Category: Geometrically Linear Analysis, Isotropic Plasticity, Plate, Solid

Verification Example: 0037 - Two-Dimensional Plasticity

0037 - Two-Dimensional Plasticity

Description

The wall is divided in the middle to the two parts. The upper and the lower part are made of an elastic-plastic and an elastic material respectively and both end planes are restricted to move in the vertical direction, see Figure 1. Due to the stability problems caused by the movements in horizontal direction the model is created as vertically symmetrical. Wall's self-weight is neglected, its edges are loaded with horizontal pressure p_{h} and the middle plane by vertical pressure p_{v}. Only small deformations are assumed. Determine the total deformation u at the test point A in the elastic part. In this example von Mises and Drucker-Prager plastic hypotheses as well as Tresca and Mohr-Coulomb plastic hypotheses will be considered. The difference between these models can be seen in Figure 2.

Material	Elastic-Plastic	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.000	-
		Plastic Strength	$f_{y, t}=f_{y, c}$	100.000	MPa
	Elastic	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.000	-
Geometry	Wall	Length	L	1.000	m
		Height	h	4.000	m
		Thickness	t	0.050	m
Load	Pressure	Horizontal	$p_{\text {h }}$	50.000	MPa
		Vertical	p_{v}	220.000	MPa

Analytical Solution

The total deformation u can be determined from the component deformations u_{x} and u_{z}.

$$
\begin{equation*}
u=\sqrt{u_{x}^{2}+u_{z}^{2}} \tag{37-1}
\end{equation*}
$$

The deformation components at the test point A can be calculated using the strains according to the Hook's law for the plane stress.

$$
\begin{align*}
& u_{x}=\varepsilon_{x} \frac{L}{2}=\frac{1}{E}\left(\sigma_{x}-\nu \sigma_{z}\right) \frac{L}{2} \tag{37-2}\\
& u_{z}=\varepsilon_{z} \frac{h}{4}=\frac{1}{E}\left(\sigma_{z}-\nu \sigma_{x}\right) \frac{h}{4} \tag{37-3}
\end{align*}
$$

Figure 1: Problem sketch
In this case the Poisson's ratio is $\nu=0$. According to von Mises and Drucker-Prager plastic hypotheses, a material behaves elastically if the following equation is satisfied:

$$
\begin{equation*}
\sigma_{\text {Mises }}=\sqrt{\sigma_{x}^{2}+\sigma_{z}^{2}-\sigma_{x} \sigma_{z}+3 \tau_{x z}} \leq f_{\mathrm{y}, \mathrm{t}} \tag{37-4}
\end{equation*}
$$

where σ_{x} and σ_{z} are stresses in x and z directions respectively.

$$
\begin{align*}
\sigma_{x} & =p_{\mathrm{h}} \tag{37-5}\\
\sigma_{z} & =\frac{p_{\mathrm{v}}}{2} \tag{37-6}
\end{align*}
$$

Using above mentioned equations the von Mises stress can be calculated.

$$
\begin{equation*}
\sigma_{\text {Mises }}=95.394 \mathrm{MPa} \leq f_{\mathrm{y}, \mathrm{t}} \tag{37-7}
\end{equation*}
$$

As can be seen, material behaves elastically and elastic stresses are equal to the loading stresses and the desired deformations can be calculated according to the above mentioned formulae.

$$
\begin{align*}
u_{x} & =0.119 \mathrm{~mm} \\
u_{z} & =0.524 \mathrm{~mm} \\
u & =0.537 \mathrm{~mm} \tag{37-10}
\end{align*}
$$

$$
(37-8)
$$

$$
(37-9)
$$

Figure 2: Von Mises and Drucker-Prager (solid line) and Tresca and Mohr-Coulomb (dashed line) plastic models in plane and considering equal plastic strength in tension and pressure. W is the working point of this verification example.

According to Tresca and Mohr-Coulomb plastic hypotheses, a material behaves elastically if the following equation is satisfied:

$$
\begin{aligned}
& \sigma_{\text {Tresca }}=\max \left(\sqrt{\left(\sigma_{x}-\sigma_{z}\right)^{2}+4 \tau_{x z}^{2}}, \frac{\left|\sigma_{x}+\sigma_{z}+\sqrt{\left(\sigma_{x}-\sigma_{z}\right)^{2}+4 \tau_{x z}^{2}}\right|}{2}\right) \leq f_{\mathrm{y}, \mathrm{t}}(37-11) \\
& \sigma_{\text {Tresca }}=110 \mathrm{MPa} \geq f_{\mathrm{y}, \mathrm{t}}
\end{aligned}
$$

As can be seen, the equation ($37 \mathbf{- 1 1)}$ isn't satisfied and the material reached the plastic state. The stresses in the elastic part of the wall can be then expressed as follows:

$$
\begin{align*}
\sigma_{x} & =p_{h} \tag{37-12}\\
\sigma_{z} & =p_{v}-f_{\mathrm{y}, \mathrm{t}} \tag{37-13}
\end{align*}
$$

And the deformations can be then obtained similarly to the previous case:

$$
\begin{align*}
u_{x} & =0.119 \mathrm{~mm} \tag{37-14}\\
u_{z} & =0.571 \mathrm{~mm} \tag{37-15}\\
u & =0.584 \mathrm{~mm} \tag{37-16}
\end{align*}
$$

RFEM Settings

- Modeled in version RFEM 5.26 and RFEM 6.01
- The element size is $I_{\mathrm{FE}}=0.050 \mathrm{~m}$

Verification Example: 0037 - Two-Dimensional Plasticity

- Geometrically linear analysis is considered
- The number of increments is 10
- The Mindlin plate theory is used
- Nonsymmetric direct solver is used

Results

Structure File	Entity	Hypothesis
0037.01	Plate	von Mises
0037.02	Plate	Tresca
0037.03	Plate	Drucker-Prager
0037.04	Plate	Mohr-Coulomb
0037.05	Solid	von Mises
0037.06	Solid	Tresca
0037.07	Solid	Drucker-Prager
0037.08	Solid	Mohr-Coulomb

Hypothesis	Analytical Solution	RFEM 5 Plate		RFEM 5 Solid	
	u $[\mathrm{~mm}]$	u $[\mathrm{~mm}]$	Ratio $[-]$	u $[\mathrm{~mm}]$	Ratio $[-]$
von Mises	0.537	0.537	1.000	0.537	1.000
Tresca	0.584	0.583	0.998	0.583	0.998
Drucker - Prager	0.537	0.537	1.000	0.537	1.000
Mohr - Coulomb	0.584	0.583	0.998	0.583	0.998

Hypothesis	Analytical Solution	RFEM 6 Plate		RFEM 6 Solid	
	u $[\mathrm{~mm}]$	u $[\mathrm{~mm}]$	Ratio $[-]$	u $[\mathrm{~mm}]$	Ratio $[-]$
von Mises	0.537	0.537	1.000	0.537	1.000
Tresca	0.584	0.583	0.998	0.583	0.998
Drucker - Prager	0.537	0.537	1.000	0.537	1.000
Mohr - Coulomb	0.584	0.583	0.998	0.583	0.998

