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0002 – Cantilever Beam on an Elastic Winkler Foundation

Description

A cantilever beam of length L with rectangular cross-section of height ℎ and width b lying on
an elastic Winkler foundation of stiffness C1,z is loaded by a distributed loading qz. Neglecting
self-weight, determine the maximum deflection uz and maximum bending moment My of the
beam. Calculate the same example also for a plate of the same heigth and width as the cantilever.

Material Isotropic
Linear Elastic

Modulus of
Elasticity

E 210.000 GPa

Shear
Modulus

G 105.000 GPa

Geometry Cantilever Length L 4.000 m

Height ℎ 0.200 m

Width b 0.005 m

Member
Foundation

Winkler
Elastic

Stiffness
C1,z 500.000 kN/m2

Plate
Foundation

Cu,z = C1,z
b 100000.000 kN/m3

Load Member Distributed qz 1.000 kN/m

Plate Distributed q = qz
b 200.000 kN/m2

qz

b
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z

x
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Figure 1: Problem sketch

Analytical Solution

Member Calculation

The governing differential equation for a beam on an elastic foundation can be expressed as

EIy
d4uz
dx4

+ C1,zuz = qz (2 – 1)

with the moment of inertia Iy = 1
12bℎ3 = 3.33 × 10−6 m4. Dividing by EIy and setting 𝛽4 = C1,z

4EIy
,

equation (2 – 1) can be rewritten as
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d4uz
dx4

+ 4𝛽4uz =
qz
EIy

(2 – 2)

The solution of (2 – 2) can be obtained as the superposition of the solutions of a particular integral,
which can be expressed, assuming uz = C = const, as

0 + 4𝛽4C =
qz
EIy

= const (2 – 3)

which leads to

C =
qz

4𝛽4EIy
=

qz
4 C1,z
4EIy

EIy
=

qz
C1,z

(2 – 4)

and the solution of the characteristic equation

d4uz
dx4

+ 4𝛽4uz = 0 (2 – 5)

To solve the characteristic equation (2 – 5), assume that uz = Aeu�x, hence

𝜆4 + 4𝛽4 = 0 (2 – 6)

Then the solution for 𝜆 can be expressed as

𝜆4 = −4𝛽4 ⇒ 𝜆k+1 = 4√(4𝛽4) [cos(
𝜋 + 2k𝜋

4
) + i sin(

𝜋 + 2k𝜋
4

)] (2 – 7)

where k = 0, 1, 2, 3. Equation (2 – 7) can be rewritten for all four variants as

𝜆1(k = 0) = 𝛽
√
2 [cos(

𝜋
4

) + i sin(
𝜋
4

)] = 𝛽(1 + i) (2 – 8)

𝜆2(k = 1) = 𝛽
√
2 [cos(

3𝜋
4

) + i sin(
3𝜋
4

)] = 𝛽(−1 + i) (2 – 9)

𝜆3(k = 2) = 𝛽
√
2 [cos(

5𝜋
4

) + i sin(
5𝜋
4

)] = 𝛽(−1 − i) (2 – 10)

𝜆4(k = 3) = 𝛽
√
2 [cos(

7𝜋
4

) + i sin(
7𝜋
4

)] = 𝛽(1 − i) (2 – 11)

Therefore, the solution uz of (2 – 5) takes the form

uz =
4

∑
i=1

Aie
u�ix (2 – 12)

Substituting equations (2 – 8)–(2 – 11), (2 – 12) can be rewritten as
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uz = A1e
u�x(1+i) + A2e

u�x(−1+i) + A3e
u�x(−1−i) + A4e

u�x(1−i) = (2 – 13)

eu�x (A1e
u�xi + A4e

−u�xi) + e−u�x (A2e
u�xi + A3e

−u�xi) (2 – 14)

Incorporating eu�xi = cos(𝛽x) + i sin(𝛽x) into (2 – 13) yields

uz = eu�x(C1 cos(𝛽x) + C2 sin(𝛽x)) + e−u�x(C3 cos(𝛽x) + C4 sin(𝛽x)) = (2 – 15)

cos(𝛽x) (C1eu�x + C3e
−u�x) + sin(𝛽x) (C2eu�x + C4e

−u�x) (2 – 16)

which can be further simplified using a new set of unknowns and the definition of hyperbolic
functions

uz = cos(𝛽x)(D1 cosh(𝛽x) + D2 sinh(𝛽x)) + sin(𝛽x)(D3 cosh(𝛽x) + D4 sinh(𝛽x)) (2 – 17)

The final solution of equation (2 – 2) is constructed by the superposition of the solutions (2 – 4)
and (2 – 17)

uz = cos(𝛽x)(D1 cosh(𝛽x) + D2 sinh(𝛽x)) +

sin(𝛽x)(D3 cosh(𝛽x) + D4 sinh(𝛽x)) +
qz
C1,z

(2 – 18)

To obtain values for constants D1–D4, four cantilever boundary conditions have to be applied

1) uz(0) = 0 (2 – 19)

2)
duz
dx

(0) = 0 (2 – 20)

3) My(L) = EIy
d2uz
dx2

(L) = 0 ⇒
d2uz
dx2

(L) = 0 (2 – 21)

4) Vz(L) = EIy
d3uz
dx3

(L) = 0 ⇒
d3uz
dx3

(L) = 0 (2 – 22)

which leads to

1) uz(0) = D1 +
qz
C1,z

= 0 ⇒ D1 = −
qz
C1,z

(2 – 23)

2)
duz
dx

(0) = 𝛽(D2 + D3) = 0 ⇒ D2 = −D3 (2 – 24)

3)
d2uz
dx2

(L) = −2𝛽2(D1ssℎ + D2scℎ − D3csℎ − D4ccℎ) = 0 (2 – 25)
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4)
d3uz
dx3

(L) = −2𝛽3(D1scℎ + D2ssℎ + D1csℎ + D2ccℎ − D3ccℎ − D4csℎ +

D3ssℎ + D4scℎ) = 0 (2 – 26)

where s = sin(𝛽L), c = cos(𝛽L), sℎ = sinh(𝛽L), and cℎ = cosh(𝛽L). Substituting (2 – 23) and (2 –
24) into (2 – 25) and (2 – 26), the following relations are obtained

3) −
qz
C1,z

(ssℎ) − D3(scℎ + csℎ) − D4(ccℎ) = 0 (2 – 27)

4) −
qz
C1,z

(scℎ + csℎ) − D3(ssℎ + ccℎ + ccℎ − ssℎ) − D4(csℎ − scℎ) = 0 (2 – 28)

Combining (2 – 27), (2 – 28) yields

[ scℎ + csℎ ccℎ
2ccℎ csℎ − scℎ

][D3

D4
] = ⎡⎢

⎣

− qz
C1,z

ssℎ

− qz
C1,z

(scℎ + csℎ)
⎤⎥
⎦

(2 – 29)

Solving (2 – 29) leads to the coefficients D3 and D4 in the form

D3 = −
qz
C1,z

(
cs + sℎcℎ
2 + c2ℎ

) (2 – 30)

D4 = −
qz
C1,z

(
c2 − c2ℎ
c2 + c2ℎ

) (2 – 31)

Finally, substituting equations (2 – 23), (2 – 24), (2 – 30), and (2 – 31) into (2 – 18) and setting
x = L, the value for the maximum deflection uz is obtained

uz,max = uz(L) = c(D1cℎ + D2sℎ) + s(D3cℎ + D4sℎ) +
qz
C1,z

= 2.498 mm (2 – 32)

Similarly, setting x = 0 and substituting (2 – 25) and (2 – 31) into (2 – 21) gives the value for the
maximum bending momentMy

My,max = My(0) = −EIy
d2uz
dx2

(0) = −2EIy𝛽2D4 = −1.146 kNm (2 – 33)

Plate Calculation

The cantilever is also calculated using plate elements of width b and height ℎ on a Pasternak
foundation. The example yields the same numerical results, so the theory is identical. The para-
meter C2,z describing the Pasternak foundation for plates that yields the same results is equal to

Cu,z = C1,z
b = 100000 kN/m3.
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Note that, in order to approximate the member solution exactly, the Poisson ratio is zero.

RFEM 5 and RSTAB 8 Settings

• Modeled in version RFEM 5.16.01 and RSTAB 8.16.01
• The element sizes are lFE = 0.400 m (member) and lFE = 0.100 m (plate)
• Geometrically linear analysis is considered
• Isotropic linear elastic material model is used
• The Kirchhoff plate theory is used
• Shear stiffness of members is deactivated

Results

Structure File Entity Program

0002.01 Member RFEM 5

0002.02 Member RSTAB 8

0002.03 Plate RFEM 5

Figure 2: RFEM 5 Model – Member

As seen from the following comparisons, excellent agreement between the analytical solutions
and numerical outputs has been achieved.

Analytical
Solution

RFEM 5 (Member) RSTAB 8 (Member) RFEM 5 (Plate)

uz,max

[mm]
uz,max

[mm]
Ratio
[-]

uz,max

[mm]
Ratio
[-]

uz,max

[mm]
Ratio
[-]

2.498 2.498 1.000 2.498 1.000 2.495 0.999

Analytical
Solution

RFEM 5 (Member) RSTAB 8 (Member) RFEM 5 (Plate)

My,max

[kNm]
My,max

[kNm]
Ratio
[-]

My,max

[kNm]
Ratio
[-]

mx,max × b
[kNm]

Ratio
[-]

−1.146 −1.146 1.000 −1.146 1.000 −1.139 0.994


