Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Elastic Foundation, Member

## Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

## 0002 - Cantilever Beam on an Elastic Winkler Foundation

## Description

A cantilever beam of length $L$ with rectangular cross-section of height $h$ and width $b$ lying on an elastic Winkler foundation of stiffness $C_{1, z}$ is loaded by a distributed loading $q_{z}$. Neglecting self-weight, determine the maximum deflection $u_{z}$ and maximum bending moment $M_{y}$ of the beam. Calculate the same example also for a plate of the same heigth and width as the cantilever.

| Material | Isotropic Linear Elastic | Modulus of Elasticity | E | 210.000 | GPa |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Shear <br> Modulus | G | 105.000 | GPa |
| Geometry | Cantilever | Length | L | 4.000 | m |
|  |  | Height | $h$ | 0.200 | m |
|  |  | Width | $b$ | 0.005 | m |
| Member <br> Foundation | Winkler Elastic | Stiffness | $C_{1, z}$ | 500.000 | $\mathrm{kN} / \mathrm{m}^{2}$ |
| Plate <br> Foundation |  |  | $C_{u, z}=\frac{C_{1, z}}{b}$ | 100000.000 | $\mathrm{kN} / \mathrm{m}^{3}$ |
| Load | Member | Distributed | $q_{z}$ | 1.000 | kN/m |
|  | Plate | Distributed | $q=\frac{q_{z}}{b}$ | 200.000 | $\mathrm{kN} / \mathrm{m}^{2}$ |



Figure 1: Problem sketch

## Analytical Solution

## Member Calculation

The governing differential equation for a beam on an elastic foundation can be expressed as

$$
\begin{equation*}
E l_{y} \frac{\mathrm{~d}^{4} u_{z}}{\mathrm{~d} x^{4}}+C_{1, z} u_{z}=q_{z} \tag{2-1}
\end{equation*}
$$

with the moment of inertia $I_{y}=\frac{1}{12} b h^{3}=3 . \overline{33} \times 10^{-6} \mathrm{~m}^{4}$. Dividing by $E I_{y}$ and setting $\beta^{4}=\frac{C_{1, z}}{4 E I_{y}}$, equation (2-1) can be rewritten as

## Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

$$
\begin{equation*}
\frac{\mathrm{d}^{4} u_{z}}{\mathrm{~d} x^{4}}+4 \beta^{4} u_{z}=\frac{q_{z}}{E I_{y}} \tag{2-2}
\end{equation*}
$$

The solution of (2-2) can be obtained as the superposition of the solutions of a particular integral, which can be expressed, assuming $u_{z}=C=$ const, as

$$
\begin{equation*}
0+4 \beta^{4} C=\frac{q_{z}}{E l_{y}}=\text { const } \tag{2-3}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
C=\frac{q_{z}}{4 \beta^{4} E I_{y}}=\frac{q_{z}}{4 \frac{C_{1, z} E I_{y}}{4 E I_{y}}}=\frac{q_{z}}{C_{1, z}} \tag{2-4}
\end{equation*}
$$

and the solution of the characteristic equation

$$
\begin{equation*}
\frac{\mathrm{d}^{4} u_{z}}{\mathrm{~d} x^{4}}+4 \beta^{4} u_{z}=0 \tag{2-5}
\end{equation*}
$$

To solve the characteristic equation (2-5), assume that $u_{z}=A e^{\lambda x}$, hence

$$
\begin{equation*}
\lambda^{4}+4 \beta^{4}=0 \tag{2-6}
\end{equation*}
$$

Then the solution for $\lambda$ can be expressed as

$$
\begin{equation*}
\lambda^{4}=-4 \beta^{4} \Rightarrow \lambda_{k+1}=\sqrt[4]{\left(4 \beta^{4}\right)}\left[\cos \left(\frac{\pi+2 k \pi}{4}\right)+i \sin \left(\frac{\pi+2 k \pi}{4}\right)\right] \tag{2-7}
\end{equation*}
$$

where $k=0,1,2,3$. Equation (2-7) can be rewritten for all four variants as

$$
\begin{align*}
& \lambda_{1}(k=0)=\beta \sqrt{2}\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right]=\beta(1+i) \\
& \lambda_{2}(k=1)=\beta \sqrt{2}\left[\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right]=\beta(-1+i) \\
& \lambda_{3}(k=2)=\beta \sqrt{2}\left[\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right]=\beta(-1-i) \\
& \lambda_{4}(k=3)=\beta \sqrt{2}\left[\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right]=\beta(1-i) \tag{2-11}
\end{align*}
$$

Therefore, the solution $u_{z}$ of $(2-5)$ takes the form

$$
\begin{equation*}
u_{z}=\sum_{i=1}^{4} A_{i} e^{\lambda_{i} x} \tag{2-12}
\end{equation*}
$$

Substituting equations (2-8)-(2-11), (2-12) can be rewritten as

## Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

$$
\begin{gather*}
u_{z}=A_{1} e^{\beta x(1+i)}+A_{2} e^{\beta x(-1+i)}+A_{3} e^{\beta x(-1-i)}+A_{4} e^{\beta x(1-i)}=  \tag{2-13}\\
e^{\beta x}\left(A_{1} e^{\beta x i}+A_{4} e^{-\beta x i}\right)+e^{-\beta x}\left(A_{2} e^{\beta x i}+A_{3} e^{-\beta x i}\right) \tag{2-14}
\end{gather*}
$$

Incorporating $e^{\beta x i}=\cos (\beta x)+i \sin (\beta x)$ into (2-13) yields

$$
\begin{gather*}
u_{z}=e^{\beta x}\left(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right)+e^{-\beta x}\left(C_{3} \cos (\beta x)+C_{4} \sin (\beta x)\right)=  \tag{2-15}\\
\cos (\beta x)\left(C_{1} e^{\beta x}+C_{3} e^{-\beta x}\right)+\sin (\beta x)\left(C_{2} e^{\beta x}+C_{4} e^{-\beta x}\right) \tag{2-16}
\end{gather*}
$$

which can be further simplified using a new set of unknowns and the definition of hyperbolic functions

$$
\begin{equation*}
u_{z}=\cos (\beta x)\left(D_{1} \cosh (\beta x)+D_{2} \sinh (\beta x)\right)+\sin (\beta x)\left(D_{3} \cosh (\beta x)+D_{4} \sinh (\beta x)\right) \tag{2-17}
\end{equation*}
$$

The final solution of equation (2-2) is constructed by the superposition of the solutions (2-4) and (2-17)

$$
\begin{align*}
u_{z}= & \cos (\beta x)\left(D_{1} \cosh (\beta x)+D_{2} \sinh (\beta x)\right)+ \\
& \sin (\beta x)\left(D_{3} \cosh (\beta x)+D_{4} \sinh (\beta x)\right)+\frac{q_{z}}{C_{1, z}} \tag{2-18}
\end{align*}
$$

To obtain values for constants $D_{1}-D_{4}$, four cantilever boundary conditions have to be applied

$$
\begin{align*}
& \text { 1) } u_{z}(0)=0  \tag{2-19}\\
& \text { 2) } \frac{\mathrm{d} u_{z}}{\mathrm{~d} x}(0)=0  \tag{2-20}\\
& \text { 3) } M_{y}(L)=E I_{y} \frac{\mathrm{~d}^{2} u_{z}}{\mathrm{~d} x^{2}}(L)=0 \Rightarrow \frac{\mathrm{~d}^{2} u_{z}}{\mathrm{~d} x^{2}}(L)=0  \tag{2-21}\\
& \text { 4) } V_{z}(L)=E I_{y} \frac{\mathrm{~d}^{3} u_{z}}{\mathrm{~d} x^{3}}(L)=0 \Rightarrow \frac{\mathrm{~d}^{3} u_{z}}{\mathrm{~d} x^{3}}(L)=0 \tag{2-22}
\end{align*}
$$

which leads to

1) $u_{z}(0)=D_{1}+\frac{q_{z}}{C_{1, z}}=0 \Rightarrow D_{1}=-\frac{q_{z}}{C_{1, z}}$
2) $\frac{\mathrm{d} u_{z}}{\mathrm{~d} x}(0)=\beta\left(D_{2}+D_{3}\right)=0 \Rightarrow D_{2}=-D_{3}$
3) $\frac{\mathrm{d}^{2} u_{z}}{\mathrm{~d} x^{2}}(L)=-2 \beta^{2}\left(D_{1} s s_{h}+D_{2} s c_{h}-D_{3} c s_{h}-D_{4} c c_{h}\right)=0$

## Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

$$
\begin{align*}
& \text { 4) } \frac{\mathrm{d}^{3} u_{z}}{\mathrm{~d} x^{3}}(L)=-2 \beta^{3}\left(D_{1} s c_{h}+D_{2} s s_{h}+D_{1} c s_{h}+D_{2} c c_{h}-D_{3} c c_{h}-D_{4} c s_{h}+\right. \\
& \left.D_{3} s s_{h}+D_{4} s c_{h}\right)=0 \tag{2-26}
\end{align*}
$$

where $s=\sin (\beta L), c=\cos (\beta L), s_{h}=\sinh (\beta L)$, and $c_{h}=\cosh (\beta L)$. Substituting (2-23) and (224) into (2-25) and (2-26), the following relations are obtained

$$
\begin{align*}
& \text { 3) }-\frac{q_{z}}{C_{1, z}}\left(s s_{h}\right)-D_{3}\left(s c_{h}+c s_{h}\right)-D_{4}\left(c c_{h}\right)=0  \tag{2-27}\\
& \text { 4) }-\frac{q_{z}}{C_{1, z}}\left(s c_{h}+c s_{h}\right)-D_{3}\left(s s_{h}+c c_{h}+c c_{h}-s s_{h}\right)-D_{4}\left(c s_{h}-s c_{h}\right)=0 \tag{2-28}
\end{align*}
$$

Combining (2-27), (2-28) yields

$$
\left[\begin{array}{cc}
s c_{h}+c s_{h} & c c_{h}  \tag{2-29}\\
2 c c_{h} & c s_{h}-s c_{h}
\end{array}\right]\left[\begin{array}{l}
D_{3} \\
D_{4}
\end{array}\right]=\left[\begin{array}{c}
-\frac{q_{z}}{c_{1,2}} s s_{h} \\
-\frac{q_{2}}{c_{1,2}}\left(s c_{h}+c s_{h}\right)
\end{array}\right]
$$

Solving (2-29) leads to the coefficients $D_{3}$ and $D_{4}$ in the form

$$
\begin{align*}
& D_{3}=-\frac{q_{z}}{C_{1, z}}\left(\frac{c s+s_{h} c_{h}}{2+c_{h}^{2}}\right)  \tag{2-30}\\
& D_{4}=-\frac{q_{z}}{C_{1, z}}\left(\frac{c^{2}-c_{h}^{2}}{c^{2}+c_{h}^{2}}\right) \tag{2-31}
\end{align*}
$$

Finally, substituting equations (2-23), (2-24), (2-30), and (2-31) into (2-18) and setting $x=L$, the value for the maximum deflection $u_{z}$ is obtained

$$
\begin{equation*}
u_{z, \max }=u_{z}(L)=c\left(D_{1} c_{h}+D_{2} s_{h}\right)+s\left(D_{3} c_{h}+D_{4} s_{h}\right)+\frac{q_{z}}{C_{1, z}}=2.498 \mathrm{~mm} \tag{2-32}
\end{equation*}
$$

Similarly, setting $x=0$ and substituting (2-25) and (2-31) into (2-21) gives the value for the maximum bending moment $M_{y}$

$$
\begin{equation*}
M_{y, \max }=M_{y}(0)=-E I_{y} \frac{\mathrm{~d}^{2} u_{z}}{\mathrm{~d} x^{2}}(0)=-2 E I_{y} \beta^{2} D_{4}=-1.146 \mathrm{kNm} \tag{2-33}
\end{equation*}
$$

## Plate Calculation

The cantilever is also calculated using plate elements of width $b$ and height $h$ on a Pasternak foundation. The example yields the same numerical results, so the theory is identical. The parameter $C_{2, z}$ describing the Pasternak foundation for plates that yields the same results is equal to $C_{u, z}=\frac{C_{1, z}}{b}=100000 \mathrm{kN} / \mathrm{m}^{3}$.

## Verification Example: 0002 - Cantilever Beam on an Elastic Winkler Foundation

Note that, in order to approximate the member solution exactly, the Poisson ratio is zero.

## RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.16.01 and RSTAB 8.16.01
- The element sizes are $I_{\mathrm{FE}}=0.400 \mathrm{~m}$ (member) and $I_{\mathrm{FE}}=0.100 \mathrm{~m}$ (plate)
- Geometrically linear analysis is considered
- Isotropic linear elastic material model is used
- The Kirchhoff plate theory is used
- Shear stiffness of members is deactivated


## Results

| Structure File | Entity | Program |
| :---: | :---: | :---: |
| 0002.01 | Member | RFEM 5 |
| 0002.02 | Member | RSTAB 8 |
| 0002.03 | Plate | RFEM 5 |



Figure 2: RFEM 5 Model - Member
As seen from the following comparisons, excellent agreement between the analytical solutions and numerical outputs has been achieved.

| Analytical <br> Solution | RFEM 5 (Member) |  | RSTAB 8 (Member) |  | RFEM 5 (Plate) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{z, \max }$ <br> $[\mathrm{~mm}]$ | $u_{z, \max }$ <br> $[\mathrm{~mm}]$ | Ratio <br> $[-]$ | $u_{z, \max }$ <br> $[\mathrm{~mm}]$ | Ratio <br> $[-]$ | $u_{z, \max }$ <br> $[\mathrm{~mm}]$ | Ratio <br> $[-]$ |
| 2.498 | 2.498 | 1.000 | 2.498 | 1.000 | 2.495 | 0.999 |


| Analytical <br> Solution | RFEM 5 (Member) |  | RSTAB 8 (Member) |  | RFEM 5 (Plate) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{y, \max }$ <br> $[\mathrm{kNm}]$ | $M_{y, \max }$ <br> $[\mathrm{kNm}]$ | Ratio <br> $[-]$ | $M_{y, \max }$ <br> $[\mathrm{kNm}]$ | Ratio <br> $[-]$ | $m_{x, \max } \times b$ <br> $[\mathrm{kNm}]$ | Ratio <br> $[-]$ |
| -1.146 | -1.146 | 1.000 | -1.146 | 1.000 | -1.139 | 0.994 |

