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Design and Analysis of Membrane Structures in FEd4&I Software

1 INTRODUCTION

Membrane structures are one of the current trendsvil engineering and architecture.
They are fascinating in both aspects, their appearaand physical behaviour. When
considering the first aspect, we can describe thsniightweight structures of beautifully
curved shapes. As broadly known, those shapes taenchosen freely since they must be
physically suitable because the material useddosite structures can withstand no bending
or compression, and thus shapes under tensiontbaye used. This is the first task to solve
when designing membrane structures, involving bele architectural requirements
and physical principles. In that way, membrane cttmes take shapes that have to be in
accordance with nature. This task to find a bealutihd physically suitable shape is known
asform-finding.

After the form-finding is performed, it is necess&w check the load-bearing capacity and
other code-specific or investor’s requirementstinictural analysis. The structural response
of such structures is strongly nonlinear in ternmhisboth the impact of geometry changes
and material behaviour.

If all the requirements are fulfilled, the struaucan be fabricated. To make this step
possible, it is necessary to generaiéting patterns as membrane structures exhibit double
curvature and therefore, they have to be approxidy a certain amount of planar patterns.

The presented work will focus on all those stepsthAoretical introduction will be
presented in the first part of each chapter, theactigal examples will be shown
to demonstrate the mentioned statements. The pesse&xamples were created using the
RFEM software, including the new add-on modules FRIRM-FINDING and RF-
CUTTING-PATTERN for the design and analysis of meame structures, that were
developed recently by the cooperating comparmsoal Software s.r.o[l] and FEM
Consulting s.r.o[ll].
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2 FORM-FINDING

The form-finding process is an essential part aisite structures designing. This
indispensable shape analysis has been the sulfj@carny research works and as a result,
many methods have been proposed. The physicaliperaf the form-finding process will be
described in the first part of this chapteorm-Finding The second part will be focused
on the practical examples, which complete andtiiéus the described topics.

2.1 Theory

The methods that have been proposed and implememntesoftware as tools for the form-
finding process can be divided into many categpsash ad-orce Density Method~DM),
Dynamic Relaxation(DR), Updated Reference StratediRS, Natural Force Density
Method (NFDM), etc. [1-18]. When calculating the shape of a imeme structure, there
is a great difference between the classic FDM dred dther methods listed above, since
theFDM replaces the membrane by a cable mesh, whilethies methods use surface finite
elements for the membrane. In addition to this tgchHerence, there are some smaller
differences between the methods us2bgFE. The difference is that the form-finding process
can be assumed as a static or dynamic task or &venspecially formulated form-finding
task, for example. Regardless the particular mettiedgoal is always to find the equilibrium
shape for the surface prestress field that is patinThe particular method is more or less
the way how to reach this target. The further ingoar difference can be seen in the
generality of the methods or the way of implemeamatsince the interaction of the
membranes and cables subjected to the shape fimdinghe substructure is highly desirable
and can influence the whole design. This genenmatept will be described later.

2.1.1 Physical Essence of Form-Finding

The general form-finding task is to find the eduilum shape for the given prestress field
in the membrane/cable while considering the boundanditions and external loads, if they
are required. No dependence on material exists ereontrary to structural analysis, the
stresses are not the result, but the input and'metoons are driven by that way. This causes
singularities as described later, which has tousFame.

The shape resulting from the form-finding process the prestressed reference
configuration for further nonlinear analysis. Howewthe patterns are practically the absolute
reference (initial) configuration because they #re unstrained (reference/initial) shapes
forming the real constructiorfrig. 1).

Static analysis
external loads, material, kinematics deformed material stresses
— - —_—
reference geometry | equilibrium geometry
Form finding Patterning
stresses, kinematics deformed material reference
— - —_—
external loads equilibrium geometry geometry

Fig. 1 — Comparison of static analysis and forndfirg [19]
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2.1.2 General Finite Element Approach

Regardless the differences described above, thébemgunm state of the structure subjected
to the form-finding process can be written in thene manner as the equilibrium state of the
body in FE analysis. Searching for the shape cdorpeulated as searching for the minimum
of the potential energll = IT™ + I1¢** of internal and external forces in the ba@y The
shape is in equilibrium if the derivative of thet@atial energy corresponding with the
deformation is zer@ll/dd = 0. The principle of the FE analysis will be descdbater
(3.1.1 Principles of FEM Analysis

int ext
e +ag—d=f005:6Ed!20—fnoq-6dd!20 =[,0:8edd~ [ q-6dd2=0 (1)
Whered are deformations§ ande are2"™ Piola-Kirchhoff stress tens@ndCauchy stress
tensor E ande areGreen-Lagrange strain tensandEuler-Almansi strairtensors 2, is the
reference configurationand.? is theactual configuration As stated in the following chapter
(3.1.1 Principles of FEM Analysisthe equilibrium of the body can be describedath the
reference and the actual configurations.

However, it is not possible to directly solve theanshape due to its unknown position.
Even though the normal direction of the membrariéces clear, the tangential redistribution
of nodes is unclear as the infinite number ofedéht positions can satisfy the same 3D shape

(Fig. 2).

Ll
by

Fig. 2 — Arbitrarily deformed meshes for the samdaxe geometry ([6] with modification)

A way how to overcome this ambiguity is to defihe problem with respect to the known
(initial) position of the body. By solving the sgat of equations, we obtain the new
geometry. This new geometry is closer to the dguilm shape than the previous one and we
use it for the next stefrig. 3). Continuing in this process will lead to the shapprovement,
which is closer to the required equilibrium positiavith each further iteration. This
philosophy is related to the nonlinear analysiserghwe assess the balance of the new shape
after each calculated iteration. From a physiaaihtpof view, it thus does not make
a difference whether we choose to usertbelinear analysistheupdated reference strategy
or thedynamic relaxatioras a specific method for solving the task.
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Form finding step 1

Equilibrium

Update Reference

Form finding step 2

Fig. 3 — Iterations of the form-finding process2vith modifications)

This general finite element approach of the fornting process allows us to combine
searching the unknown equilibrium shapes with tlbalinear analysis of the supporting
structure loaded by the prestress in membranesablex Even though the membranes
and cables were only mentioned as the subjectomh-finding, the shapes can also be
searched for shells and beams, as discussed later.

2.1.3 Force-Finding as Part of Form-Finding

In the previous text, the only task was solving ¢agiilibrium shape for already defined
spatial prestress in equilibrium. However, the atyilibrium prestress which can be defined
in advance is actually the isotropic prestress. st orthotropic prestress is only
in equilibrium if the Gaussian curvature is equakzeroK = 0, which is not the case of the
double-curved shapes of tensile structures.
1

r1r;

K=k k,= 2)
Wherek,, k, are the principal curvatures, angr, are radii in this directions at the given
point of the surface.

As a consequence of this fact, the membrane stagtuequire general orthotropic
prestress if the isotropic one is not applicabledome reason. However, it is virtually not
possible to define the general orthotropic prestiesequilibrium. Therefore, the task of the
form-finding process is not only to find the shdpethe given prestress but also to find the
prestress in equilibrium itself that approximatbs tequired values in the warp and weft
directions, which are defined by an engineer oawhitect. There is no need to mention that
the closest possible approximation of the defingldes is required since the smooth prestress
in the membrane without concentrations, if theyrasenecessary, is the most desirable.

2.1.4 Unstable Equilibrium Position of Elements Under Compression

There is one interesting phenomenon when compéneghape calculation of a structure
or structural parts under tension and under corsfmesWhile the structure under tension
takes the stable equilibrium position, the struetunder compression takes the unstable
equilibrium position Fig. 4).
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an
1(x) 1(x) dx
on
ox
x> x:

Fig. 4 — Stable and unstable equilibrium position

As a result of that fact, the tensioned structas/erge to the equilibrium position if the
required prestress is physically realizable. Thenm®ssed structures suffer instabilities,
which has to be overcome during the calculatione Tell-known way of solving this
difficulty is to inverse the compression into thengion and to invert the load acting
on the structure. This way, used on physical modktady in the ancient time, may solve
the calculation stability for structures subjecextlusively to the compression. However,
when the form-finding deals with a combined struetwhere both the parts under the tension
and the compression are used, this method is rifitisnt. Such an inversion would solve
the required parts under the compression which dvbalinverted into the tension; however,
the parts under the tension would be inverted timtocompression and the same problem with
calculation divergence remains. Therefore, a lostdbilisation of the parts under
the compression has to be designed and implementedder to solve the phenomenon
described above. The example of such a structuléevpresented later.

2.2 Practice

The practical part of théorm-Finding chapter will be focused on the presentation
of several examples of both tensioned and inflasgductures. The full integration

of a supporting structure as well as examples fedus the previously described phenomena
will be shown.

2.2.1 Form-Finding of Mechanically Prestressed Membrane

Two basic shapes will be presented here: a hypdraanone-shaped structuréid. 5,
Fig. 14). The hypar membrane will be presented for twdediint prestress tasks. The first
one is the isotripic prestress, whetg= n, = 1.00 kN/m. The force in boundary cables

is defined asN = 10.00 kN. As mentioned before, this prestress can be reaekactly
as presented bellowig. 7 - Fig. 9.

—
————i

e

Fig. 5 — Initial shape of a hypar membrane struetwith the x/y (warp/weft) orientation displayirgf(), FE
mesh (right)

6
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Global Deformations
u [rom]

\ Max : 749.2

Min 0.0

Fig. 6 — Global deformations in the form-finding

Basic Intemal Forces Basic Intemal Forces Basic Intemal Forces Principal Intermal Forces Principal Internal Forces
i [KN] iy [k /m] ey (kK] i [kN/m] g [kN/m]
100 100 0.00 100 100
100 100 0.00 100 100
Max © 100 Max : 1.00 Max : 0.00 Max : 100 Max - 1.00
Min : 1.00 Min : 1.00 Min : 0.00 Min : 1.00 Min . 1.00

Fig. 7 — Basic internal forces,, n,, n,, and the principal internal forces,, n,

Frincipal Internal Forces
el m2 [kN]
100

100

<%
Y Max : 1.00
' Min : 1.00

Fig. 8 — Vectors of the principal internal forceg n,

Fig. 9 — Normal forced/ in the cables and beams

The second task is the orthotropic prestress, whgre= 2.00 kN/m, and n, =

1.00 kN/m. The force in boundary cables is definedVas- 15.00 kN. Such a requirement
cannot be fulfilled exactly as it is not possibkcause of the physical reasons as mentioned

7
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previously. A prestress field that aproximates ¢hoalues as close as possible should be
calculated Fig. 11 - Fig. 13.

Global Deformations
u ]
7826
714
6403
569.1
4980
4268
3557
2846
2134
1423
ni
08

Max : 782.6
Min ;0.0

&

Fig. 10 — Global deformations in the form-finding

Basic Internal Forces Basic Internal Forces
e [kN/m] ny [kNZm]
203 101
202 101
201 100
b 3 201 b 3 093
+ 200 + 099
199 038
198 097
198 097
197 036
196 g 05
195 a 095
194 094
Max : 2.03 ]. Max : 1.01
Min :1.04 Min :0.94
> | bY
4 4 |
&
Basic Internal Forces
Py [KNZW]
003
002
\ 0o
M 00
+> o
00
000
001
001
P’ 002
| -0.02
003
“. Max 0.03
Min :-0.03 ‘
| 3
& |
&

Fig. 11 — Basic internal forces,, n,, n,,, in the membrane normal forééin the cables and beams

Principal Tnternal Forces Principal Tnternal Forces
1 [kN/m] nz [kN/m]
203 101
202 101
\ 201 \ 1.00
! 201 ! 099
& 200 & 099
199 098
198 097
198 097
197 09
196 095
195 095
194 09+
Max : 2.03 Max : 1.01
Min :1.94 Min :0.94
& &
& &
& &

Fig. 12 — Principal internal forces,, n,
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‘\ Principal Internal Forces

e d N N1, 2 kM /m]

203
193
183
\ 173
4 163
1583
143
134
124
114
104
094

Max : 2.03
Min : 0.94

&

Fig. 13 — Vectors of the principal internal forces n,

As already mentioned, concentrations should bedaeiif possibleKig. 7, Fig. 8, Fig. 11
- Fig. 13. However, there are shapes that cannot avoidlititeforces in some regions. This
Is the case of the high/low points of conical sinoes Fig. 16 - Fig. 1§. The concentrations
near the top ring are necessary because of physasbns.

Fig. 14 — Initial shape of a conical membrane stane with the x/y (warp/weft) orientation displagieft),
FE mesh (right)

o Global Deformations
ufrom]
16018
14562

13106
11650
1019.3
8737
7281
5825
4369

Max : 1601.8
Min : 0.0

Fig. 15 — Global deformations in the form-finding

Basic Internal Forces
i [N /]
331

Max @ 3.31
Min : 1.02
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Basic Internal Forces
try [kN/1)

Basic Internal Forces
iy [k /]
002
001
001
001

Fig. 16 — Basic internal forces,, n,, n,,,

Principal Internal Forces
it [kM/m]
331

310

Principal Internal Forces
2 [kH/m]

Principal Internal Forces
n1.n2 (k]

Fig. 18 — Vectors of the principal internal forceg n,

10
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When deciding whether the concentrations are nacgess not, the following formula
is useful. It states the equilibrium in the nodehsaf surface,

%+%—p=n1-k1+n2-k2—p=0 (3)
1 2

wherek,, k, are the principal curvatures, r, are the radii in these directions,, n, are the
forces in these directions, amwl is the external load. It is obvious that the farce
and curvatures are interconnected. Now, the casataflastic shapes (hypar, cone, etc.) will
be considered, where forces in warp and weft adpiposite directions. If there is no need
to change the curvatures of the surface, ther@iaeed for concentrations as it is the case
of hypar structures, for exampleig. 7, Fig. 8, Fig. 11 - Fig. 13 If there is a need to change
the curvatures rapidly in order to reach the reigeometry, the concentrations are natural.
This is the case of the cone structutég.(16 - Fig. 1§ where the tangential curvatures must
be increased and the radial curvatures must beealsed when reaching the top ring (as we
can imagine, the circles that will be created wtiencone is intersected by horizontal planes,
or the curved lines that will be created when thieecis intersected by a vertical plane).

The form-finding analysis exhibits some phenomenagh as the independence on the
material, or the independence of the initial positiof the model, for example. This
is consistent with the statements in the theoretpzat of this chapter that the shape
in equilibrium is given by the internal forces, Inolary conditions and the external load,
if considered. The independence of the initial posi will be proved by the following
example of a hypar structure with two differentiadigeometries.

=

Fig. 19 — First initial shape of the hypar membrastructure with the x/y (warp/weft) orientation jolisying
(left), FE mesh (right)

Fig. 20 — Second initial shape of the hypar memeérstnucture with the x/y (warp/weft) orientation
displaying (left), FE mesh (right)

Global Deformations

11
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Global Deformations

umm]
14934
13576
. — 12219
S 1086.1
y 9503
- 8146

ns
13658
00

Fig. 21 — Global deformations in the form-finding of the first (above) and tleesnd (below) membrane
structure

Principal Internal Forces
el n-2 [kN#m]
100

100

ax: 100

==

Principal Internal Forces
el n-2 [kN#m]

100

=

ax: 100
Min : 1.00

Fig. 22 — Vectors of the principal internal forces n, of the first (above) and the second (below) memdbra
structure

2.2.2 Pneumatic Structures

There are many different inflated structures typmssh as those shown below. These
structures are usually subjected to the overpressumwever, the cases with the inside
pressure lower than the outside pressure are alsiype Fig. 23.

(R e
m@m@

Fig. 23 — Pneumatic prestressed and stabilizedctnes ¢ overpressure;- low pressure) [21]

An example of an air supported cushion will be présd below. This cushion is a part
of the membrane structure presented in the subeh2y2 3 Full Interaction with Supporting
Structures The input data for the form-finding process atee tisotropic prestress
of magnituden, = n,, = 1.00 kN/m and the overpressupg = 250.00 Pa.

12
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Fig. 24 — ETFE cushion with the axis orientatiospglaying (left), FE mesh of the layers (middle), fREsh
of the air chamber (right)

g

Global Deformations
u frorm]

Fig. 25 — Global deformations

Basic Intemal Forces
i [kN/m]

100

. 001
001
001
0.00
0.00

0.00
0.00
0.00
0.00
0.00
- 4 001

Basic Tnternal Forces \ Basic Internal Forces
[kl [ . o kN /]
y 001
1
-

100

Max : 1.00
Min : 100

Max : 0.01
Min :-0.01

Fig. 26 — Basic internal forces,, n,, n,,
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Principal Internal Forces
m [kN/m]

Principal Internal Forces = Principal Internal Forces
2 (K] ST et e KMl

101 100 3+ 101
101 100 . 100
101 100 x 100
101 0% b 100
100 0% 3 100
100 099 088
100 0% g 0%
100 098 088
100 0% + 088
100 098 il 038
100 0% 038
100 0% + 0s8
Max : 1.01 Max : 1.00 ¥ Max : 1.01
Min : 1.00 Mi 0.98 M 0.98
+
>
\ot

Fig. 27 — Main internal forces,, n, and vectors of the main internal forces

e

Solid Stresses
Pressuie PlPal

&
Iul25u

100250.0

Max : 100250.0

Min : 100250.0

Fig. 28 — Total pressurg = p, + p, (p,..-atmospheric pressure g, ...overpressure)

The presented pressure is the overall pressureijitanch summation of the atmospheric
pressure and the overpressure defined for the fowimg. In this example, the atmospheric
pressure ip, = 100 000.00 Pa.

It is not a problem to create any other exampleéhef pneumatic structure and use the
positive or the negative overpressure without aroplems. The input for the gas chamber
can be defined as the pressure or the requirednel’he pneumatic structures will be
described by two further subchapteBs2.3 Pneumatic Structureand 3.2.4 Analysis
of Pneumatic Structurgresentingther possibilities and behaviour.

2.2.3 Full Interaction with Supporting Structures

As mentioned in the theoretical part of this chagterm-finding, the full interaction
of structural parts subjected to the form-findinghwthe parts, which are usual structural
elements, is possible in the global nonlinear amslySuch examples for both, the pneumatic
and tensioned membrane structures, will be preddiai®w.

The first example to be presented is a greenhouwse rof steel arches, ETFE cushion
of two layers and wooden shells. The internal oresgure i, = 250.00 Pa, the prestress
of ETFE layers isi, = n,, = 1.00 kN/m. The greenhouse geometry is presented beffagv (
29, Fig. 30 as well as some results of the form-finding pesc€ig. 31 - Fig. 39, which
takes into account the entire structure.

14
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T S g T
L <

L S S
PRGN 2
B

Fig. 30 — FE model of the greenhouse structure {172 elements, 16508 2D elements, 20172 3D elejnents

Global Deformations

1002545
100254.0
1002535
100253.0
1002525
100252.0
1002515
1002510
1002505
100250.0
1002495
1002480

Max : 100254.5
Min : 100249.0

Fig. 32 — Total pressurg = p, + p, (p,..-atmospheric pressure g, ...overpressure)

15
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As well as in the previous subchap®R.2 Pneumatic Structurethe presented pressure
is an overall pressure. The atmospheric pressugg ts 100 000.00 Pa here. The values
in the figure Fig. 32 approximate the required valye= 100 250.00 Pa. The higher
precision can be used for closer approximatiomefrequired values.

Basic Internal Forces
i [kN/m]

Fig. 33 — Basic internal forces, in the ETFE layers

Basic Internal Forces

ny [kN/m]
102

Fig. 34 — Basic internal forces, in the ETFE layers

Basic Internal Forces
iy [KNZm]

001
00
001
001

Basic Internal Forces
e [kh ]

535
338
261
124
014
-151
-288
426
563
-700
-838
47

Max : 5.35
Min :-9.75

Fig. 36 — Basic internal forces, in the wooden shells
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Basic Internal Forces

i [KN /o]

2.37
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Fig. 39 — Bending moments,

As presented above, the complex structure of teergrouse can be subjected to the form-
finding analysis and at the same time, the nontire@alysis of the supporting structure
is performed. The resulting internal forces in B¥&E foils and wooden parts were presented
separately since higher values of normal forcegapm the wooden shells than in the ETFE
foil, and the mixed display would not be very clear

Further, the example of mechanically prestressedtsire will be shown. This structure
iIs composed of four conical parts, which are comeglieted by eight saddle shaped parts. The
conical parts are supported by four columns fixedhe ground, the columns supporting the
hypar parts are pin-jointed to the ground and ezctinem is fixed by two cables=ig. 40,

Fig. 41). The prestress in warp and weft #ig = n, = 1.00 kN/m. The stabilization
of conical parts is used to obtain the necessanganrations near the top rings. Only those
positions need concentrations, which cannot be dedbi Other parts do not need
any concentrations, so the smooth prestress isesiudt of the form-finding process as can be
seen belowKig. 43 - Fig. 48.

17
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Fig. 40 — Initial shape of the membrane structuithwthe warp/weft orientation displaying

Global Deformations

u [mm]
24665
22423
20181
17938
15696
13454
11211

Basic Internal Forces

i [kN/m]
3381
3159
2938
2716
2495
2273
2052
1.830
1609
1387
1.166
0944

Max : 3.381
Min : 0.944

Fig. 43 — Basic internal forces,
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Basic Internal Forces

ny [kNZm]
1133
1.055
0977
0.898
0820
0.742
0.664
0.586
0.508
0430
0.352
0274

Max : 1.133
Min : 0.274

‘/ |

Fig. 44 — Basic internal forces,

Basic Internal Forces
ey [kN/m]

0197
0161
026
0.090
0.054
0.018
-0.018
-0.054
-0.090
-0.126
-0.162
-0.198

Max : 0.197
Min :-0.198

{

Fig. 45 — Basic internal forces,,,

Principal Internal Forces

1 [kN/m]
3381
3764
2947
273
2514
2297
2081
1.864
1647
1431
1214
0.997

Max : 3.381
Min @ 0.997

{

Fig. 46 — Principal internal forces,

Principal Internal Forces
nz [kN./m]

0999
0933
0.867
0801
0735
0670
0.604
0538
0472
0406
0340
0274

Max : 0.999
Min : 0.274

i ‘/ |

|
|

Fig. 47 — Principal internal forces,
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Principal Internal Forces

1,02 [KNAm]

| 3381
3088
2816
2533
2251
1.968
1686
1403
1121
0839
0.556
0274

Max : 3.381
Min : 0.274

Fig. 48 — Vectors of principal internal forcas, n,

The prestress values that are close to the prescohes can be seen when moving away
from the top rings.

9.558 47

-42 34,

IIIIIG

-19:5

-19.558

I

SGAT,
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240

10.138
-19.559

403

10.13
405 9617 19558

10.008 30
-19.558 o 017 472 342
42 : 10138
42046

b, 1g.131 8999 10.008
10,008

& 05

Fig. 50 — Bending moments,

The last three figures show the shape of the membs#ructure after the form-finding
process as contour lines and slopes. These vatuds loe of use when loading the structure,
for example in the case of the snow accumulatioiménblue parts of the figui®lopes of the
surface(Fig. 52, Fig. 53 since the surface has really low inclinationghi@se positions.
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Fig. 53 — Vectors of the slopes of the surface

The membrane structure was created in its inigaitpn Fig. 40, Fig. 4) and the form-
finding process deformed the mesh into a new/dguilin position according to the defined
prestress. This new position is an initial stateftother structural analysis. Since the loads
are placed on the surfaces/beams and then traagsfierthe mesh, the difference between the
initial position of the model and the new/real posi of the mesh can be confusing
for an engineer or architect. Because of this filaet,function of NURBS transformation was
developed in the RFEM software. This feature trarssthe model in the initial position into
the new position according to the mesh deformaftidren, the FE mesh is regenerated and
a new form-finding is calculated. The resulting@havill be the same as well as the prestress.
The calculation with/without the use of the NURB&nsformation makes no difference in the
physical meaning of the task. However, it is redfglpful to unify the model with
the equilibrium position in order to facilitate theading process. There is only one limitation:
the surfaces to be transformed can have 3 or 4daoyiines as it is a limitation according to
the mathematical definition of the surface, whiaifines a NURBS surface for 4 boundary
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lines. If one of them is degenerated into a nodes, also possible to have 3 boundary lines.
This transformation was used for the presented plaand the final geometry of the model
can be seen belowig. 54, Fig. 59.

B

iy

Fig. 54 — Transformed shape of the membrane strestith the warp/weft orientation displaying (NURBS
surfaces/lines)

Fig. 55 — FE mesh of the membrane structure afterttansformation (NURBS surfaces/lines)

2.2.4 Shdl Structures

In the following, the shell structure with bounddrgams Fig. 56) will be subjected to the
form-finding process. The required normal forcegh# shell arer, = n, = —4.00 kN /m
andN = —40.00 kN for the beams. The self-weight is considered enfdrm-finding process
as the structure is subjected to virtually pure pession under this permanent load.

As you can see below, the values of the normak®approximate the prescribed values,
while bending moments and shear perpendiculardstinface are near to zero. The same can
be observed for the beams, where the normal f@ppsoximate the required values while the
bending moment is near to zero.
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-

Fig. 56 — Initial shape of a shell structure witletaxis orientation displaying, FE mesh

Global Deformations
u from]

17058
1550.8

Max : 1705.8
Min @ 0.0

Fig. 57 — Two views of global deformatianén the form-finding

Basic Internal Forces.
i [kM/m]
-3664

Max : -3.664
Min : -4.625

Basic Internal Forces
oy ]
-3597

4614

Max : -3.597
Min : -4.614

Fig. 59 — Basic internal forces,

Basic Internal Forces
ey (K]

Fig. 60 — Basic internal forces,,,
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Fig. 61 — Basic internal forces,

Fig. 64 — Basic internal forces,

Fig. 65 — Basic internal forces,

Basic Internal Forces
mx [kNm/m]

Basic Internal Forces
my [<Hmdm]

0010

Max : 0.004
Min : -0.010

‘Basic Internal Forces
My [N

Basic Internal Forces
e [kKN#m]

Basic Internal Forces
vy k]
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Fig. 66 — Normal forced/

Fig. 67 — Bending moments,

2.2.5 Combined Structures

In the previous text, the form-finding process @fgioned structures was shown for both
mechanically prestressed membranes and pneumaittuses. Further, the possibility of the
form-finding analysis for a structure under compres was presented, and the shell structure
with boundary beams was shown. In the theoretiea, phere is mentioned that the form-
finding process of the structures under compressignsceptible to instability as the unstable
equilibrium position of the structure is searched. fAny deviation causes pushing the
structure away from the steady state that shoulidined Eig. 4). A well-known stabilization
of inverting the negative input values for shelifoipositive forces with simultaneous load
reversal is only applicable to compression-onlystarctions Fig. 56). However, a combined
structure Fig. 68) with both positive and negative forces enteredltie shape analysis cannot
use this stabilization. Based on that fact, theallgtabilization of the unstable part was
developed in the RFEM software in order to find dwiilibrium shape of such structures.
However, unstable cases for such an analysis daamgtear due to the complexity and the
physical sensitivity of the task described above.

In the following, a membrane structure with ortlopic prestress with magnitudes in warp
n, = 2.50 kN/m and weftn,, = 2.00 kN /m is analysed. The requirements for cables are the

sag magnitudes = 10.0 %, as both the force and the geometry (sag/length)oe the form-
finding input. The geometrical input was also uded the two steel arches, where the
unchanged length is required. The structure is esid§l to the form-finding process
and compared to the structure, where the shapeelf @ches is not analysed but given. The
differences of shapes and internal forces in ttaarseare obvioud=(g. 70, Fig. 72 - Fig. 7%
While the arches with given shapes are subjectddedending moments and shear forces,
those quantities are almost zero in the case dfearwith the shape according to the form-
finding analysis. By this way, the combined struetaan be optimized to be subjected axial
forces for specific load assumption only.
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Fig. 68 — Initial shape of the membrane structutiesplayed with the x/y (warp/weft) orientation dmeam
axes, the structure with (above) and without (be)lthe analysis of the shape of steel arches

Fig. 69 — FE mesh of the membrane structures inrtitial position, the structure with (above) andhout
(bellow) the analysis of the shape of steel arches

a

Global Deformations
u[mm]
15219
13836
12452
11069
9685
830.1
6918
5534
4151
2767
1384

0.0

Max : 1521.9
Min : 0.0

Fig. 70 — Global deformations during the form-finding, the structure with (abdaad without (bellow) the

analysis of the shape of steel arches
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Principal Internal Forces
n1. n2 [kN/m]

8

Fig. 71 — Vectors of the principal internal forceg n,, the structure with (above) and without (bellotw t
analysis of the shape of steel arches

Fig. 72 — Normal force#/, the structure with (above) and without (belloig analysis of the shape of steel
arches

Fig. 73 — Shear forcel,, the structure with (above) and without (bellohg analysis of the shape of steel
arches

27



2 FORM-FINDING

Fig. 74 — Bending moment$,, the structure with (above) and without (bellotg analysis of the shape of
steel arches

The combined structures exhibit a specific phenanethat more than one equilibrium
position can exist for themFig. 75 - Fig. 77. In the example presented below, the
requirements for the arches are to increase tleeigths of Al = 30.0 %. Four possible
equilibrium positions can be reachédg. 77), and each initial shape converges to the closest

one.

Fig. 76 — FE mesh of the membrane structures inrtitial position
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Global Deformations
u fmm]

Fig. 77 — Global deformations in the form-finding
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Design and Analysis of Membrane Structures in FEd4&I Software

3 STRUCTURAL ANALYSIS

The structural analysis of tensile structures ethibignificant nonlinearities. These are
caused by both the geometrical changes of thetsteuduring its loading and the non-
proportional changes of the internal forces depemdin the strains of material because
it is necessary to consider at least zero commmesssistance. The basic principles of this
analysis and FEM will be described in the firsttpafrthis chapteStructural AnalysisThe
second part will be focused on practical exampléschv will complete and illustrate the
discussed topics.

3.1 Theory

In the following text, the fundamentals of FEM amdnlinear structural analysis
of structures will be described.

3.1.1 Principlesof FEM Analysis

When speaking about a general concept of the felgenent method, the mathematical
nature inheres in what is termed discretisationth& problem. Searching fannknown
functionsin domaing with boundaryr is replaced by searching fofiaite number of values
of these functions or displacement parametdts which can be used to formulate
an approximate solution. The decomposition ofthknown functions closely related to the
division of the domain®? into subdomainsf,, briefly called finite elements and base
functionsof these finite elements [22].

The basis of numerical software used in practitatics is the deformation variant of the
FEM. This method produces well-conditioned equatgstems. The core of this method lies
in the energetic concept of the problem, generallythe variational formulation of the
problem, where we search for an extreme of an tmefA that is of additive nature. This
means, the value for the whole system (domain)gsakto the sum of values in the
subdomains (finite elements) of the system. Thineais characteristic especially for all
equations defined by means of any bounded intégridde domain. Thus, as an example, the
total potential energyl = ™ + [1°*t of the internal and external forces in the body
is minimal just for the real state of the body, £ o), in accordance with the Lagrange
variational principle. In this particular situatiothe FEM equation can be obtained through
the differentiation of the total potential enerfywith respect to the individual deformation
parameterd,, d,, ..., d,, ..., dy, WhereN is the number of degrees of freedom. Herenikib
equations can be written as [22].

ol My | Moy
E=ﬁ+ﬁzl{md_fm=(f’(N)(l\(]i‘l)_fmzo 4)

We can use the addition theorem as the energgdgalar, and the energy derivations. The

m-th equation parts can be rewritten as follows.

anint 9 22:1 nént D anént

ad,,  ad T &e=19q,., Kmd= K d ()
m m m (1,N) (N,1)

anexr = a Zz:l HSXt = p angxt = _f (6)

ddp, ddp, e=1 9d,, m

The great advantage of this method lies in the fhett there is no problem to combine
elements of different dimensions. In one systemrelitan be beams, shells and 3D elements
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3 STRUCTURAL ANALYSIS

combined. Each element is considered in the glshH#ihess matrixK by its contribution
of theK,, and the vector of nodal forcéss composed of the elements contributiénsThe
global stiffness matrix is assembled by merging @él@ments stiffness matrixd&. into the
global stiffness matrix according to the global €adimbers, in other words, by the explicit
position of the element contributions in the whstieicture.

an anint griext
ad  ad ad

=Kd—f= K d — f =0 )
(N.N) (N1)  (N,1)

This formula can be rewritten into the well-knovamnrh

Kd=f (8)
or in the matrix notation
K d=f

(NN) (N1 (V1) )

3.1.2 Nonlinear Analysis

Since the material used for tensile structures haracterized by its load resistance
practically only in tension, these structures hawvehange their shapes significantly to find
the equilibrium positions. Such a shape changeahgseat influence on the stiffne&€d)
and the forcef (d) redistribution, and this fact has to be considenetthe structural analysis.
This behaviour is well known asgeometric nonlinearitySince the material itself does not
withstand the compression, the stress-strain diagexhibits the nonlinear nature. This
Material nonlinearityhas to be considered as well. The formula mendaive will obtain
its dependency on the deformation.

K(d)d = f(d) (10)
The stiffness matrix is composed of componentsragew in following formula,
K(d) = Ky(d)+K;(d) (11)

where K,,(d) is the constitutive stiffness matrix ari,(d) is the geometric stiffness
matrix. K,;(d) depends on the constitutive low, i.e. the stréssrs diagram, and on the
change of the spatial shape of the structure ascltiamges of the structural parts size
and orientation leads to the changes of their apatnstitutive stiffness. For membrane
and cable elementk,,(d) represents the in-plane stiffness (although iteggnts the general
stiffness for a general elemeng,(d) can also be called the stress stiffness matrix¢twh
is dependent on the stress state in the elemeotsmEmbrane and cable elemerits(d)
represents the out-of-plane stiffness and it hétpsnake the tensile structures solvable,
as they would tend to singularities without thisrte

3.1.3 Geometric Nonlinearity

At the beginning of this part, it is necessary &irte two essential configurations of the
body. First, the reference configuration that représ the initial state of the structure,
and second, the current configuration that repteséme state of the structure after the
deformation.
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3 STRUCTURAL ANALYSIS

X
Fig. 78 — Reference (¥, and the current (X2) configuration of the body

The state of the body in the reference configurafly is described by the™ Piola-
Kirchhoff stressS and theGreen-Lagrange straitE while the state of the body in actual
configuration is described by tl@auchy stresg and theEuler-Almansi straire, which are
intuitive measures as they are actually the detsonpf the state we observe in reality. These
stresses and strains form the energetically cotgdgaouples, and we can describe the
derivatives of the total potential energy as fokow

om _ oM™ O _ (. SEdQy— [ q-8dd0y = [ 0:8edd— [ q-5dd0=0(12)
ad _ ad ad  J0,° " 0= Jo, 4 0= Jpoioe 04 B

When the structure is calculated, its physical dps8on (the stiffness matrix
A and the vector of forcef is created on the initial (current) configuratidxiter the system
of equations is solved, the structure takes a @@tuél) configuration that can be described as
x=X+d.

If the deformationsl are small enough, the differences between thoségewations can
be neglected and we assume the initial and newgroations as the same. Thus, we do not
recalculate the strains and stresses accordirftetodw configuration but assume that S
and e = E. This approximation is precise enough for the mafsthe engineering tasks
and is well known athe geometrically linear analysithe small deformation analysier the
first order analysis

However, the analysis described above cannot Wecisuat for large deformations. The
considerable differences between the initial ane tiew configurations (which can be
described by deformation gradight= dx/dX) require recalculation of the stress state in the
structure according to the new geometry. The sstds in the actual configuratiencannot
be approximated by the stress state calculate@nsideration of the initial configuratiof
anymore. Whenever the structure undergoes the rdafmm, a new stress/strain state
is recalculated according to the new configurat@mg a new stiffness matrik and vector
of nodal forceg¥ is assembled. This new configuration of the fiestation becomes the initial
configuration of the second iteration. After solyithe second iteration, the new configuration
for this iteration is obtained, which is the initeonfiguration of the third iteration. This
process continues until the convergence critega@ached. This process is well knowrthaes
geometrically nonlinear analysithe large deformation analysierthe third order analysis

The large deformation analysis is performed by sbquence of linear steps/iterations,
which approximate the nonlinear nature of the stmecrespons& (d)d = f(d). Both parts
of the global stiffness matrik (d) = Ky, (d)+K,(d) as well as the nodal force vecfad)
are changing during the iterations. However, edep & considered as linear. This solving
of the nonlinear equation system by the sequencéh@flinear equation system can be
performed using many iterative methods., The NevRaphson method is the most common
one.
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d

*
/" K= const.

L =1
W\
~

Fig. 79 — Diagram of the Newton-Raphson iterativethrod a) and its three modifications b),c),d)

3.1.4 Material Nonlinearity

As the material resistance of membrane or cablmesiés in the structure is considered
to withstand only in tension, these structures als subjected to significant material
nonlinearity. The material behaviour in the tengibet of the stress-strain diagram can be
approximated by the linear elastic, non-linear tedaglastic-plastic or even general material

responseKig. 80).

&y €x

Fig. 80 — Elastic, non-linear elastic, elastic-pi@sand general material models

Regardless the particular material model, the ststste of the membrane or cable element
has to satisfy that only the tension occurs. Ferrtfembrane, the stress state of each element
(0x, 0y, Txy) has to be transformed into the main directionsd;) to eliminate the possible
occurrence of the compression. This transformatan be performed by the Mohr circle
analogy, or by the eigenvalue problem.
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A
Txy
Gy
},I -
Oy p > Oy
Txy
) 5,
Tyy
G2

Fig. 81 — Stress state: stresses in the planar dixextion, main stresses in the main directiord®][with
modifications)

2
Oxto Ox—0
o, =Ty G Lo (13)

det(oc —ayl) =0 (14)
The material nonlinearity influences the globaffséiss matrixk (d), which is therefore

nonlinear as well. The influence on the materiat wd the global stiffness matrik,,(d)

is direct while the influence on the geometric g&{d) is indirect. However, the nonlinear
material response has nonlinear influence on tlessstate, which affects this geometric part

of the global stiffness matrix (if the geometrimitinearity is considered in the analysis).

3.2 Practice

This part of theStructural Analysischapter will be focused on practical demonstration

of the calculation of mechanically prestressed nramd structures as well as the calculation

of pneumatic structures.

3.2.1 Analysisof Membrane Structure

The first structure to be presented has a hypagreshiEhe horizontal distance between the

low points as well as between the high points0$ m. The material used for the membrane
is the woven fabric, whose mechanical propertiesagproximated by the orthotropic linear

elastic material model with consequent charactesist

kN kN kN
Ey =1000.0, Ey, = 800.0=7, G, = 100.0°, vy, = 0.10, v, = 0.08 (15)
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The constitutive matrix of this material is:

Ci1  Ciz Ciz] [Cxxxx  Caxyy Cexxy] [1008.06 80.65  0.00

C= (2 C3] = Cyyyy  Cyyxy| = 806.45 0.00 %V
sym. C33 sym. nyxy sym. 100.00
(16)

The high points of the membrane structure are suggdoy the columns fixed by cables,
and the low pints are supported by single cabletisdayed belowRig. 83). The triangle FE
were used for the membrane since they are notsaggtible to deplanation as quadrangles.

- !H:

Fig. 83 — Hypar membrane structure with the x/yr{whaeft) orientation displayed, FE mesh

The form-finding results are used as an initialidgium state for the further analysis. The
isotropic prestres$.00 kN /m is used for the membran®).00 kN is used as a prestress of
the boundary cable§ig. 84).

Principal Intemal Forces Principal Intemal Forces
nt Ikl 2 [kh/m]

100 100

100 100

Max : 100
Min . 1.00

Max : 1.00
Min : 100

1.00

Max : 1.00
Min : 100

Fig. 84 — The membrane prestress as the resuttrof-finding
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For the structure, eight load cases are considedfiweight, four different wind loads,
and three different snow loadsig. 88 - Fig. 9). For the wind load, the maximal dynamic
pressure isq,(z) = 0.61kN/m, and C, values are used according #ppendix Al

of European Design Guidg5| (Fig. 86, Fig. 87. The characteristic value of the snow load
IS s, = 0.80 kN /m.

Load Cases ‘A:hnns | Combination Exp 1S | Action Comb Load Combinations | Result Combinations | Super Combinations
Existing Load Cases LC No Load Case Description To Solve
‘Saﬂwaighl 1 |Se\fwslght V‘
Lcz Wind A-
LC3 Wind A+ General | Calculation Parameters
LC4 Wind B- Action Category EN 1990 | DIN
LCE Wind B+
‘ﬂ?ermanent V|
et LCe Snow full
[WeEn LC7 Snow 1/2 Self-Weight
[Wasd LC8 Snow 2/2 V] Active

Fig. 85 — Definition of load cases

High High
Point  Painl

Fig. 86 —C,, zones definition on the hypar structure [35]

External Cp Zones

Ll Al B | c|Dp| E| F | G| H I J K
positive +0 +0 | +0.3 | +0.3 | +0.3 | +0 +0 | +0.2 +0 +0 +0.2
negative -1.45 | -0.9 | -0.65 | -0.70 | -1.20 | -1.80 | -1.20 | -0.90 | -1.20 | -0.65 | -0.65

Fig. 87 — External;, values for the hypar structure [35]

Fig. 88 — Load cases LC2 (Wind A-) and LC3 (Wind A+
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2y

Fig. 91 — Load cases LC7 (Snow 1/2) and LC8 (Srn@yv 2
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The loads described above belong to three diffehetibns(Fig. 92). For the consequent
structural analysis, the combination expressiong fditimate Limit State (ULS)
andServicability Limit State (SLSJre used Kig. 93. The combinations oAction types
(Fig. 94 as well as the findload combinationgFig. 95 are generated automatically. For
this structure, there are 32 ULS combinations &h&I3S combinations to be calculated.

Load Cases | Actions | Combination Exp 15 | Action Comb Load Combinations | Result Combinations | Super Combinations
Existing Actions Action No. Action Description
Permanent 1 Permanent v
T A2 Wind
= A3 Snow General
Action Category EN 1990 | DIN
MM Permanent v
®) Simultaneously Differently
Alternatively
Fig. 92 — Actions (types of loads)
Load Cases | Actions| Combination Exp 15 | Action Comb Load Combinations | Result Combinations | Super Combinations
Existing Combination Expressions. CE No. Combination Expression Description Use
1 uLs v
SCh CE2 SLS

General | Options for Combinations

Design Situation EN 1990 | DIN
ISEIULS (STR/GEO) - Permanent / transient - Eq. 6.10 v &
Settings
Consider:

Fig. 93 — Combination Expressions (ULS and SLS)

Load Cases | Actions | Combination Expressions | Action Combinafions | | oad Combinations | Result Combinations | Super Combinations

Existing Action Combinations AC No. Action Combination Description Use
[ ACT 135G 3 1.35G +150Qw + 0.75Qs ] |
B AC2 1.35G + 1.50Qw
1356 + 1 500w < 07505 Gopmral
B AC4 1.35G +1.50Qs Design Situation EN 1990 | DIN
R 5 G ( I

— 1256 0306w 215005 | ULS (STR/GEO) - Permanent / transient - Eq. 6.10 a
Sich ACE 1.00G
SiEhl AC7 1.00G + 1.00Qw Actions in Action Combination AC3
SiCH ACS 1.00G + 1.00Qw + 0.50Qs No. Factor Action Description Leading 1 w Load Cases
SCH ACY 100G +100Qs 1 1.350 |MEW A1 Permanent (il 135 Lc1
SiEhl ACT0 1.00G + 0.60Qw + 1.00Q; : 100 N 2 Wind g 1 rete

e TR 3 0.750 |sgsr A3 Snow O 150/  050|LC6..LC8

Fig. 94 — Action types combinations (ULS and SLS)

Load Cases | Actions | Combination Expressions | Action Combinations | Load Combinations | Result Combinations | Super Combinations |

Existing Load Combinations CO No. Load Combination Description To Solve
B Co1 135701 s 9 [Em |13+ 15LC2+ 075 Lo P
=@ co2 135°LC1 + 1512
(s felox] 135°LC1+15°LC3 General | Calculation Parameters
(B Co4 ERTE e Lo Load Cases in Load Combination CO%
B co5 135°LC1+ 1.5°LC5 No | Faclor Load Case Action Leading b w
& Co6 135°LC1 + 15°LC2+ 0.75°LC6 1 1350 WEM LC1- Seffweight MW A1-Permanent O 135
i@ co7 13501 +15°L02+ 078°LC7 £ LE00 N & Wi A e 2 Wing 1=
3 0.750 B3 LC9 %8l A3 - Snow O 150 050

=@ cos 135701 + 15102+ 0.75°LC8 |

| 1.35°LCT +1.5°LC2 +0,75°LCY
= Co10 135°LC1 + 15103+ 075°LCE
@ cot 13571 + 15163+ 075107
T co12 13RI CT+1R1CA+D 7RI CR

Fig. 95 — Load combinations (ULS and SLS)

If the following, the results of the combination C® with the maximal snow load
(1.35- LC1 + 1.50 - LC6) will be presented as an examplég( 96 - Fig. 10). The envelope
of the results of all ULS combinations will be peated as wellKig. 102 - Fig. 10Y. First,
the deformation will be presented, then the intefoeces, and finally the contour lines
and slopes of the membrane surface after the dafeom as an information for estimation
of ponding occurrence.
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Global Deformations
u ]
2046
1860
1674
1488
1302
% 116
830
744
558
372
186
00

Max : 204.6
Min : 0.0

Fig. 96 — Global deformations (CO18)

Basic Internal Forces Basic Internal Forces
e [KN/m] \ iy [kN/m]
1041 412
970 37
899 33
828 296
\ 756 \ 257
4 685 4 218
614 & 17
543 140
472 101
401 063
330 024
259 0.00
Max : 10.41 Max : 4.12
Min : 2.59 Min : 000

Basic Internal Forces
iy (kN /]
131

Fig. 97 — Basic internal forces,, n,, n,,, in the membrane, normal foréein cables and beams (CO18)

Principal Internal Forces Principal Internal Forces
nt [kN/m] na [kMdm]
1041 349
270 315
899 282
328 249
\ 758 \ 216
4 687 & 183
66 ? 149
545 116
474 083
404 050
333 017
262 000
Max : 10.41 Max : 3.49
Min @ 2.62 Min 0.00
& 4 +
E 3
& 4

Fig. 98 — Main internal forces,, n, (CO18)

39



3 STRUCTURAL ANALYSIS

Principal Internal Forces
. n2 (ki)

s
Fig. 99 — Vectors of main internal forceg, n, (CO18)
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& "( -1608.0
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.
Fig. 100 — Contour lines on the surface after defation (CO18)

Shape.
| Cortous Lines [l
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2181
4960
7740
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2 g 13300
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18859
21639
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Fig. 101 — Slopes of the surface after deformatid®18)

The envelope of the results of all ULS consideges dhtical value in each position on the

membrane, therefore the displayed values are nstr@®th as the results of the particular
load cases in generdtig. 104, Fig. 10%.

| Global Deformations
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Fig. 102 — The envelope of the maximal positive reeghtive deformations (ULS)
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Basic Internal Forces Basic Internal Forces
| i [KN/m] | ny [kNAm]
138 754
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432 286
354 234
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Fig. 103 — The envelope of the basic internal fercgn,, n,, in the membrane, the envelope of the normal
forcesN in cables and beams (ULS)

Principal Internal Forces Principal Internal Forces
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4
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Fig. 104 — The envelope of the main internal forcgs, (ULS)

Frincipal Internal Forces
| ntn2 k]

4

Fig. 105 — The envelope of the vectors of the nmaérnal forcesn,, n, (ULS)
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Fig. 106 — The envelope of the contour lines orstiréace after the deformation (ULS)
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Min @ 059 Min : 0.59

Fig. 107 — The envelope of the maximal slopeseo§tinface after the deformation (ULS)
3.2.2 Warp/WEeft Orientation

The structure presented above will be further a®lywith respect to the influence of the
warp/weft orientation setting. The same geometmnstruction elements and materials
are used. The only difference between these twopbes is the change of the axis (fibre)
orientation Fig. 108. The nonlinear analysis will be performed for fhad combination
Cco1s.

Fig. 108 — Axes (fibres) orientation of Model 1 aviddel 2
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Global Deformations Global Deformations
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Fig. 109 — Global deformations of Model 1 and Model 2 (CO18)
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Fig. 110 — Main internal forces, of Model 1 and Model 2 (CO18)
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Fig. 111 — Vectors of main internal forceg n, of Model 1 and Model 2 (CO18)
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Fig. 112 — Shear forces,,, of Model 1 and Model 2 (CO18)
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Fig. 113 — Shear deformations, of Model 1 and Model 2 (CO18)

The orthotropy orientation has a considerable exfbe on the structural behaviour. The
maximal deformation oModel 1is w4, 1 = 204.6 mm, and the maximal deformation
of Model 2 isu,qx m2 = 348.0 mm. Even though the maximal principal forceshdbdel 2
(niym2 = 9.13kN/m ) are of lower value than the maximal principatcis of Model 1
(nym1 = 10.41 kN/m), the disadvantage of theModel 2 axis orientation can
be seen in comparison with the shear forces/defitons®g where the force values are
Nyym1 = 1.31kN/m and ny, vy, = 437 kN/m, and the shear deformation values are
Yxym1 = 1.31% and y,,y, 1 = 4.37%. Such a great shear deformation may cause
undesirable wrinkles.

3.2.3 Pneumatic Structures
The following picture shows the selection of theematic structures according to the air

management as they can be with or without air gugplg. 114. Different numbers
of layers/chambers are also an option to be dedigypen engineeig. 114, Fig. 11%

Oyt ﬂ//p_a\,(j’;\)\ OL = outer layer
0
t i . S e ML= middle layer
—~ ' TN ]
\@pﬂ Apy )/
Py —
2 = volume 2

Pa ¥
BTG _
- \ Pa = pressure above
LA e HE Mo s T W

IL = innerlayer

a) u a) 1 = volume 1

5 .
| i = internal pressure
\J’/ P N \ P; TN P
,,f@\—/’/ @\—/(‘me)/ ps = pressure undemeath
P, N S e
Py in = airinlet

b) b)
out=air outlet

ApoL = exposure of the
outer layer OL

Apw = exposure of the
middle layer ML

Ap = exposure of the
inner layer IL

Fig. 114 — Air management of pneumatic stabilized prestressed cushions (on the left) and air bielayv
of enclosed cushions (on the right): a) 2-layeteys b) 3-layer system, flat middle layer (mechalhyjc
prestressed) and c) 3-layer system, curved midgierl(pneumatically prestressed) [21]
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3 STRUCTURAL ANALYSIS

In the structural analysis, it is possible to cdesidifferent gas modes, which simulate the
desired structural response during the loadingge®cGenerally, there are two basic types

of gas behaviour. The first one is the gas low.
g = kons. a7)

This assumption is appropriate for enclosed cushmmfor fast processes acting on air
supplied structures, if the compressor is not ableuickly change the amount of the air
inside the cushion. The gas low is usually considders an isothermal process.

p-V = kons. (18)
The change of the temperature that has an influemcenclosed cushions during the
seasons can be considered in the calculation Ing tise temperature load.

The second general option is the simulation ofainesupply/compressor. In this case, you
can consider different requirements, suchiessilting overpressureverpressure increment
resulting volumeor volume increment

1. 1-layer system (one chamber
with a rigid base)

e 2. 2-layer system (one chamber)
) pC N S
3. 3-layer system
e — (two chambers. flat middle layer)
T =T

e 4. 3-layer system
—— (two chambers. curved middle

K ) __::% layer)

= ) 5. 3-layer system

1/"'" . (two chambers. flat middle layer,
e /:I layer separation at the boundary)
—~— B
e =g 6. 3-layer system
;[‘ o — o, \\l (two chambers, curved middle
e layer, layer separation at the

boundary)

Fig. 115 — Common formation of ETFE layers in & ¢oishions [23]

The collapse of the cushion can occhig( 116. This situation can be simulated by the
options described above when the resulting ovespresor the resulting volume is set to zero.

—
-

S e
\\\k¥¥_—.'___/> \Eg - /

Fig. 116 — The function of the cushion drainagecaghion with regular internal pressure, b) breakahoof
the operating system, the collected water is emtisough the drainage pipe [23]

Note: The software tool for calculating the behavidescribed above is currently in the
development process, and will be included in th&RFsoftware in the near future. Below,
the analysis of a pneumatic structure performethis tool is presented.
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3.2.4 Analysisof Pneumatic Structure

The second structure to be presented is a greemhnade as a pneumatic structure. The
inflated cushions consist of two ETFE layers witthigknesst = 300.0 um (light-blue parts
in Fig. 117, Fig. 118 The linear isotropic material model is considefer this material,
where consequent characteristics are used.

E =900.0 MPa,G = 310.0 MPa,v = 0.452 (29)
The constitutive matrix of this material is:

Ciz2 Ci3 Cxxxx  Cxxyy xxx;v 339.18 153.18 0.00 o
C = Cyp (:23 = Cyyyy yyxy _[ 339.18 0.00|— (20)
sy xyxy 93.00

The cushions are supported by steel arches (st&@®b,%Fig. 117, Fig. 118 The
composition of the steel and the foil is complelbgdwooden parts (glulam timber GL 28h;
brown parts irFig. 117, Fig. 118 The length of the structurelisc 35 m, the width and high
arew = h = 10 m.

The form-finding was performed with the isotropiegtress:, = n,, = 1.00 kN /m of the

ETFE foil layers and the internal overpresspge= 250.0 Pa of the gas in chambers. The
resulting shape is the initial equilibrium state ttoe nonlinear structural analysis.

Fig. 118 — The FE model of the greenhouse strugtle€1 1D elements, 16508 2D elements, 20172 3D
elements)
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3 STRUCTURAL ANALYSIS

The form-finding was performed for tmesulting overpressureequirement with the value
described above. The structural analysis appliferdnt combinations with different gas
behaviour requirements. As an example, the anabfsibe structure subjected to the load
combinationC02 (CO2 = 1.35-LC1+ 1.50 - LC5, whereLC1 is the self-weight and.C5
is the wind load) is presented, considering théhemnal gas low. For estimation of the wind
load, the followingC,, values redistribution is use#ig. 119. The load ofC02 is presented
below Fig. 120, Fig. 12}

Cpe,1
038 JI
06
04 I
4\‘ Mp\
0,2 X0
e | >
100501 02 0.3 0.4 0,5 v
-0,2 :
B 04— c
A ]
\“‘““’"’h 06} ,}/ — [
\\ ) f P feeel 8 A (h/d»0,5)
— U, ] =
"h 1.0 :\ |
— e —ll\ \
2 A2p— J ] B

A (hid>0,5)

Fig. 119 — Recommended values of the external pressefficients, for vault roofs with the rectangular
ground plan (EN 1991-1-4)

Fig. 120 — Load combinatiofi02 = 1.35 - LC1 4+ 1.50 - LC5

Fig. 121 — Load combinatiofi02 = 1.35- LC1 + 1.50 - LC5
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In particular, results of the nonlinear structuaalalysis are presented. First, the global
deformations Kig. 122 and second, the resulting pressimg.(123. It is important to note
that this pressure is the absolute pressure, naivarpressure. The atmospheric (outside)
pressure was considered ms= 100 000.0Pa. Most of the cushions are subjected to the
overpressure after the analysis; however, the dld-parts are subjected to the inside
pressure that is lower than the outside pressure.rdason for this unusual behaviour is that
the lower layer is double-curved and therefore,ddes not move upwards without
accumulating internal forces. This situation maguwowvhen the wind lifts up the outer layer
and the lower layer does not significantly defo(fig. 123.

Global Deformations
u [rom]

100927.1
1008316
1007362
100640.7
1005452
1004497
100354 3
100258.8
100163.3
100067.8
999724
998769

Max : 100927.1
Min : 09876.9

Fig. 123 — Total pressure (atmospheric pressuréhange of pressure)

Further, the main internal forces are presentdd. (124 - Fig. 12¥ separately for the
ETFE layers and the wooden shells as the magnisudery different and the common result
would not be very clear. Finally, the bending moteen the wooden shelF{g. 128, the
normal force and the bending moments in steel békigs129 - Fig. 13D are shown.

Principal Internal Forces
nt [k/m]

Fig. 124 — Main internal forces, in ETFE layers (CO2)
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Fig. 128 — Bending moments, in wooden shells (CO2)
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10,04 1447

Fig. 130 — Bending momen, (CO2)
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Design and Analysis of Membrane Structures in FEd4&I Software

4 GENERATION OF CUTTING PATTERNS

In addition to the form-finding process, the cugtipattern generation is inherently
connected to the membrane structure design, whergdal is to divide the spatial shape into
a set of patterns, and to find their closest edentan the plane by the flattening. This is the
consequence of the double curvature of membrangeshiat cannot be flattened without
compromises and thus, the curved patterns have &pproximated by flat patterns. There are
many methods developed for the flattening procedsre some of them understand this
process as a mathematical task while the otheridemst as a physical process. The
theoretical part of theGeneration of Cutting Patternchapter describes the various
approaches from both groups. The second part wifolbused on the presentation of several
examples calculated by the developed tool.

4.1 Theory

The generation process of cutting patterns can ibeledl into two main parts. First,
it is the separation of a spatial surface into aasespatial patterns, and second, flattening
these spatial patterns into the patterns in thaepl&Vhile the first task does not cause any
distortions as there is no change of the shapesdbend task causes unavoidable distortions
as the flat pattern is always the approximatiornhef spatial one, which was double-curved.
However, although the separation does not causeliatortions (pattern area, boundary lines
length, etc.) because the shape does not changesio a specific cutting line has
considerable influence on the quality of the resglpattern. This quality can be understood
in both the physical and the aesthetic meaningusecthe cutting lines define the seam lines
layout whose appearance is an important architgctelement of the whole structure
(Fig. 131). The physical impact of the cutting lines on tha&tterns quality is in cutting
differently curved spatial patterns and therefanethe measure of the necessary distortion
during the flattening process as a result.

Fig. 131 — Aesthetic aspect of cutting lines (Ce@teodov, Praha, Czech Republic,
http://archtex.cz/en/realizace.html)

4.1.1 Cutting Lines

Generally, any line can be used to split the serfato smaller parts as will be shown later.
However, as described above, the cutting line shegse a considerable influence on the
resulting pattern quality. There are two differbné types used broadly: the geodesic and the

51
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planar cuts. However, the geodesic cut type isllystlze preferred one [19, 24, 25]. The
reason for this preference is the relatively straigattern after flattening, as shown in the
practical part of this chapter. This leads to th@imisation of both the material wastage
and the distortion.

The geodesic line can be described as a straighini the tangential direction of a curved
surface in any point. It is often considered as ghertest connection between two points
on the curved surface. This is partially the trbdgcause the shortest possible connection
between two nodes across the curved surface isysltii@ geodesic line. However, in order
to describe the general situation rigorously, mgeedesic lines can exist as shown below
(Fig. 132. These lines represent the global and the logainmim of the distance between
two points. However, this case is not frequenhsmembrane structure.

geodesic line 2
(local distance minimum)
geodesic line 1

(global distance minimum)

Py

Fig. 132 — Possible existence of several geodaws [19]

Since the geodesic line is the straight line intdmgential direction of the curved surface,
this line is relatively straight after flatteningouble-curved surfaces (non-zero Gaussian
curvature) and absolutely straight when the Gaossiarvature is zero (e.g. cone
and cylinder).

The way how to create geodesic line over the FEhmedisplayed belowHig. 133,
where two points are defined to be connected (l&f§ geodesic line on the spatial shape
is found (middle), and the flattening process igqgrened (right).

I:)end Pend Pe nd

N

Pstan Pstarl

Pstarl

Fig. 133 — The geodesic line on the FE mesh befodeafter flattening ([19] with modifications)

4.1.2 Flattening Methods

As already mentioned, many methods were proposethéoflattening process, where the
goal is to find the planar approximation of the tegggpatterns. Some of them consider the
process as a mathematical task while the otheradstbee it as a physical task. The different
approaches will be described below, starting fréva simplified methods and continuing
to the general methods [19, 20, 26-34].
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a) Simple Triangulation Method

The first flattening method to be presented is $hmple triangulation techniqueThis
method is based on modifying the FE mesh that vgas dor both the form-finding and the
structural analysis. This modification is performadsuch a way that the surface is obtained,
which can be simply developed into plain by rotgtthe elements according to their edges
(Fig. 134. It is obvious that the double curvature of tlet@rn is absolutely lost by such
a modification. This geometric approach for thetéiaing process is characterised by simple
implementation and fast calculation but also by Iprecision. While the FE model can
be divided into a finer mesh for the form-findingdastructural analysis purposes in order
to reach more accurate interpretation of the Spaticture, this will not lead to the
improvement of the patterns as the loss of the goabrvature is inevitable disadvantage
of this method.

PEEE

Fig. 134 — The basis of the simple triangulatiorthmd (from the left: the spatial shape, the FE mafstine
spatial model used for form-finding and structuaaklysis purposes, the modified mesh for flattepimgposes,
the flattened pattern) [19]

b) Mathematical Squashing by Least Square Approach

The second method presented in this thesis isk@sed on the mathematical approach;
however, there is no modification of the FE mesfoteethe flattening process. This method
Is searching for the most precise geometric ingtgtion of the spatial mesh in the plane
by minimizing the squares of the defined parami@ey.

F(x,y) = %UTPU —> min. (21)
Where is the objective function to be minimizend,is the vector residuals amlis the

matrix of weightsp.

The residuals between the 3D and 2D shape can foeedleas a difference of the edge
lengths, changes of angles or element areas aseddiy the following equations, or they can
be even combined with the different weights

v=1p -3 (22)
UV =003p — d3p (23)
v =A;p —As3p (24)

c) Physical Squashing by Least Square Approach

The most advanced methods derived for the flattepimocess are based on the physical
interpretation of this task. These methods doesondt allow for the consideration of the
shape change due to pressing the pattern intoléme,pbut also the material characteristics.
The material can be defined as isotropic or ortptr without any problem. One of the
alternatives is to minimize the squares of thesstrifferences as presented by the equation.
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1 .
F(x,y) = F(xzp) = gfnw(asn—»zD + Opre) ¢ (03ps2p + Opre)dfdyp —> min. (25)

WhereF is the objective function to be minimized,, is theEuler coordinatesos,_,p +
apre IS theCauchy stressaused by flattening and prestreRs; is the actual configuration of
the pattern in 2D.

d) Physical Squashing with Energy Minimization

The second physical access represents the mosalnaty of flattening that minimize the
potential energy of the pattern caused by its prgssto the plane. This method follows the
essential principle of the FE analysis as it iglifig the equilibrium shape of the planar
pattern in accordance with the Lagrange variatipnalkiple.

T = % = [ + I3 (26)

Since no external forces are present here, thdimgqun shape of the pattern is given
by the minimization of the internal potential engrgand its derivation is described
by following equation.

an anint a(nint_) +nir;te)
- od = ;Z == f_Q3D(S3D—>2D + Spre) * 6E3po2p dfdzp =
fQZD(03D—>2D + apre) : 5e3D—>2D d-QZD =0 (27)

Here, the spatial patterns cut out of the membraepe after the form-finding are
considered as the initial (reference) configuratigp = ,, and the unknown planar patterns
are considered as the current (actual) configuraflg, = 2 (Fig. 139. S3p_2p + Spre
andosp_;p + Opye are the2™ Piola-Kirchhoff stresseand theCauchy stressesaused byhe
flattening and the prestress of the membrai®,_,, anddes,_,p are derivatives of the
Green-LagrangandEuler-Almansi straingaused by the flattening as well.

The prestressed spatial shape is the actual coafign for the form-finding but the
reference configuration for the flattening proceBlserefore, the final prestress represented
by the Cauchy stressesfter the form-finding is identified with the"™ Piola-Kirchhoff
stressedere.

Fig. 135 — The flattening process ([20] with mocktions)

It is also possible to combine the different methad order to find the optimal solution
for the implementation into the software. The mathgcal squashing can be used to estimate
the preliminary planar shape as this method idyéast, and the physical analysis can then
be performed in order to improve the initial estiilma and to reach the energetically
optimized patterns with regard to the material uSdds combination provides advantages
of both methods, i.e. the increased speed comparind pure physical access while the same
precision is preserved.
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4.1.3 Construction Requirements

In addition to the above-described optimizationtloé pattern from the physical point
of view, there are the other requirements to besfsad, specifically the construction
requirements, which are necessary due to manuiiagtufhe most common requirement
is to guarantee the same lengths of the adjacd¢i@rpadges for welding=(g. 136. Another
requirement is the utilization of the specific canpation for the boundary line, also known
as decompensation.

ALs ALs
AT
AT Ls[ L4
1 i
Lsg
Ly Ls ._[ L
Lo Le
La

ALy =Ly — L2 ALs =Ls — Lg
ALy = L3 — Ly Aliz = Ly—Lg

Fig. 136 — Ensuring the same lengths of the bountiaes of the adjacent patterns ([20] with modifions)

This restriction can be implemented into the flaittg process without any problems.
However, if we consider the energetic optimizatidrihe pattern as the selected method, the
reached equilibrium shape will have a higher paaérgnergy with these restrictions than
without them. However, this is an inevitable antura consequence of inserting the required
restrictions for any flattening method type.

4.1.4 Compensation

The compensation is the strain caused by prest@essit usually leads to shortening the
pattern, although it is also possible to elongat@s you can see in the figure belowg(
138). The compensation values are investigated by hiexial testing, taking into
consideration the specific load diagram where taling is repeated several times in both
directions. The first loading cycle is strongly fioear in the case of the woven fabric. The
achieved values are used for generating the pattern

warp weft

Stress [kN/m]

0.0 T T T T T T T
0:00:00 0:28:48 0:57:36 1:26:24 1:55:12 2:24:00 2:52:48 3:21:36
Time [hh:mm:ss]

Fig. 137 — Biaxial test: load history [35]
55




4 GENERATION OF CUTTING PATTERNS

6.0

4.0 1

Strain [%]

2.0 1

0.0

T T T T
0:0¢:00 0:28:48 0:57:36 1:26:24 1:55:12 warp

-2.0

Time [hh:mm:ss]

Fig. 138 — Biaxial test: measured strains [35]

It is usual that the compensation is applied dfterflattening. However, in order to reach
the best solution, both the flattening process #ral compensation should be generally

performed in one optimization process. This proazss be performed using the advanced
flattening methods.

The woven fabric is usually approximated by thedinorthotropic material model for the
structural analysis according to the values obthinem the testing or production sheet. Such
a material can be used in the generation of cufgiterns, where the compensation values
obtained are considered at the same time therflagas performed.

The compensation is used as strain values sincappkcation of stresses would require
the precise material model. As you can see in tbwine below Fig. 139, the orthotropic
plastic material model is generally the most appabde interpretation of the woven fabric.

Stress [kN/m]

0+

Strain [%]
Fig. 139 — Biaxial test: stress-strains diagram [36
If using such a material model, the automatic camsp#on is possible. However, it would

be necessary to define the prestress value assvétle stress under the load to be able to find
the magnitude of the strain under prestress diteplastification as this is the required value
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to guarantee the designed prestress after thenlpaicles. To demonstrate this statement,
the green line was drawn in the enclosed figliig.(139. We need to satisfy the prestress
2.4 kN/m in the warp direction after the loading cycles.wdwer, as you can see, the
prestress will reach higher values during the @mectprocess because the prestress
of 20.5 kN/m is equivalent to the same strain before the piestion caused by loading
cycles, which will follow. This is already consiéer in the compensation values, which
are obtained by the diagrams presented aldéige {37, Fig. 138

To develop the automatic compensation, furthershgation and research are needed. It is
also necessary to have wide experience with expetisn which will verify the algorithms
to be implemented.

4.2 Practice

In the practical part of this chapter, several eplas are presented, using various cutting
lines. First, the impact of the cutting lines te flanar patterns will be presented, and second,
the evaluation of the pattern quality will be dissed. Finally, the complex structure will
be divided into patterns. The pattern quality nmmd here is not considered in the
theoretical meaning but in the practical one siaeen the most precise flattening method
is always working with the given spatial patternthis one is too wide and curved, too high
distortions are necessary, which make the patt@hsisable from the practical point of view
even though it is a good planar interpretationhef $patial pattern from the theoretical point
of view.

On the basis of the advantages described abovecdhwination of two flattening
methods, i.e. thanathematical squashingnd thedistortion energy minimizatignwere
implemented into the RF-CUTTING-PATTERN add-on miedof the RFEM software.

Displaying results for pattern evaluation is cuthgminder development and will be released
soon.

4.2.1 Utilization of Different Cutting Lines

The utilization of different cutting lines was miemted in the theoretical part and it will be
presented now in a practical example. Three typpdmes are used for the hypar structure:
arbitrary lines, geodesic lines, and planar sest{pig. 140, Fig. 14).
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Fig. 140 — Using different cutting lines to sphetmembrane; arbitrary lines (left), geodesic liieght top)
and planar sections (right bellow)
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S %

Fig. 141 — Using different cutting lines to sphetmembrane; arbitrary lines (left), geodesic liieght top)
and planar sections (right bellow)

Fig. 142 — Resulting patterns using the arbitranek (top), geodesic lines (middle) and planarisest
(bellow)

The well-known experience is that the geodesicslipeoduce straight patterns while
minimizing the material wastage. On the other hagldhar sections produce patterns with
more or less curved shape, usually called banaapesh Such a shape leads to a higher
material waste. The arbitrary lines produce resliyangely shaped patterns as illustrated
in the figure aboveHig. 142.

4.2.2 Evaluation of Pattern Quality

The patterns quality will be evaluated using theuls of the nonlinear analysis, which
is used to minimise the potential energy of flatkrpatterns. The presented patterns will
be calculated on rhombus-shaped cushions consstitvgo ETFE layersKig. 143 with the
thicknesst = 300.0 um, even though the thickness has no impact on tlaénstiue to the
flattening process. The longer diagonalais= 10.0 m, the shorter one i$ = 4.0 m. The
linear isotropic material model is considered fois tmaterial, with the properties described
below.

E =900.0 MPa,G = 310.0 MPa,v = 0.452 (28)
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The constitutive matrix of such a material is:

Ci1  Ciz Ci3] [Cxxxx Cexyy  Crxxy] 133918 153.18  0.00
C= Cry Cy3| = Cyyyy  Cyyxy| =
sym. C33 sym.

339.18  0.00 %’V
Cryxy sym 93.00

The form-finding process was performed with thetrgoic prestressn, = n, =
0.40 kN /m of the ETFE foil layers and the internal overpuee®, = 250.0 Pa of the gas
in chambers. The final shapeid. 143 will be flattened; in this case, the first cushis not

(29)

divided, the second one is divided into four paerand the third one is divided into eight
patterns.

As already mentioned, the pattern quality to besgméed is considered from the practical
point of view, not from the theoretical one. Froime ttheoretical point of view, there
is no difference in the quality because all of pnesented patterns are the shapes of minimal
potential energy. However, the bigger patterns rtragtler distortion while pressing down.
This distortion is described by the strains caubgdthis processHig. 145 - Fig. 150
However, these proportional strains will influenttee stress state of the cushions in the
construction process where they will have the opposalues as the erection process
is inverse to the flattening. When too high valwégshe strain occur, the prestress can be
overcome and wrinkles appear as a result, or tipegie situation can happen as too high
stresses arise. From the practical point of vidwe, gatterns have a higher quality when the
strain caused by flattening is smaller. The smadléhe pattern, the smaller strain is reached.
However, it is not possible to divide the structure® too many too small patterns so it is

necessary to opt for a compromise in order to #ndood solution that will satisfy the
requirement of a well-prestressed structure.
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Fig. 144 — Spatial patterns (3D) with the infornmatithat the mathematical squashing was performed
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Strains
ext[]

Max : 0.02730
Min : -0.02239

Fig. 145 — Straing, in 2D patterns caused by flattening (displayedspatial (3D) patterns for having
compact model of all patterns)
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Fig. 146 — Straing,, in 2D patterns caused by flattening
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Fig. 147 — Straing,,, in 2D patterns caused by flattening
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Fig. 148 — Straing, in 2D patterns caused by flattening
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Fig. 150 — Vectors of straing, €, in 2D patterns caused by flattening

61



4 GENERATION OF CUTTING PATTERNS

Fig. 151 — Flattened (2D) patterns with the infotioa that the distortion energy minimizatiaras
performed

The purple edges of the patterns suggest thatrdlienmmary shapes were calculated using
the mathematical squashingrig. 144 while the blue edges suggest that the nonlinear
analysis was performed to find the patterns by gughe distortion energy minimization
(Fig. 145 - Fig. 15). Planar patterns can be displayed in a dialogae @ig. 151
or exported to draw the structural details. Thaistrs displayed on the user-defined structure
in the main software's environment. It is also gmedo display the stress changes due to the
flattening. As mentioned above, strain/stress halve inverse values in the erection process.
When considering the big pattern, the compressam e observed in the middle and the
tension at the edges during the flattening procelste the overstress will appear in the
middle and the low stresses at the edges in tloti@ngorocess.

4.2.3 Structural Requirement

The last structure presented here is a composifiéour cone-shaped membranes (or five,
if counted the small one in the middle) and eigipadr shaped membranes. The diameters
of the cone membranes are approximatély 20.0 m, the heights aréh = 8.0 m. The
ground plan dimensions of the hypar membranes @eogimatelya =~ b = 10.0 m and the
heights areh = 3.0 m. The entire system is subjected to the form-figdiprocess
and afterwards, patterns are calculated on thétirggshape. The widths of the patterns at the
bottom of the cones are approximately~ 2.0 m, to have an overview of the structure
dimensions.

Again, the first round of the cutting pattern gextiem process is thenathematical
squashing the second one is thdistortion energy minimizationin the following, some
details of the input data for this analysis will Bescribed. The input data can be entered
in the dialogue box in four categorieSompensationCompensation by Boundary Line
Allowances Line Type(Fig. 152.The compensation can be defined as a constalear
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value in the warp/weft directions in the second td#bthe dialogue box. The specific
compensation for the boundary lines can be definedird tab of the dialog box, if required.
In the fourth tab, it is possible to define thevalances for the welding/boundary lines as well
as the individual allowances for the selected lihegquired. In the last tab, the line category
is specified, and there are two possible tyfmaindary lineandwelding line The default
setting is that boundary lines are the lines tloahaot touch any other pattern or patterns (lines
al/c inFig. 152. On the other hand, welding lines are the lifeg to touch the other pattern
or patterns (since more than two patterns can meate line although this is not common)
(lines b/d inFig. 152. It is guaranteed that the welding lines of tleghbouring patterns
have the same length after the calculation. ¥ reiquired to freely flatten the patterns without
any interaction between them, it is possible tongeathe welding line to the boundary line
and such a requirement will not be taken into antam the pattern optimization process.
As can be seen in the figureig. 152 bellow, it is possible t&€onsider material from model

in the pattern calculation since there are quitediiferences between the isotropic materials
such as ETFE and the orthotropic materials suahoagn fabrics, and these properties can be
taken into account. If it is not intended to uspacific material in the pattern calculation, it is
possible to use thisotropic material £,,qrp/Ewese = 1; v = 0) as this material guarantees
the same behaviour in the warp/weft direction andmeraction between them through the
Poisson's ratio.

The separate patterns are flattened inntla¢hematical squashingithout considering the
options described above. Such shapes are an iesi@nation or patterns used for the
consequent analysis applying tbiestortion energy minimizatiomwhere all the patterns are
calculated together to find the global energy mumm All above-described possibilities are
taken into account and the interaction betweerp#iterns is guaranteed, if the welding lines
are present.

General | Compensation | Different Compensation by Line | Allowances | Line Type

Pattern No.

8

Boundary Lines No.

238,330,158,332 T

Options

[w] Compensation

[+] compensation for boundary line
[¥] Allowances

[¢|Line type

Material for Flattening Process d
() Isatropic material (Ewarp/Eweft = 1; v = 0)

() Consider material from model

D 7 | Membrane EN 1992-1-1:2004/A1:201
Comment
Vi R e T &
D lop| | Calculate Apply | oK | Cancel

Fig. 152 — Dialogue box for generating cutting jeatts (RF-CUTTING-PATTERN)
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The material used for the presented membrane steuds the woven fabric. The
mechanical properties are approximated by the tdpi linear elastic material model,
which is used in both the structural analysis dtmﬂdutting pattern generation.

E, = 1000. 0 = 800. 0 N Gy =1000% =X ey = 0.10,v,, = 0.08 (30)

The thickness of the membranet iss 1.0 mm and the resulting constitutive matrix is:

€1 Cip Ciz] [Crexx Coxyy  Coxxy]  [1008.06  80.65  0.00
C= Cry Gzl = Cyyyy yyxy] ’ 80645  0.00|%
sym. C33 sym. xyxy 100.00
(31)

The structure divisionHig. 153, Fig. 153 can be seen bellowig. 155, Fig. 15§ The
purple colour suggests that the preliminary calimtawas performed, the blue colour means
that the FE-based calculation of the planar paiteras done, applying trdistortion energy

minimization

Fig. 154 — FE mesh of the membrane structure
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Fig. 156 — Spatial patterns (3D) with the inforneatithat the distortion energy minimizatiasas performed

As in the case of the structural analysis, the npoeeise results are reached with a finer
FE mesh.

65



Design and Analysis of Membrane Structures in FEd4&I Software

5 CONCLUSION

The intention of this work was to summarize thengiples of three basic steps when
designing membrane structures, and to demonstnat@riactical examples described in the
chapters Form-Finding Structural Analysis and Generation of Cutting PatternsThe
examples shown here present basic principles ofdhme-finding analysis as well as some
important differences compared to the structurallyesmis, and also the nonlinear behaviour
of these structures, including the specific tasKlattening the membrane, which has to be
divided into a set of patterns. The evaluation e patterns using the nonlinear analysis
results can be an important tool in the designingcgss. It is unquestionable that the
membrane structures are fascinating topic for mapgcialists since their architectural
expression, structural specifics and, of coursallyeeomplex physical behaviour provides
a wide space for many new concepts and researches.

The examples presented here were created in th&IRBEWare [l11], including the tools
for the essential designing steps described ablmatentere developed and implemented in the
last years. Form-finding of the membrane and cabilectures as well as the structures under
compression, as presented in this work, can beoymeeld using the RF-FORM-FINDING
add-on module. The structural analysis can be dotiee main program RFEM and the RF-
CUTTING-PATTERN add-on module allows for flattenitige spatial structure into the plain
as a set of patterns. The challenging developmestulted in the release of these tools;
however, it is certain that the further developmisnan amazing and endless journey and
many new tools are in the process of developmemianning. For example, there are two
new improvements that will be released soon: tih& fone is a tool for the calculation
of pneumatic structures, and the second one islig@ay of strains/stresses caused by the
flattening process, which can be used for the patevaluation. The examples created
by using both tools were presented in this work.
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