Category: Member

Verification Example: 0001 - Torsional Constant and Polar Moment of Inertia

0001 - Torsional Constant and Polar Moment of Inertia

Description

A cross-section of the tube (annular area), shown in the Figure 1, is the rotationally symmetrical with respect to the x-axis. Determine the torsional constant ${ }^{1} J$ for this cross-section analytically and compare the results with the numerical solution in RFEM 5 and RSTAB 8 for various wall-thickness s respectively for various inner diameters D_{1}.

Geometry	Tube Cross-section	Outer Diameter	D_{2}	51.000	mm
		Wall Thickness Range	s	$2.600-10.000$	mm

Figure 1: Annular cross-section

Analytical Solution

The torsional constant J is defined as follows:

$$
\begin{equation*}
\left.M_{x}=G\right\lrcorner \vartheta \tag{1-1}
\end{equation*}
$$

where M_{x} is the torque, G is the shear modulus and ϑ is the relative rotation of the profile. The torsional constant J can be determined by means of the following process [1], for profiles without holes one has

$$
\begin{equation*}
J=2 \int_{A} \psi(y, z) \mathrm{d} A \tag{1-2}
\end{equation*}
$$

and for profiles with holes one has

[^0]
Verification Example: 0001 - Torsional Constant and Polar Moment of Inertia

$$
\begin{equation*}
J=2 \int_{A} \psi(y, z) \mathrm{d} A+2 \sum_{i} c_{i}\left|A_{i}\right| \tag{1-3}
\end{equation*}
$$

where $c_{i}=\psi\left(\partial A_{i}\right)$ is the constant solution on the inner boundaries, $\left|A_{i}\right|$ is the area of holes and $\psi(y, z)$ is an unknown stress function, which is the solution of the Poisson's partial differential equation of the form

$$
\begin{equation*}
\frac{\partial^{2} \psi(y, z)}{\partial y^{2}}+\frac{\partial^{2} \psi(y, z)}{\partial z^{2}}=-2 \tag{1-4}
\end{equation*}
$$

on the profile using the boundary condition $\psi(y, z)=c$, where c is the constant. This condition can be further specified, $\psi=0$ is taken on the outer boundaries and $\psi=c$ on the inner boundaries. For the given annular cross-section the torsional constant J and the polar moment of inertia ${ }^{2} I_{\mathrm{p}}$ should coincide and are defined by the known formula

$$
\begin{equation*}
J=I_{\mathrm{p}}=\frac{\pi}{32}\left(D_{2}^{4}-D_{1}^{4}\right) \tag{1-5}
\end{equation*}
$$

This can be proved by solving the formula (1-4). Due to the symmetry the stress function, ψ is not function of the polar coordinate φ, i.e. $\psi \neq \psi(\varphi)$. Laplacian operator $\Delta \psi$ has the following form in the polar coordinates

$$
\begin{equation*}
\Delta \psi=\psi_{y y}+\psi_{z z}=\psi_{r r}+\frac{\psi_{r}}{r}+\frac{\psi_{\varphi \varphi}}{r^{2}}=\psi_{r r}+\frac{\psi_{r}}{r} \tag{1-6}
\end{equation*}
$$

The problem is now described by the following equation and boundary condition

$$
\begin{align*}
\Delta \psi & =\psi_{r r}+\frac{\psi_{r}}{r}=-2 \\
\psi\left(R_{2}\right) & =0, R_{2}>R_{1}
\end{align*}
$$

where $R_{i}=\frac{D_{i}}{2}$, for $i=1,2$ is the tube radius. The following solution is assumed

$$
\begin{equation*}
\psi=A r^{2}+B \tag{1-9}
\end{equation*}
$$

where A and B are unknown constants, which can be obtained from formulae (1-7) and (1-8). The stress function ψ then results

$$
\begin{equation*}
\psi=\frac{R_{2}^{2}-r^{2}}{2} \tag{1-10}
\end{equation*}
$$

The constant c (solution on the inner boundaries) can be now calculated

[^1]\[

$$
\begin{equation*}
c=\psi\left(R_{1}\right)=\frac{R_{2}^{2}-R_{1}^{2}}{2} \tag{1-11}
\end{equation*}
$$

\]

The torsional constant J can be finally obtained according to the formula (1-3)

$$
J=4 \pi \int_{R_{1}}^{R_{2}} \psi(r) r \mathrm{~d} r+2 \frac{R_{2}^{2}-R_{1}^{2}}{2} \pi R_{1}^{2}=\frac{\pi}{2}\left(R_{2}^{4}-R_{1}^{4}\right)=\frac{\pi}{32}\left(D_{2}^{4}-D_{1}^{4}\right)
$$

This proves the equality of the torsional constant J and the polar moment of inertia I_{p} for the given annular cross-section. The formula (1-12) can be rewritten into the form

$$
\begin{equation*}
J=\frac{\pi}{4}\left(D_{2}^{3} s-3 D_{2}^{2} s^{2}+4 D_{2} s^{3}-2 s^{4}\right) \tag{1-13}
\end{equation*}
$$

where $s=R_{2}-R_{1}$ is the tube thickness. According to the theory for thin-walled cross-sections the torsional constant J can be calculated as

$$
\begin{equation*}
J=2 A_{m} s \frac{D_{2}-s}{2}=\frac{\pi}{4}\left(D_{2}^{3} s-3 D_{2}^{2} s^{2}+3 D_{2} s^{3}-s^{4}\right) \tag{1-14}
\end{equation*}
$$

where A_{m} is the area limited by the midline of the cross-section. It is obvious, that the formulae differ in the last two terms.

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.04.0024, RSTAB 8.04.0024 and SHAPE-MASSIVE 6.54

Results

Structure File	Program	Tube Dimension
0001.01	RFEM 5	51×2.6
0001.02	RFEM 5	51×5
0001.03	RFEM 5	51×10
0001.04	RSTAB 8	51×2.6
0001.05	RSTAB 8	51×5
0001.06	RSTAB 8	51×10

 which are manufactured according to the Canadian and U.S. standards. For these cross-sections the torsional constant J taken from these standards is prefered.

Verification Example: 0001 - Torsional Constant and Polar Moment of Inertia

Wall thickness	Analytical Solution	RFEM 5 / RSTAB 8 (Rolled Cross-section)		RFEM 5 / RSTAB 8 (Parametric Thin-Walled Cross-section)		RFEM 5 / RSTAB 8 (Parametric Massive Cross-section)	
s $[\mathrm{mm}]$	J $\left[\mathrm{~mm}^{4}\right]$	J $\left[\mathrm{~mm}^{4}\right]$	Ratio $[-]$	J $\left[\mathrm{~mm}^{4}\right]$	Ratio $[-]$	J $\left[\mathrm{~mm}^{4}\right]$	Ratio $[-]$
2.600	232194	232194	1.000	232194	1.000	232194	1.000
5.000	386754	386754	1.000	386754	1.000	386754	1.000
10.000	573506	573506	1.000	573506	1.000	573506	1.000

Wall thickness	Analytical Solution	SHAPE-MASSIVE	
s $[\mathrm{~mm}]$	J $\left[\mathrm{~mm}^{4}\right]$	J $\left[\mathrm{~mm}^{4}\right]$	Ratio $[-]$
2.600	232194	222660	0.959
5.000	386754	373952	0.967
10.000	573506	561682	0.979

References

[1] WUNDERLICH, W. and KIENER, G. Statik der Stabtragwerke. Teubner, 2004.

[^0]: ${ }^{1}$ The torsional constant J can be also denoted as $/ \mathrm{T}$.

[^1]: ${ }^{2}$ The polar moment of inertia is defined as $I_{\mathrm{p}}=\int_{A}\left(y^{2}+z^{2}\right) \mathrm{d} A$ and for given profile can be calculated as follows: $I_{\mathrm{p}}=$ $2 \pi \int_{R_{1}}^{R_{2}} r^{3} \mathrm{~d} r=\frac{\pi}{2}\left(R_{2}^{4}-R_{1}^{4}\right)=\frac{\pi}{32}\left(D_{2}^{4}-D_{1}^{4}\right)$.

