 11
Grafik	. 21
Grafikausdruck	. 23
Grundwasser	. 11
н	

L

κ

Kommentar
Koordinaten
L

B

Lastfall									 	7,	8
Lastkombination.		 								7,	8

М

Maßgebender Lastfall
Masken
Material
Maximaler Bettungskoeffizient

Ν

Navigator																			•							6	
Norm	• •	• •	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7,	9	

Ρ

Panel	 		 	21
Programmaufruf	 •••	•••	 	3

Q

Querdehnzahl		•	•		•	•	•	•	•		•	•	•	•	•	•	9,	1	C)
--------------	--	---	---	--	---	---	---	---	---	--	---	---	---	---	---	---	----	---	---	---

R

Randabstand 1	4
Raster	7
Region 1	3
RFEM-Grafik	3

S

Schicht	3
Schichtdicke 12	2
Setzung1	7
Setzungsmulde	4
Sohlspannung4, 1	7
Spannung	7
Starten von RF-SOILIN	3
Steifemodul	0

U

Überlagerungsspannung	
V Vertikale Feder 20	

W																
Wichte		•	•		•	•	•	•	•	•		•	• •	 • •	9	

z

Zusätzliche geologische Region 11, 13