

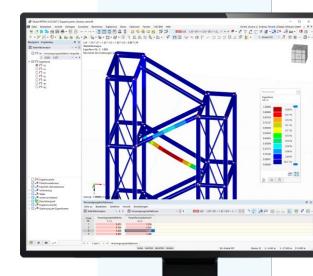
Structural Analysis & Design Software

Dipl.-Ing. (FH) Andreas Hörold Organizer

Marketing & Public Relations
Dlubal Software GmbH

Dipl.-Ing. Oliver Metzkes Co-Organizer

Product Engineering & Customer Support Dlubal Software GmbH



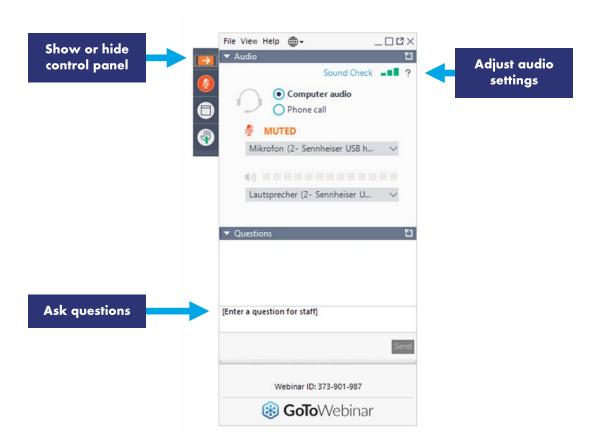
Sonja von Bloh, M.Sc.
Co-Organizer

Product Engineering & Customer Support
Dlubal Software GmbH

Stability and Warping Torsion Analyses in RFEM 6 and RSTAB 9

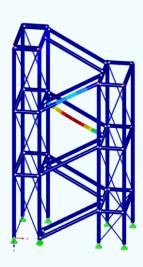
춨

QuestionsDuring thePresentation



GoToWebinar Control Panel **Desktop**

E-mail: info@dlubal.com


炭

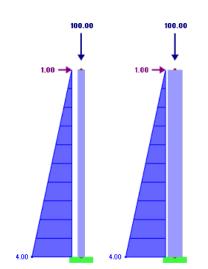
/ebinar

CONTENT

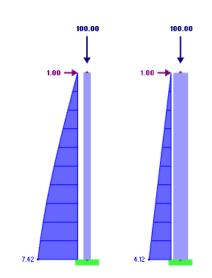
- Need for consideration of warping torsion for stability analysis
- Representing various ways for applying member imperfections in RFEM 6
- O4 Lateral- and flexural-torsional buckling according to Eurocode 3 using global calculation by 7 degrees of freedom, imperfections, and second-order analysis

Effects of deformed geometry of the structure

Criterion


$$\alpha_{\rm cr} = \frac{F_{\rm cr}}{F_{\rm Ed}}$$

Geometrically linear analysis is sufficient if


 $\alpha_{cr} > 10$ for elastic global analysis

 $\alpha_{cr} > 15$ for plastic global analysis

Geometrically Linear Analysis

Second-Order Analysis

Stability Analysis - Methods

Method	Component		Cross-Sections				Loading				
			I		[ś	N-	M ₁	M_2	M_3	Notes
Equivalent member design according to 6.3.1	•		•	•	•	•	•				FB, TB, FTB
Equivalent member design according to 6.3.2	•		•	•	•	•		•			LTB
Equivalent member design according to 6.3.3	•		•	•			•	•	•		FB, TB, FTB, LTB
General method according to 6.3.4	•	•	•	•	•		•	•			FB, TB, FTB, LTB (op – out of plane)
Design according to second-order analysis with 7 DOF	•	•	•	•	•	•	•	•	•	•	Global and local imperfections + second-order analysis

Initial bow imperfection

EN 1993-1-1 Table 5.1

Buckling curve	Cross-section design				
according to EC3-1-1	Elastic $e_{0,d}/L$	Plastic $e_{0,d}/L$			
a_0	1/350	1/300			
a	1/300	1/250			
b	1/250	1/200			
С	1/200	1/150			
d	1/150	1/100			

DIN EN 1993-1-1/NA NDP 5.3.2 (3) Table NA.2

Buckling curve	Cross-section design				
according to EC3-1-1	$\begin{array}{c} \textbf{Elastic} \\ e_{0,d}/L \end{array}$	Plastic $e_{0,d}/L$			
a_0	1/600				
a	1/500	as for			
b	1/350	elastic but			
С	1/250	$M_{\rm pl}/M_{\rm el}$ -fold			
d	1/150				

Only for elastic global analysis and linear interaction of internal forces in cross-section design

淤

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

Dlubal

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & Knowledge Base

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to Download

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.

淤

Free Online Services

Youtube Channel -Webinars, Videos

Videos and webinars about the structural engineering software.

Webshop with **Prices**

Configure your individual program package and get all prices online!

Trial Licenses

The best way how to learn using our programs is to simply test them for yourself. Download a

We offer free

and chat

support via email

Get Further Details About Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Download free trial license

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com