Program: RFEM 5

Category: Orthotropic Linear Elasticity, Geometrically Linear Analysis, Plate

Verification Example: 0091 – Thin Rectangular Orthotropic Plate Under Uniform Load

0091 – Thin Rectangular Orthotropic Plate Under Uniform Load

Description

Thin rectangular orthotropic plate is simply supported and loaded by the uniformly distributed pressure p according to **Figure 1**. The directions of axis x and y coincide with the principal directions. While neglecting self-weight, determine the maximum deflection $u_{z,max}$ of the plate.

Material	Orthotropic	Modulus of Elasticity	E _x	10000.000	MPa
			E _y	670.000	MPa
		Poisson's Ratio	$ u_{xy}$	0.200	-
		Shear Modulus	G _{xy}	620.000	MPa
Geometry		Length	а	2.000	m
		Width	b	1.000	m
		Thickness	t	0.010	m
Load		Pressure	р	100.000	Ра

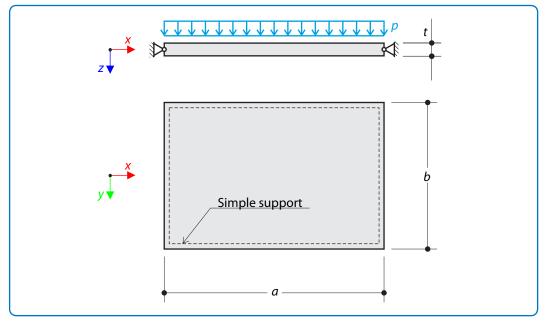


Figure 1: Problem Sketch

Analytical Solution

The deflection $u_z(x, y)$ of rectangular orthotropic plate with coincident axis of geometry and material axis is described by the partial differential equation [1]

$$D_{xx}\frac{\partial^4}{\partial x^4}u_z + 2H\frac{\partial^4}{\partial x^2 \partial y^2}u_z + D_{yy}\frac{\partial^4}{\partial y^4}u_z = p, \qquad (91-1)$$

Verification Example: 0091 – Thin Rectangular Orthotropic Plate Under Uniform Load

where p is the surface loading. Stiffness constants for orthotropic plate D_{xx} , D_{yy} and $H = D_{xx}\nu_{yx} + 2D_{xy}$ are equal to

$$D_{xx} = \frac{E_x t^3}{12(1 - \nu_{xy}\nu_{yx})},$$
 (91 - 2)

$$D_{yy} = \frac{E_y t^3}{12(1 - \nu_{xy} \nu_{yx})},$$
(91 - 3)

$$D_{xy} = \frac{G_{xy}t^3}{12}.$$
 (91 - 4)

The Poisson's ration ν_{yx} is defined as

$$\nu_{yx} = \frac{E_y \nu_{xy}}{E_x}.$$
(91 - 5)

To solve the differential equation (91 - 1) the Navier method (see [2]) is used. Considering the simply supported rectangular plate, the deflection can be written in the form of double Fourier series

$$u_{z}(x,z) = \sum_{m} \sum_{n} W_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right), \qquad m = 1, 2, 3, ...; n = 1, 2, 3, ... \quad (91-6)$$

In order to determine the coefficients W_{mn} , the uniform load function p(x, y) is also expanded into double Fourier series

$$p = \sum_{m} \sum_{n} a_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right), \qquad (91-7)$$

where the Fourier coefficient a_{mn} is equal to

$$a_{mn} = \frac{4}{ab} \int_{0}^{a} \int_{0}^{b} p \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) dxdy =$$

$$= \frac{4p}{\pi^{2}mn} \left(\cos(\pi m) - 1\right) \left(\cos(\pi n) - 1\right)$$
(91-8)

The coefficients W_{mn} are obtained by substituting (91 – 6) and (91 – 7) into (91 – 1)

$$W_{mn} = \frac{a_{mn}}{\pi^4} \frac{1}{D_{xx} \left(\frac{m}{a}\right)^4 + 2H \left(\frac{mn}{ab}\right)^2 + D_{yy} \left(\frac{n}{b}\right)^4}.$$
 (91 - 9)

The deflection function $u_z(x, y)$ then results in

$$u_{z} = \frac{4p}{\pi^{6}} \sum_{m} \sum_{n} \frac{\left(\cos(\pi m) - 1\right)\left(\cos(\pi n) - 1\right)}{mn\left(D_{xx}\left(\frac{m}{a}\right)^{4} + 2H\left(\frac{mn}{ab}\right)^{2} + D_{yy}\left(\frac{n}{b}\right)^{4}\right)} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right).$$
(91 - 10)

The maximum deflection $u_{z,\max}$ of the plate is located at the center $x = \frac{a}{2}$, $y = \frac{b}{2}$ and approximately is equal to

Verification Example: 0091 – Thin Rectangular Orthotropic Plate Under Uniform Load

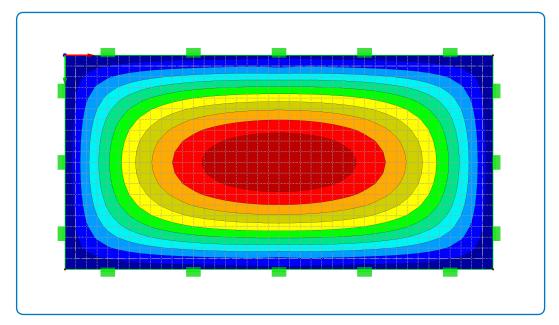
$$u_{z,\max} \approx 9.860 \text{ mm.}$$
 (91 – 11)

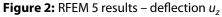
RFEM 5 Settings

- Modeled in RFEM 5.13.01
- Element size is $I_{\rm FE} = 0.050$ m
- The number of increments is 10
- Orthotropic linear elastic material is used

Results

Structure File	Plate bending theory	Finite Element Shape	
0091.01	Kirchhoff	Quadrangle	
0091.02	Kirchhoff	Triangle	
0091.03	Mindlin	Quadrangle	
0091.04	Mindlin	Triangle	





Test Variant	Theory	RFEM 5	
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]
Kirchhoff, Quadrangle		9.850	0.999
Kirchhoff, Triangle	9.860	9.865	1.001
Mindlin, Quadrangle		9.845	0.998
Mindlin, Triangle		9.792	0.993

Verification Example: 0091 – Thin Rectangular Orthotropic Plate Under Uniform Load

References

- [1] TIMOSHENKO, S. Theory of Plates and Shells. McGraw-Hill Book Company, 1940.
- [2] LEKHNITSKIY, S. Anisotropic Plates. Translated from the Second Russian Edition by S.W. Tsai and T. Cheron. 1968.

