Program: RFEM 5, RSTAB 8, SHAPE-MASSIVE

Category: Member

Verification Example: 0001 – Torsional Constant and Polar Moment of Inertia

0001 – Torsional Constant and Polar Moment of Inertia

Description

A cross-section of the tube (annular area), shown in the **Figure 1**, is the rotationally symmetrical with respect to the *x*-axis. Determine the torsional constant¹ J for this cross-section analytically and compare the results with the numerical solution in RFEM 5 and RSTAB 8 for various wall-thickness s respectively for various inner diameters D_1 .

Geometry	Tube Cross-section	Outer Diameter	D ₂	51.000	mm
		Wall Thickness Range	S	2.600 - 10.000	mm

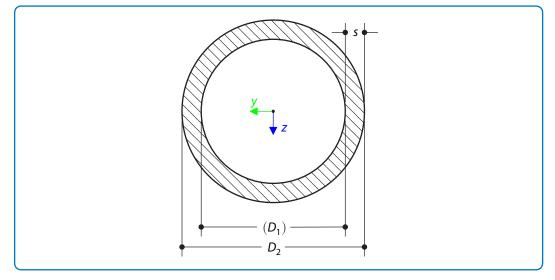


Figure 1: Annular cross-section

Analytical Solution

The torsional constant J is defined as follows:

$$M_{\rm x} = G J \vartheta \tag{1-1}$$

where M_x is the torque, G is the shear modulus and ϑ is the relative rotation of the profile. The torsional constant J can be determined by means of the following process [1], for profiles without holes one has

$$J = 2 \int_{A} \psi(y, z) dA \qquad (1-2)$$

and for profiles with holes one has

¹ The torsional constant J can be also denoted as $I_{\rm T}$.

Verification Example - 0001 © Dlubal Software 2015

Verification Example: 0001 – Torsional Constant and Polar Moment of Inertia

$$J = 2 \int_{A} \psi(y, z) dA + 2 \sum_{i} c_{i} |A_{i}| \qquad (1-3)$$

where $c_i = \psi(\partial A_i)$ is the constant solution on the inner boundaries, $|A_i|$ is the area of holes and $\psi(y, z)$ is an unknown stress function, which is the solution of the Poisson's partial differential equation of the form

$$\frac{\partial^2 \psi(\mathbf{y}, \mathbf{z})}{\partial \mathbf{y}^2} + \frac{\partial^2 \psi(\mathbf{y}, \mathbf{z})}{\partial \mathbf{z}^2} = -2 \tag{1-4}$$

on the profile using the boundary condition $\psi(y, z) = c$, where c is the constant. This condition can be further specified, $\psi = 0$ is taken on the outer boundaries and $\psi = c$ on the inner boundaries. For the given annular cross-section the torsional constant J and the polar moment of inertia² I_p should coincide and are defined by the known formula

$$J = I_{\rm p} = \frac{\pi}{32} \left(D_2^4 - D_1^4 \right) \tag{1-5}$$

This can be proved by solving the formula (1 – 4). Due to the symmetry the stress function, ψ is not function of the polar coordinate φ , i.e. $\psi \neq \psi(\varphi)$. Laplacian operator $\Delta \psi$ has the following form in the polar coordinates

$$\Delta \psi = \psi_{yy} + \psi_{zz} = \psi_{rr} + \frac{\psi_r}{r} + \frac{\psi_{\varphi\varphi}}{r^2} = \psi_{rr} + \frac{\psi_r}{r}$$
(1-6)

The problem is now described by the following equation and boundary condition

$$\Delta \psi = \psi_{rr} + \frac{\psi_r}{r} = -2 \tag{1-7}$$

$$\psi(R_2) = 0, R_2 > R_1 \tag{1-8}$$

where $R_i = \frac{D_i}{2}$, for i = 1, 2 is the tube radius. The following solution is assumed

$$\psi = Ar^2 + B \tag{1-9}$$

where A and B are unknown constants, which can be obtained from formulae (1 – 7) and (1 – 8). The stress function ψ then results

$$\psi = \frac{R_2^2 - r^2}{2} \tag{1-10}$$

The constant c (solution on the inner boundaries) can be now calculated

² The polar moment of inertia is defined as $I_p = \int_A (y^2 + z^2) dA$ and for given profile can be calculated as follows: $I_p = 2\pi \int_{R_1}^{R_2} r^3 dr = \frac{\pi}{2} (R_2^4 - R_1^4) = \frac{\pi}{32} (D_2^4 - D_1^4).$

Verification Example - 0001 © Dlubal Software 2015

Verification Example: 0001 – Torsional Constant and Polar Moment of Inertia

$$c = \psi(R_1) = \frac{R_2^2 - R_1^2}{2} \tag{1-11}$$

The torsional constant J can be finally obtained according to the formula (1 - 3)

$$J = 4\pi \int_{R_1}^{R_2} \psi(r)r \, \mathrm{d}r + 2\frac{R_2^2 - R_1^2}{2}\pi R_1^2 = \frac{\pi}{2} \left(R_2^4 - R_1^4\right) = \frac{\pi}{32} \left(D_2^4 - D_1^4\right) \tag{1-12}$$

This proves the equality of the torsional constant J and the polar moment of inertia I_p for the given annular cross-section. The formula (1 – 12) can be rewritten into the form

$$J = \frac{\pi}{4} \left(D_2^3 s - 3D_2^2 s^2 + 4D_2 s^3 - 2s^4 \right)$$
 (1 - 13)

where $s = R_2 - R_1$ is the tube thickness. According to the theory for thin-walled cross-sections the torsional constant J can be calculated as

$$J = 2A_{\rm m}s\frac{D_2 - s}{2} = \frac{\pi}{4} \left(D_2^3 s - 3D_2^2 s^2 + 3D_2 s^3 - s^4 \right) \tag{1-14}$$

where A_m is the area limited by the midline of the cross-section. It is obvious, that the formulae differ in the last two terms.

RFEM 5 and RSTAB 8 Settings

• Modeled in RFEM 5.04.0024, RSTAB 8.04.0024 and SHAPE-MASSIVE 6.54

Results

Structure File	Program	Tube Dimension
0001.01	RFEM 5	51 x 2.6
0001.02	RFEM 5	51 x 5
0001.03	RFEM 5	51 x 10
0001.04	RSTAB 8	51 x 2.6
0001.05	RSTAB 8	51 x 5
0001.06	RSTAB 8	51 x 10

Remark: In RFEM 5 / RSTAB 8 is the equation (1 - 4) used for all cross-sections except of those, which are manufactured according to the Canadian and U.S. standards. For these cross-sections the torsional constant J taken from these standards is prefered.

Verification Example: 0001 – Torsional Constant and Polar Moment of Inertia

Wall thickness	Analytical Solution	RFEM 5 / RSTAB 8 (Rolled Cross-section)		RFEM 5 / RSTAB 8 (Parametric Thin-Walled Cross-section)		RFEM 5 / RSTAB 8 (Parametric Massive Cross-section)	
s [mm]	<i>J</i> [mm ⁴]	<i>J</i> [mm ⁴]	Ratio [-]	<i>J</i> [mm ⁴]	Ratio [-]	<i>J</i> [mm ⁴]	Ratio [-]
2.600	232194	232194	1.000	232194	1.000	232194	1.000
5.000	386754	386754	1.000	386754	1.000	386754	1.000
10.000	573506	573506	1.000	573506	1.000	573506	1.000

Wall thickness	Analytical Solution	SHAPE-MASSIVE		
s [mm]	<i>J</i> [mm ⁴]	<i>J</i> [mm ⁴]	Ratio [-]	
2.600	232194	222660	0.959	
5.000	386754	373952	0.967	
10.000	573506	561682	0.979	

References

[1] WUNDERLICH, W. and KIENER, G. Statik der Stabtragwerke. Teubner, 2004.

