Verification e

Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0064 – Thick–Walled Vessel

0064 – Thick–Walled Vessel

Description

A thick–walled vessel is loaded by inner and outer pressure. The vessel is open–ended, thus there is no axial stress. The problem is modeled as a quarter model (see **Figure 1**) and described by the following set of parameters.

Material	Modulus of Elasticity	Ε	1.000	MPa
	Poisson's Ratio	ν	0.250	_
Geometry	Inner Radius	<i>r</i> ₁	200.000	mm
	Outer Radius	r ₂	300.000	mm
Load	Inner Pressure	<i>p</i> ₁	60.000	kPa
	Outer Pressure	<i>p</i> ₂	10.000	kPa

Determine the radial deflection of the inner and outer radius $u_r(r_1)$, $u_r(r_2)$. The self-weight is neglected.

Analytical Solution

The stress state of the thick-walled vessel is described by the equation of equilibrium

$$\frac{\mathrm{d}\sigma_{\mathrm{r}}}{\mathrm{d}r} + \frac{\sigma_{\mathrm{r}} - \sigma_{\mathrm{t}}}{r} = 0 \tag{64-1}$$

where σ_r , σ_t and r is the radial stress, tangential stress and radius respectively. The relation between strains and deflections is described as follows:

Verification Example: 0064 – Thick–Walled Vessel

$$\varepsilon_{\rm r}(r) = \frac{{\rm d} u_{\rm r}(r)}{{\rm d} r} \tag{64-2}$$

$$\varepsilon_{\rm t}(r) = \frac{u_{\rm r}(r)}{r} \tag{64-3}$$

$$\sigma_{\rm t}(\mathbf{r}) = \frac{E}{1 - \nu^2} \left[\varepsilon_{\rm t}(\mathbf{r}) + \nu \varepsilon_{\rm r}(\mathbf{r}) \right] \tag{64-4}$$

$$\sigma_{\rm r}(\mathbf{r}) = \frac{E}{1 - \nu^2} \left[\varepsilon_{\rm r}(\mathbf{r}) + \nu \varepsilon_{\rm t}(\mathbf{r}) \right] \tag{64-5}$$

Using these equations and Hooke's Law, equations (64 - 4) and (64 - 5), the second-order differential equation is obtained.

$$\frac{d^2 u_r(r)}{dr^2} + \frac{d u_r(r)}{dr} - \frac{u_r(r)}{r} = 0$$
 (64-6)

The solution of this differential equation is supposed in the following form:

$$u_{\rm r}(r)=r^n \tag{64-7}$$

Using this assumption, the coefficient *n* yields $n = \pm 1$. Thus the solution can be writen as a linear combination:

$$u_{\rm r}(r) = C_1 r + \frac{C_2}{r} \tag{64-8}$$

This solution can be substituted into Hooke's Law and simplified into the following form:

$$\sigma_{\rm t}(\mathbf{r}) = \mathbf{K} + \frac{\mathbf{C}}{\mathbf{r}^2} \tag{64-9}$$

$$\sigma_{\rm r}(r) = K - \frac{C}{r^2} \tag{64-10}$$

where K and C are real constants, which could be obtained using the following boundary conditions.

$$\sigma_{\rm r}(r_1) = -p_1$$
 (64 - 11)

$$\sigma_{\mathsf{r}}(\mathsf{r}_2) = -\mathsf{p}_2 \tag{64-12}$$

$$K = \frac{p_1 r_1^2 - p_2 r_2^2}{r_2^2 - r_1^2} \tag{64-13}$$

$$C = (p_1 - p_2) \frac{r_1^2 r_2^2}{r_2^2 - r_1^2}$$
(64 - 14)

Verification Example: 0064 – Thick–Walled Vessel

The radial deflection of the inner and outer radius of the open-ended vessel $u_r(r_1)$, $u_r(r_2)$ can be then determined using the above mentioned equations and Hooke's Law again.

$$u_{\rm r}(r_1) = \frac{r_1}{E} \left[\sigma_{\rm t}(r_1) - \nu \sigma_{\rm r}(r_1)\right] = 27.000 {\rm mm}$$
 (64 - 15)

$$u_{\rm r}(r_2) = rac{r_2}{F} \left[\sigma_{\rm t}(r_2) - \nu \sigma_{\rm r}(r_2)\right] = 21.750 {
m mm}$$
 (64 - 16)

RFEM Settings

- Modeled in RFEM 5.06 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.002$ m
- Isotropic linear elastic material model is used

Results

Figure 2: Results in RFEM - total deflection

Structure Files	Program						
0064.01	RFEM 5, RFEM 6						
Quantity	Analytical Solution	RFEM 5	Ratio	RFEM 6	Ratio		
$u_r(r_1)$ [mm]	27.000	27.000	1.000	27.000	1.000		
$u_r(r_2)$ [mm]	21.750	21.750	1.000	21.747	1.000		

