FORM-FINDING

Essential nature of the form-finding
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Special phenomena of the form-finding

« The tangential redistribution of the nodes does not change
the shape, thus the balance. There is no unique solution.
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Form-finding with consideration of supporting structure : .
. . . . can be optimized to carry
« The supporting structure can be calculated in the same time as the form-finding

¢ Defined load can be taken into account as for example the self weight
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Arbitrarily deformed meshes for the same
surface geometry

and compressed structures
oned structures lead to the finding of stable equilibrium position

The form-finding of compressed structures lead to the finding of unstable equilibrium position
Structures with both requirement can be subjected to the form-finding and the position of arches
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Initial shape of the membrane structures; the
structure with (above) and without (bellow)
the analysis of the shape of steel arches
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Bending moments M,; the structure with (above) and
without (bellow) the analysis of the shape of steel arches

Pneumatic structures
e The gas can be part of the form-finding process

e The required pressure can be the task as well as the required
volume
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and.
structures (+ overpressure, - low pressure)

ETFE cushion (left), FE mesh of the layers
(middle), FE mesh of the air chamber (right)
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STRUCTURAL ANALYSIS

Nonlinear analysis of hypar structure

e Loads and load combinations as described

¢ Orthotropic linear elastic material model with values
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Nonlinear analysis
e Geometrical nonlinearity
» Material nonlinearity

K(d)d = f(d)
K(d) = Ky (d)+K,(d)
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Diagram of the Newton-Raphson iterative method
a) and its three modifications b),c),d)
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C, zones definition on the hypar structure
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Nonlinear analysis of greenhouse structure
» Combination of ETFE, wood and steel

= J,, 518 dn, -

Stress state: stresses in the planar axis direction, main
stresses in the main directions
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Geometry of the greenhouse structure
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prinapal Internal Forces
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Main internalforces n, in ETFE layers (CO2; self weight and wind load)
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Flattening of the greenhouse cushion

« Physical Squashing with Energy Minimization

« Influence of the pattern size on the distortions
caused by flattening

» Material considered in the flattening process

E =900.0MPa,G = 310.0 MPa,v = 0452
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ETFE cushions with FE mesh

Strains &,in 2D patterns caused by flattening
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Strains &, in 2D patterns caused by flattening

Generation of cutting patterns
« Construction requirements satisfied

Spatial patterns

Flattened (2D) patterns

Strains &, in 2D patterns caused by flattening (displayed on spatial
(3D) patterns for having compact model of all patterns)

Generation of cutting patterns

« Dividing the surface into spatial
patterns by cutting lines

« Flattening of the spatial
patterns into the plane

The flattening process
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Compensation

« Biaxial testing

Some of flattening methods

« Simple Triangulation Method

* Mathematical Squashing by Least Square Approach
« Physical Squashing by Least Square Approach

« Physical Squashing with Energy Minimization
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 Significant plastic deformation in first loop of fabric loading
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Biaxial test: load history

NN

|

4o

Strain [%]

oiogioo 0:28:48

oi57:36 126124

w5 \/\]\/\ 2527,_,,,, o

V-V

Time [hh:mm:ss]

Biaxial test: measured strains
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Biaxial test: stress-strains diagram
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