Verification Example

Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Plasticity, Plate, Solid

Verification Example: 0037 – Two-Dimensional Plasticity

0037 – Two-Dimensional Plasticity

Description

The wall is divided in the middle to the two parts. The upper and the lower part are made of an elastic-plastic and an elastic material respectively and both end planes are restricted to move in the vertical direction, see **Figure 1**. Due to the stability problems caused by the movements in horizontal direction the model is created as vertically symmetrical. Wall's self-weight is neglected, its edges are loaded with horizontal pressure p_h and the middle plane by vertical pressure p_v . Only small deformations are assumed. Determine the total deformation u at the test point A in the elastic part. In this example von Mises and Drucker-Prager plastic hypotheses as well as Tresca and Mohr-Coulomb plastic hypotheses will be considered. The difference between these models can be seen in **Figure 2**.

Material	Elastic-Plastic	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.000	_
		Plastic Strength	$f_{\rm y,t} = f_{\rm y,c}$	100.000	MPa
	Elastic	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.000	_
Geometry	Wall	Length	L	1.000	m
		Height	h	4.000	m
		Thickness	t	0.050	m
Load	Pressure	Horizontal	p _h	50.000	MPa
		Vertical	p _v	220.000	MPa

Analytical Solution

The total deformation u can be determined from the component deformations u_x and u_z .

$$u = \sqrt{u_x^2 + u_z^2} \tag{37-1}$$

The deformation components at the test point A can be calculated using the strains according to the Hook's law for the plane stress.

$$u_x = \varepsilon_x \frac{L}{2} = \frac{1}{E} \left(\sigma_x - \nu \sigma_z \right) \frac{L}{2}$$
(37 - 2)

$$u_{z} = \varepsilon_{z} \frac{h}{4} = \frac{1}{E} \left(\sigma_{z} - \nu \sigma_{x} \right) \frac{h}{4}$$
(37 - 3)

Figure 1: Problem sketch

In this case the Poisson's ratio is $\nu = 0$. According to von Mises and Drucker-Prager plastic hypotheses, a material behaves elastically if the following equation is satisfied:

$$\sigma_{\mathsf{Mises}} = \sqrt{\sigma_x^2 + \sigma_z^2 - \sigma_x \sigma_z + 3\tau_{xz}} \le f_{\mathsf{y},\mathsf{t}} \tag{37-4}$$

where σ_x and σ_z are stresses in x and z directions respectively.

$$\sigma_{\rm x} = p_{\rm h} \tag{37-5}$$

$$\sigma_z = \frac{\rho_v}{2} \tag{37-6}$$

Using above mentioned equations the von Mises stress can be calculated.

$$\sigma_{\rm Mises} = 95.394 \text{ MPa} \le f_{\rm v,t} \tag{37-7}$$

As can be seen, material behaves elastically and elastic stresses are equal to the loading stresses and the desired deformations can be calculated according to the above mentioned formulae.

$u_x = 0.119 {\rm mm}$	(37 – 8)
$u_z = 0.524 { m mm}$	(37 – 9)
<i>u</i> = 0.537 mm	(37 – 10)

Verification Example: 0037 – Two-Dimensional Plasticity

Figure 2: Von Mises and Drucker-Prager (solid line) and Tresca and Mohr-Coulomb (dashed line) plastic models in plane and considering equal plastic strength in tension and pressure. W is the working point of this verification example.

According to Tresca and Mohr-Coulomb plastic hypotheses, a material behaves elastically if the following equation is satisfied:

$$\sigma_{\text{Tresca}} = \max\left(\sqrt{(\sigma_x - \sigma_z)^2 + 4\tau_{xz}^2}, \frac{|\sigma_x + \sigma_z + \sqrt{(\sigma_x - \sigma_z)^2 + 4\tau_{xz}^2}|}{2}\right) \le f_{y,t}(37 - 11)$$

$$\sigma_{\text{Tresca}} = 110 \text{ MPa} \ge f_{y,t}$$

As can be seen, the equation (**37** – **11**) isn't satisfied and the material reached the plastic state. The stresses in the elastic part of the wall can be then expressed as follows:

$$\sigma_{\rm x} = p_h \tag{37-12}$$

$$\sigma_z = p_v - f_{v,t} \tag{37-13}$$

And the deformations can be then obtained similarly to the previous case:

$u_x = 0.119 \mathrm{mm}$	(37 – 14)
$u_z = 0.571 \text{ mm}$	(37 – 15)
<i>u</i> = 0.584 mm	(37 – 16)

RFEM Settings

- Modeled in version RFEM 5.26 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.050$ m

Verification Example: 0037 – Two-Dimensional Plasticity

- Geometrically linear analysis is considered
- The number of increments is 10
- The Mindlin plate theory is used
- Nonsymmetric direct solver is used

Results

Structure File	Entity	Hypothesis	
0037.01	Plate	von Mises	
0037.02	Plate	Tresca	
0037.03	Plate	Drucker-Prager	
0037.04	Plate	Mohr-Coulomb	
0037.05	Solid	von Mises	
0037.06	Solid	Tresca	
0037.07	Solid	Drucker-Prager	
0037.08	Solid	Mohr-Coulomb	

Hypothesis	Analytical Solution	RFEM 5 Plate		RFEM 5 Solid	
	<i>u</i> [mm]	<i>u</i> [mm]	Ratio [-]	<i>u</i> [mm]	Ratio [-]
von Mises	0.537	0.537	1.000	0.537	1.000
Tresca	0.584	0.583	0.998	0.583	0.998
Drucker - Prager	0.537	0.537	1.000	0.537	1.000
Mohr - Coulomb	0.584	0.583	0.998	0.583	0.998

Hypothesis	Analytical Solution	RFEM 6 Plate		RFEM 6 Solid	
	<i>u</i> [mm]	<i>u</i> [mm]	Ratio [-]	<i>u</i> [mm]	Ratio [-]
von Mises	0.537	0.537	1.000	0.537	1.000
Tresca	0.584	0.583	0.998	0.583	0.998
Drucker - Prager	0.537	0.537	1.000	0.537	1.000
Mohr - Coulomb	0.584	0.583	0.998	0.583	0.998

