4 Diubal

Version September 2013

**Add-on Module** 

# **STEEL NTC-DF**

Ultimate Limit State, Serviceability and Stability Design According to NTC-RCDF 2004

# Program **Description**

All rights, including those of translations, are reserved.

No portion of this book may be reproduced – mechanically, electronically, or by any other means, including photocopying – without written permission of DLUBAL SOFTWARE GMBH.

© Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach

| 1 |
|---|
|   |
|   |
|   |

Page

# Contents

|                                                                                                                                | Contents                                                                                                                                                                                                                                                        | Page                                                            |       | Contents                    |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|-----------------------------|
| 1.                                                                                                                             | Introduction                                                                                                                                                                                                                                                    | 4                                                               | 5.    | <b>Results Evaluation</b>   |
| 1.1                                                                                                                            | Add-on Module STEEL NTC-DF                                                                                                                                                                                                                                      | 4                                                               | 5.1   | Results in the RSTAB Mode   |
| 1.2                                                                                                                            | STEEL NTC-DF - Team                                                                                                                                                                                                                                             | 5                                                               | 5.2   | Result Diagrams             |
| 1.3                                                                                                                            | Using the Manual                                                                                                                                                                                                                                                | 6                                                               | 5.3   | Filter for Results          |
| 1.4                                                                                                                            | Open the Add-on Module STEEL NTC-DF                                                                                                                                                                                                                             | 6                                                               | 6.    | Printout                    |
| 2.                                                                                                                             | Input Data                                                                                                                                                                                                                                                      | 8                                                               | 6.1   | Printout report             |
| 2.1                                                                                                                            | General Data                                                                                                                                                                                                                                                    | 8                                                               | 6.2   | STEEL NTC-DF Graphic Prin   |
| 2.1.1                                                                                                                          | Ultimate Limit State                                                                                                                                                                                                                                            | 9                                                               | 7.    | <b>General Functions</b>    |
| 2.1.2                                                                                                                          | Serviceability                                                                                                                                                                                                                                                  | 10                                                              | 7.1   | Design Cases                |
| 2.2                                                                                                                            | Materials                                                                                                                                                                                                                                                       | 11                                                              | 7.2   | Cross-Section Optimization  |
| 2.3                                                                                                                            | Cross-sections                                                                                                                                                                                                                                                  | 13                                                              | 7.3   | Units and Decimal Places    |
| 2.4                                                                                                                            | Lateral Intermediate Supports                                                                                                                                                                                                                                   | 17                                                              | 7.4   | Data Transfer               |
| 2.5                                                                                                                            | Effective Lengths - Members                                                                                                                                                                                                                                     | 18                                                              | 7.4.1 | Export Material to RSTAB    |
| 2.6                                                                                                                            | Effective Lengths - Sets of Members                                                                                                                                                                                                                             | 21                                                              | 7.4.2 | Export Effective Lengths to |
| 2.7                                                                                                                            | Nodal Supports - Sets of Members                                                                                                                                                                                                                                | 22                                                              | 7.4.3 | Export Results              |
| 2.8                                                                                                                            | Member End Releases - Sets of Members                                                                                                                                                                                                                           | 24                                                              | 8.    | Example                     |
| 2.9                                                                                                                            | Serviceability Data                                                                                                                                                                                                                                             | 25                                                              | А     | Literature                  |
| 2.10                                                                                                                           | Parameters - Members                                                                                                                                                                                                                                            | 26                                                              | В     | Index                       |
| 3.                                                                                                                             | Calculation                                                                                                                                                                                                                                                     | 27                                                              | U     | mucx                        |
| 3.1                                                                                                                            | Detail Settings                                                                                                                                                                                                                                                 | 27                                                              |       |                             |
| 3.1.1                                                                                                                          | Ultimate Limit State                                                                                                                                                                                                                                            | 27                                                              |       |                             |
| 3.1.2                                                                                                                          | Stability                                                                                                                                                                                                                                                       | 28                                                              |       |                             |
| 3.1.3                                                                                                                          |                                                                                                                                                                                                                                                                 | 20                                                              |       |                             |
|                                                                                                                                | Serviceability                                                                                                                                                                                                                                                  | 30                                                              |       |                             |
| 3.1.4                                                                                                                          | Serviceability<br>Other                                                                                                                                                                                                                                         | 30<br>31                                                        |       |                             |
| 3.1.4<br>3.2                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                 |       |                             |
|                                                                                                                                | Other                                                                                                                                                                                                                                                           | 31                                                              |       |                             |
| 3.2                                                                                                                            | Other<br>Start Calculation                                                                                                                                                                                                                                      | 31<br>32                                                        |       |                             |
| 3.2<br><b>4.</b>                                                                                                               | Other<br>Start Calculation<br><b>Results</b>                                                                                                                                                                                                                    | 31<br>32<br><b>33</b>                                           |       |                             |
| 3.2<br><b>4.</b><br>4.1                                                                                                        | Other<br>Start Calculation<br><b>Results</b><br>Design by Load Case                                                                                                                                                                                             | 31<br>32<br><b>33</b><br>34                                     |       |                             |
| 3.2<br><b>4.</b><br>4.1<br>4.2                                                                                                 | Other<br>Start Calculation<br><b>Results</b><br>Design by Load Case<br>Design by Cross-Section                                                                                                                                                                  | 31<br>32<br><b>33</b><br>34<br>35                               |       |                             |
| <ul> <li>3.2</li> <li>4.</li> <li>4.1</li> <li>4.2</li> <li>4.3</li> </ul>                                                     | Other<br>Start Calculation<br><b>Results</b><br>Design by Load Case<br>Design by Cross-Section<br>Design by Set of Members                                                                                                                                      | 31<br>32<br><b>33</b><br>34<br>35<br>36                         |       |                             |
| <ul> <li>3.2</li> <li>4.</li> <li>4.1</li> <li>4.2</li> <li>4.3</li> <li>4.4</li> </ul>                                        | Other<br>Start Calculation<br><b>Results</b><br>Design by Load Case<br>Design by Cross-Section<br>Design by Set of Members<br>Design by Member                                                                                                                  | 31<br>32<br><b>33</b><br>34<br>35<br>36<br>37                   |       |                             |
| <ul> <li>3.2</li> <li>4.</li> <li>4.1</li> <li>4.2</li> <li>4.3</li> <li>4.4</li> <li>4.5</li> </ul>                           | Other<br>Start Calculation<br><b>Results</b><br>Design by Load Case<br>Design by Cross-Section<br>Design by Set of Members<br>Design by Member<br>Design by x-Location                                                                                          | 31<br>32<br><b>33</b><br>34<br>35<br>36<br>37<br>37             |       |                             |
| <ul> <li>3.2</li> <li>4.</li> <li>4.1</li> <li>4.2</li> <li>4.3</li> <li>4.4</li> <li>4.5</li> <li>4.6</li> </ul>              | Other<br>Start Calculation<br>Results<br>Design by Load Case<br>Design by Cross-Section<br>Design by Set of Members<br>Design by Member<br>Design by x-Location<br>Governing Internal Forces by Member<br>Governing Internal Forces by Set of                   | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>37<br>38              |       |                             |
| <ul> <li>3.2</li> <li>4.</li> <li>4.1</li> <li>4.2</li> <li>4.3</li> <li>4.4</li> <li>4.5</li> <li>4.6</li> <li>4.7</li> </ul> | Other<br>Start Calculation<br><b>Results</b><br>Design by Load Case<br>Design by Cross-Section<br>Design by Set of Members<br>Design by Member<br>Design by x-Location<br>Governing Internal Forces by Member<br>Governing Internal Forces by Set of<br>Members | 31<br>32<br><b>33</b><br>34<br>35<br>36<br>37<br>37<br>38<br>39 |       |                             |

| <b>Results Evaluation</b>         | 43 |
|-----------------------------------|----|
| Results in the RSTAB Model        | 44 |
| Result Diagrams                   | 46 |
| Filter for Results                | 47 |
| Printout                          | 49 |
| Printout report                   | 49 |
| STEEL NTC-DF Graphic Printout     | 49 |
| General Functions                 | 51 |
| Design Cases                      | 51 |
| Cross-Section Optimization        | 53 |
| Units and Decimal Places          | 55 |
| Data Transfer                     | 56 |
| Export Material to RSTAB          | 56 |
| Export Effective Lengths to RSTAB | 56 |
| Export Results                    | 56 |
| Example                           | 58 |
| Literature                        | 65 |
| Index                             | 66 |



# I. Introduction

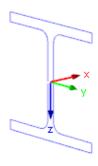
# 1.1 Add-on Module STEEL NTC-DF

The Mexican standard (NTC-DF) describes the design, analysis and construction of steel structures in Mexico. With the RSTAB add-on module STEEL NTC-DF, DLUBAL ENGINEERING SOFTWARE provides a powerful tool for designing steel framework models.

STEEL NTC-DF performs all typical ultimate limit state designs as well as stability and deformation analyses. The program is able to take into account various actions for the ultimate limit state design. Furthermore, you can choose between the interaction formulae mentioned in the code. In accordance with the code, STEEL NTC-DF divides the cross-sections to be designed into the cross-section slenderness types. In this way, you can check the limitation of the design capacity and of the rotational capacity due to local buckling for cross-section parts. Moreover, STEEL NTC-DF determines the c/t-ratios of the cross-section elements subjected to compression and classifies the cross-sections completely automatically.

The axial system of members in STEEL NTC-DF is different from the indices used in the Mexican standard: The index of the longitudinal member axis "z" is denoted as "x" in the program; "y" and "z" refer to the axes in the cross-section plane as seen in the image to the left.

For the stability analysis, you can specify for each member or set of members whether flexural buckling occurs in y- and/or z-direction. Furthermore, you can define additional lateral supports in order to represent the model close to reality. STEEL NTC-DF determines the slenderness and elastic critical buckling loads from the boundary conditions. The ideal critical moment for lateral torsional buckling required for the lateral torsional buckling design can be determined automatically. In addition to that, it is possible to take into account the load application point of transverse loads, which is affecting the torsional resistance considerably.


For models with extremely slender cross-sections, the serviceability limit state represents an important design. The limit deformations are preset by default settings and can be adjusted, if necessary. In addition, it is possible to specify reference lengths and precambers that are considered accordingly in the design.

If required, you can optimize cross-sections and export the modified cross-sections to RSTAB. The design cases enable you to design separate structural components in complex structures or analyze variants.

STEEL NTC-DF is an add-on module integrated in RSTAB. For this reason, the design relevant input data is already preset when you have started the module. Subsequent to the design, you can use the graphical RSTAB user interface to evaluate the results. Finally, the design process can be documented in the global printout report from the determination of internal forces to the design.

We hope you will enjoy working with STEEL NTC-DF.

Your DLUBAL Team



Axis system



### 1.2 STEEL NTC-DF - Team

The following people were involved in the development of STEEL NTC-DF:

#### **Program coordination**

Dipl.-Ing. Georg Dlubal

Dipl.-Ing. (FH) Younes El Frem

#### Programming

Ing. Zdeněk Kosáček Dipl.-Ing. Georg Dlubal Dr.-Ing. Jaroslav Lain Ing. Martin Budáč Mgr. Petr Oulehle Ing. Roman Svoboda Zbyněk Zámečník DiS. Jiří Šmerák

#### **Cross-section and material database**

Ing. Ph.D. Jan Rybín Mgr. Petr Oulehle Marian Bocek Ing. Jiří Kubíček

Ing. Jan Miléř

#### Program design, dialog figures, and icons

Dipl.-Ing. Georg Dlubal MgA. Robert Kolouch

#### Program supervision

Ing. Ph.D. Martin Čudejko

#### Localization, manual

Ing. Fabio Borriello Ing. Dmitry Bystrov Eng.º Rafael Duarte Ing. Jana Duníková Ing. Lara Freyer Bc. Chelsea Jennings Ing. Ladislav Kábrt Ing. Aleksandra Kociołek Ing. Roberto Lombino Eng.º Nilton Lopes Mgr. Ing. Ph.D. Hana Macková Ing. Téc. Ind. José Martínez Mgr. Petra Pokorná Ing. Marcela Svitáková Dipl.-Ing. (FH) Robert Vogl Ing. Marcin Wardyn

Dipl.-Ing. (FH) Sebastian Hawranke

#### **Technical support and quality management**

M.Eng. Cosme Asseya Dipl.-Ing. (BA) Markus Baumgärtel Dipl.-Ing. Moritz Bertram Dipl.-Ing. (FH) Steffen Clauß Dipl.-Ing. Frank Faulstich Dipl.-Ing. (FH) Wieland Götzler Dipl.-Ing. (FH) René Flori Dipl.-Ing. (FH) Stefan Frenzel Dipl.-Ing. (FH) Walter Fröhlich Dipl.-Ing. (FH) Sebastian Hawranke Dipl.-Ing. (FH) Bastian Kuhn Dipl.-Ing. (FH) Ulrich Lex Dipl.-Ing. (BA) Sandy Matula M.Eng. Dipl.-Ing. (BA) Andreas Niemeier M.Eng. Dipl.-Ing. (FH) Walter Rustler M.Sc. Dipl.-Ing. (FH) Frank Sonntag Dipl.-Ing. (FH) Christian Stautner Dipl.-Ing. (FH) Robert Vogl



### 1.3 Using the Manual

Topics like installation, graphical user interface, results evaluation, and printout are described in detail in the manual of the main program RSTAB. The present manual focuses on typical features of the add-on module STEEL NTC-DF.

The descriptions in this manual follow the sequence and structure of the module's input and results windows. In the text, the described **buttons** are given in square brackets, for example [View mode]. At the same time, they are pictured on the left. **Expressions** appearing in dialog boxes, windows, and menus are set in *italics* to clarify the explanations.

At the end of the manual, you find the index. However, if you still cannot find what you are looking for, please check our website www.dlubal.com where you can go through our FAQ pages by selecting particular criteria.

# 1.4 Open the Add-on Module STEEL NTC-DF

RSTAB provides the following options to start the add-on module STEEL NTC-DF.

#### Menu

۲

To start the program in the RSTAB menu bar, click

 $\textbf{Add-on Modules} \rightarrow \textbf{Design} \textbf{-} \textbf{Steel} \rightarrow \textbf{STEEL NTC-DF}.$ 

| Add-on Modules Window H                                                                              | elp                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Module                                                                                       | >                                                                                           | 🕐 🏄 🔗 💥 🕼                                                                              | 📾 🛤 🗄 📽 🤹 🏚 🥵 🕼 🔀 🕷                                                                                                                                                                                                                                                                                                                |
| Design - Steel                                                                                       | r                                                                                           | STEEL                                                                                  | General stress analysis of steel members                                                                                                                                                                                                                                                                                           |
| Design - Concrete  Design - Timber  Design - Aluminium  Dynamic  Connections  Foundations  Stability | He Les He Les He He Ho                                                                      | STEEL EC3<br>STEEL AISC I<br>STEEL IS<br>STEEL SIA<br>STEEL BS<br>STEEL GB<br>STEEL CS | Design of steel members according to Eurocode 3<br>Design of steel members according to AISC (LRFD or ASD)<br>Design of steel members according to IS<br>Design of steel members according to SIA<br>Design of steel members according to BS<br>Design of steel members according to GB<br>Design of steel members according to CS |
| Towers  Others                                                                                       | LAS                                                                                         | STEEL AS                                                                               | Design of steel members according to AS<br>Design of steel members according to NTC-DF                                                                                                                                                                                                                                             |
| Stand-Alone Programs                                                                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                        | Flexural buckling analysis<br>Lateral-torsional and torsional-flexural buckling analysis<br>torsional and torsional-flexural buckling analysis by FEM                                                                                                                                                                              |
|                                                                                                      |                                                                                             | EL-PL<br>C-TO-T<br>PLATE-BUCKLING                                                      | Elastic-plastic design<br>Analysis of limit slenderness ratios (c/t)<br>Plate buckling analysis                                                                                                                                                                                                                                    |
|                                                                                                      | M                                                                                           | VERBAND (not installed                                                                 | d) Design of wind bracings for roofs                                                                                                                                                                                                                                                                                               |

Figure 1.1: Menu: Add-on Modules  $\rightarrow$  Design - Steel  $\rightarrow$  STEEL NTC-DF



#### Navigator

As an alternative, you can start the add-on module in the Data navigator by clicking

```
Add-on Modules \rightarrow STEEL NTC-DF.
```

| Project Navigator - Data                                             | × |
|----------------------------------------------------------------------|---|
| ⊨                                                                    | • |
| 🗄 🗤 🛅 Model Data                                                     |   |
| 🗄 🖞 🛅 Load Cases and Combinations                                    |   |
| 🗄 🗤 🛅 Loads                                                          |   |
| 🗄 🖷 🛅 Results                                                        |   |
| Printout Reports                                                     |   |
| 🛓 💼 Guide Objects                                                    | = |
| 🖕 🚞 Add-on Modules                                                   | - |
| 📄 🧰 Favorites                                                        |   |
| STEEL - General stress analysis of steel members                     |   |
| STEEL EC3 - Design of steel members according to Eurocode 3          |   |
| FE-LTB - Lateral-torsional buckling analysis by FEM                  |   |
| TIMBER Pro - Design of timber members                                |   |
| STEEL AISC - Design of steel members according to AISC (LRFD or ASD) |   |
|                                                                      |   |
| STEEL SIA - Design of steel members according to SIA                 |   |
| STEEL BS - Design of steel members according to BS                   |   |
| STEEL GB - Design of steel members according to GB                   |   |
| STEEL CS - Design of steel members according to CS                   |   |
| STEEL AS - Design of steel members according to AS                   |   |
| STEEL NTC-DF - Design of steel members according to NTC-DF           |   |
| ALUMINIUM - Design of aluminium members according to Eurocode 9      |   |
| KAPPA - Flexural buckling analysis                                   |   |
| LTB - Lateral-torsional buckling analysis                            | - |
| 🔽 Data 🖀 Display 🔏 Views                                             |   |

Figure 1.2: Data navigator: Add-on Modules → STEEL NTC-DF

#### Panel

If results from STEEL NTC-DF are already available in the RSTAB model, you can also open the design module in the panel:

Set the relevant STEEL NTC-DF design case in the load case list of the RSTAB toolbar. Then click the [Show Results] button to display the design criterion on the members graphically.

When the results display is activated, the panel is available, too. Click [STEEL NTC-DF] in the panel to open the module.

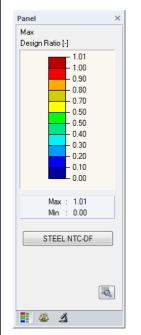
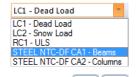




Figure 1.3: Panel button [STEEL NTC-DF]

STEEL NTC-DF



X.XX



# 2. Input Data

When you have started the add-on module, a new window opens. In this window, a Navigator is displayed on the left, managing the windows that can be currently selected. The drop-down list above the navigator contains the design cases (see chapter 7.1, page 51).

The design relevant data is defined in several input windows. When you open STEEL NTC-DF for the first time, the following parameters are imported automatically:

- Members and sets of members
- Load cases, load combinations, result combinations, and super combinations
- Materials
- Cross-sections
- Effective lengths
- Internal forces (in background, if calculated)

To select a window, click the corresponding entry in the navigator. To set the previous or next input window, use the buttons shown on the left. You can also use the function keys to select the next [F2] or previous [F3] window.

Click [OK] to save the results. Thus, you exit STEEL NTC-DF and return to the main program. To exit the module without saving the data, click [Cancel].

### 2.1 General Data

In the 1.1 *General Data* window, you select the members, sets of members, and actions that you want to design. The tabs are managing the load cases, load combinations, result combinations, and super combinations for the different designs.

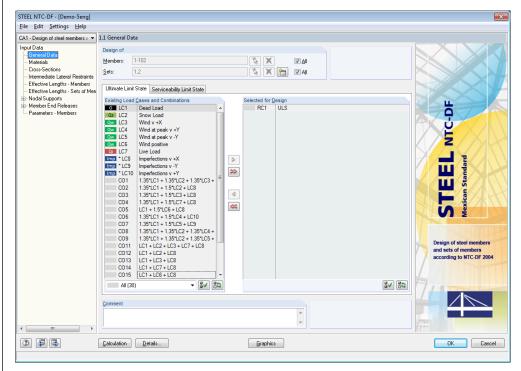



Figure 2.1: Window 1.1 General Data

Cancel

OK

Program STEEL NTC-DF © 2013 Dlubal Software GmbH



#### **Design of**

| Design of |                                   |          |       |
|-----------|-----------------------------------|----------|-------|
| Members:  | 1-8,11-18,21-28,31-46,51-64,66-69 | <b>X</b> | 🔲 All |
| Sets:     | 1,3,5-8                           | 🗞 🗙 街    | 🔽 All |

Figure 2.2: Design of members and sets of members



2

The design can be carried out for *Members* as well as for *Sets of Members*. If you want to design only selected objects, clear the *All* check box: Then you can access the input fields to enter the numbers of the relevant members or sets of members. The list of the numbers preset in the field can be selected by double-clicking and overwritten by entering the data manually. Alternatively, you can select the objects graphically in the RSTAB work window after clicking [<sup>^</sup>].

When you design a set of members, the program determines the extreme values of the analyses of all members contained in the set of members and takes into account the boundary conditions of connected members for the stability analysis. The results are shown in the results windows 2.3 *Design by Set of Members*, 3.2 *Governing Internal Forces by Set of Members*, and 4.2 *Parts List by Set of Members*.

Click [New] to create a new set of members. The dialog box that you already know from RSTAB appears where you can specify the parameters for a set of members.

### 2.1.1 Ultimate Limit State

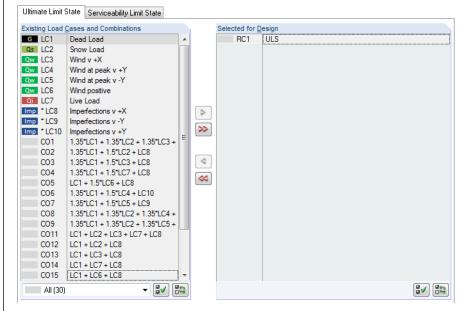
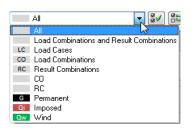



Figure 2.3: Window 1.1 General Data, tab Ultimate Limit State

### **Existing Load Cases and Combinations**


In this column, all load cases, load combinations, result combinations, and super combinations created in RSTAB are listed.



Click [▶] to transfer selected entries to the list *Selected for Design* on the right side. You can also double-click the items. To transfer the complete list to the right, click [▶▶].

To transfer multiple entries of load cases, select them while pressing the [Ctrl] key, as common for Windows applications. Then use the button [▶] to transfer them simultaneously.

Load cases marked by an asterisk (\*), like load case 8 in Figure 2.3, cannot be designed: This happens when the load cases are defined without any load data or the load cases contain only imperfections. When you transfer the load cases, a corresponding warning appears.



At the end of the list, several filter options are available. They will help you assign the entries sorted by load case, load combination, or action category. The buttons have the following functions:

| Selects all cases in the list   |
|---------------------------------|
| Inverts selection of load cases |

Table 2.1: Buttons in the tab Ultimate Limit State

#### **Selected for Design**

The column on the right lists the load cases as well as the load and result combinations selected for design. To remove selected items from the list, click [4] or double-click the entries. To transfer the entire list to the left, click [4].

The analysis of an enveloping max/min result combination is performed faster than the analysis of all load cases and load combinations that have been globally set. However, when analyzing a result combination, the influence of the contained loads is difficult to discern.

### 2.1.2 Serviceability

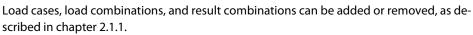

| Wind positive<br>Live Load<br>Imperfections v +X | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RC2                                                    | 01.0                                                   |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1102                                                   | SLS                                                    |
| Imperfections v +X                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| Imperfections v -Y                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| Imperfections v +Y                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| 1.35*LC1 + 1.35*LC2 + 1.35*LC3 +                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| 1.35*LC1 + 1.5*LC2 + LC8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| 1.35*LC1 + 1.5*LC3 + LC8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| 1.35*LC1 + 1.5*LC7 + LC8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + 1.5*LC6 + LC8                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                        |
| 1.35*LC1 + 1.5*LC4 + LC10                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| 1.35*LC1 + 1.5*LC5 + LC9                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| 1.35*LC1 + 1.35*LC2 + 1.35*LC4 +                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| 1.35*LC1 + 1.35*LC2 + 1.35*LC5 +                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC2 + LC3 + LC7 + LC8                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| LC1 + LC2 + LC8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC3 + LC8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC7 + LC8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC6 + LC8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC4 + LC10                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC5 + LC9                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC2 + LC4 + LC7 + LC10                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| LC1 + LC2 + LC5 + LC7 + LC9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
| ULS                                              | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |
|                                                  | $\begin{array}{l} 1.35^{+}LC1 + 1.5^{+}LC3 + LC8 \\ 1.35^{+}LC1 + 1.5^{+}LC7 + LC8 \\ LC1 + 1.5^{+}LC6 + LC8 \\ 1.35^{+}LC1 + 1.5^{+}LC4 + LC10 \\ 1.35^{+}LC1 + 1.5^{+}LC2 + L.35^{+}LC4 + \\ 1.35^{+}LC1 + 1.35^{+}LC2 + 1.35^{+}LC5 + \\ LC1 + LC2 + LC3 + LC7 + LC8 \\ LC1 + LC2 + LC8 \\ LC1 + LC3 + LC8 \\ LC1 + LC4 + LC8 \\ LC1 + LC6 + LC8 \\ LC1 + LC6 + LC8 \\ LC1 + LC4 + LC10 \\ LC1 + LC4 + LC10 \\ LC1 + LC5 + LC9 \\ LC1 + LC5 + LC9 \\ LC1 + LC2 + LC4 + LC7 + LC10 \\ LC1 + LC2 + LC4 + LC7 + LC10 \\ LC1 + LC2 + LC4 + LC7 + LC10 \\ LC1 + LC2 + LC4 + LC7 + LC10 \\ LC1 + LC2 + LC5 + LC7 + LC9 \\ ULS \end{array}$ | $\begin{array}{c c} 1.35^{+}LC1 + 1.5^{+}LC3 + LC8 \\ 1.35^{+}LC1 + 1.5^{+}LC7 + LC8 \\ LC1 + 1.5^{+}LC6 + LC8 \\ 1.35^{+}LC1 + 1.5^{+}LC4 + LC10 \\ 1.35^{+}LC1 + 1.5^{+}LC5 + LC9 \\ 1.35^{+}LC1 + 1.35^{+}LC2 + 1.35^{+}LC4 + \\ 1.35^{+}LC1 + L.35^{+}LC2 + 1.35^{+}LC5 + \\ LC1 + LC2 + LC3 + LC7 + LC8 \\ LC1 + LC2 + LC8 \\ LC1 + LC4 + LC10 \\ LC1 + LC4 + LC10 \\ LC1 + LC4 + LC9 \\ LC1 + LC4 + LC7 \\ LC1 + LC4 + LC7 + LC10 \\ LC1 + LC4 + LC7 + LC9 \\ LC1 + LC2 + LC5 + LC7 + LC9 \\ ULS \\ \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Figure 2.4: Window 1.1 General Data, tab Serviceability Limit State

### **Existing Load Cases and Combinations**

This section lists all load cases, load combinations, and result combinations created in RSTAB.

### **Selected for Design**



You can assign different limit values for deflection to the individual load cases, load combinations, and result combinations. Those limit values of the deformations can be adjusted, if necessary: Click [Details] to open the dialog box *Details* (see Figure 3.3, page 30).

In the 1.9 *Serviceability Data* window, the reference lengths that are governing for the deformation check are managed (see chapter 2.9, page 25).







# 2.2 Materials

The window is subdivided into two parts. In the upper part, all materials created in RSTAB are listed. The *Material Properties* section shows the properties of the current material, that is, the table row currently selected in the upper section.

| 1.2 Materia | als                                  |    |            |                   |                                     |
|-------------|--------------------------------------|----|------------|-------------------|-------------------------------------|
|             | A                                    |    | B          |                   |                                     |
| Material    | Material                             |    |            |                   |                                     |
| No.         | Description                          |    | Comn       | ient              |                                     |
| 1           | Steel B-254 (ASTM A36)   NMX:2004-10 |    |            |                   |                                     |
| 2           | Steel B-99 (ASTM A529)   NMX:2004-10 |    |            |                   |                                     |
|             |                                      |    |            | <b>R B X</b>      |                                     |
| Material P  |                                      |    |            |                   |                                     |
| 🖂 Main Pi   |                                      |    |            |                   |                                     |
| Mod         | ulus of Elasticity                   | E  | 200000.000 | MPa               |                                     |
|             | ar Modulus                           | G  | 77200.000  | MPa               |                                     |
|             | son's Ratio                          | ν  | 0.295      |                   |                                     |
|             | cific Weight                         | γ  |            | kN/m <sup>3</sup> |                                     |
|             | ficient of Thermal Expansion         | α  | 1.2000E-05 | 1/K               |                                     |
|             | al Safety Factor                     | ΥM | 1.00       |                   | Material No. 1 used in              |
|             | nal Properties                       | -  |            |                   |                                     |
|             | d Strength                           | Fy | 250.000    |                   | Cross-sections No.:                 |
| Ultim       | nate Strength                        | Fu | 400.000    | MPa               | 1,2,6,7,10,12,13,15,16              |
|             |                                      |    |            |                   | Members No.:                        |
|             |                                      |    |            |                   | 1-19,22-38,40,42-57,59,61-80,83-102 |
|             |                                      |    |            |                   | 1.2                                 |
|             |                                      |    |            |                   | 1,4                                 |
|             |                                      |    |            |                   | Σ Lengths: Σ Masses:                |
|             |                                      |    |            |                   | 466.46 [m] 21.802 [t]               |
|             |                                      |    |            |                   |                                     |

Figure 2.5: Window 1.2 Materials

Materials that will not be used in the design are dimmed. Materials that are not allowed are highlighted in red. Modified materials are displayed in blue.

The material properties required for the determination of internal forces are described in chapter 4.2 of the RSTAB manual (*Main Properties*). The material properties required for design are stored in the global material library. The values are preset (*Additional Properties*).

To adjust the units and decimal places of material properties and stresses, select from the module's menu **Settings**  $\rightarrow$  **Units and Decimal Places** (see chapter 7.3, page 55).

#### **Material Description**

The materials defined in RSTAB are already preset, but you can always modify them: To select the field, click the material in column A. Then click [▼] or press function key [F7] to open the material list.

| Steel B-254 (ASTM A36)   NMX:2004-10   | -           | - |
|----------------------------------------|-------------|---|
| Steel B-254 (ASTM A36)                 | NMX:2004-10 |   |
| Steel B-99 (ASTM A529)                 | NMX:2004-10 |   |
| Steel B-282 (ASTM A242) (Fy = 290 MPa) | NMX:2004-10 |   |
| Steel B-282 (ASTM A242) (Fy = 320 MPa) | NMX:2004-10 | = |
| Steel B-282 (ASTM A242) (Fy = 345 MPa) | NMX:2004-10 |   |
| Steel B-284 (ASTM A572) (Fy = 290 MPa) | NMX:2004-10 |   |
| Steel B-284 (ASTM A572) (Fy = 345 MPa) | NMX:2004-10 | - |
| Steel B-284 (ASTM A572) (Fy = 414 MPa) | NMX:2004-10 |   |
| Steel B-284 (ASTM A572) (Fy = 450 MPa) | NMX:2004-10 |   |
| Steel (ASTM A588)                      | NMX:2004-10 | Ŧ |

Figure 2.6: List of materials

According to the design concept of the standard [1], you can select only materials of the "Steel" category.



When you have imported a material, the design relevant Material Properties are updated.

If you change the material description manually and the entry is stored in the material library, STEEL NTC-DF will import the material properties, too.

Principally, it is not possible to edit the material properties in the add-on module STEEL NTC-DF.

#### **Material Library**

Numerous materials are already available in the library. To open the corresponding dialog box, click

#### Edit ightarrow Material Library

or use the button shown on the left.

|                                                                  |           | Material to Select                     |           |                      |                   |
|------------------------------------------------------------------|-----------|----------------------------------------|-----------|----------------------|-------------------|
| Aterial category group:                                          |           | Material Description                   | Standard  |                      |                   |
| Metal                                                            | -         | Steel B-254 (ASTM A36)                 | NMX:      | 2004-10              |                   |
|                                                                  |           | Steel B-99 (ASTM A529)                 | III NMX:  | 2004-10              |                   |
| faterial <u>c</u> ategory:                                       |           | Steel B-282 (ASTM A242) (Fy = 290 MPa) | III NMX:  | 2004-10              |                   |
| Steel                                                            | -         | Steel B-282 (ASTM A242) (Fy = 320 MPa) | III NMX:  | 2004-10              |                   |
| Standard group:                                                  |           | Steel B-282 (ASTM A242) (Fy = 345 MPa) | III NMX:  | 2004-10              |                   |
| NMX                                                              |           | Steel B-284 (ASTM A572) (Fy = 290 MPa) | 📲 NMX:    | 2004-10              |                   |
| P NMA                                                            | <b></b>   | Steel B-284 (ASTM A572) (Fy = 345 MPa) | III NMX:  | 2004-10              |                   |
| tandard:                                                         |           | Steel B-284 (ASTM A572) (Fy = 414 MPa) | MX:       | 2004-10              |                   |
| -<br>NMX:2004-10                                                 | -         | Steel B-284 (ASTM A572) (Fy = 450 MPa) | III NMX:  | 2004-10              |                   |
| 1007.2004 10                                                     |           | Steel (ASTM A588)                      | MX:       | 2004-10              |                   |
|                                                                  |           | Steel (ASTM A913)                      | MX:       | 2004-10              |                   |
|                                                                  |           | Steel (ASTM A992)                      | NMX:      | 2004-10              |                   |
|                                                                  |           | Steel B-177 (ASTM A53, B)              | NMX:      | 2004-10              |                   |
| Include invalid                                                  | 2         | Steel B-199 (ASTM A500)                | NMX:      | 2004-10              |                   |
|                                                                  |           |                                        | I         |                      |                   |
| Eavorites only                                                   | <b>*</b>  |                                        |           |                      | 7                 |
| laterial Properties                                              |           |                                        | Steel B-2 | 254 (ASTM A36)   N   | MX:2004-          |
| Main Properties                                                  |           |                                        | -         |                      |                   |
| <ul> <li>Modulus of Elasticity</li> <li>Shear Modulus</li> </ul> |           |                                        | E         | 200000.000 77200.000 |                   |
| <ul> <li>Poisson's Ratio</li> </ul>                              |           |                                        | v         | 0.295                | MEd               |
| - Specific Weight                                                |           |                                        | γ         |                      | kN/m <sup>3</sup> |
| Coefficient of Thermal                                           | Expansion |                                        | α         | 1.2000E-05           | 1/K               |
| Additional Properties                                            |           |                                        |           |                      |                   |
| <ul> <li>Yield Strength</li> </ul>                               |           |                                        | Fy        | 250.000              | MPa               |
| <ul> <li>Ultimate Strength</li> </ul>                            |           |                                        |           |                      | MPa               |

Figure 2.7: Dialog box *Material Library* 

In the *Filter* section, *Steel* is preset as material category. Select the material quality that you want to use for the design in the *Material to Select* list. The corresponding properties can be checked in the dialog section below.

Click [OK] or [,-] to transfer the selected material to window 1.2 of the module STEEL NTC-DF.

Chapter 4.2 in the RSTAB manual describes in detail how materials can be filtered, added, or rearranged.

You can also select material categories like *Cast Iron* or *Stainless Steel*. Please check, however, whether these materials are allowed by the design concept of the standard [1].







# 2.3 Cross-sections

This window manages the cross-sections used for design. In addition, the module window allows you to specify optimization parameters.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                                                                                                                                                                               | В                                                                                                                      | 1 C                                                                | D                                                                                                                                                 | E                                              | F        | 1 - IS 450/200/10/20/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Material                                                                                                                                                                                                                                                                        | Cross-Section                                                                                                          | Cross-Section Type                                                 | Opti-                                                                                                                                             |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.                                                                                                                                                                                                                                                                             | Description                                                                                                            | for Classification                                                 | mize                                                                                                                                              | Remark                                         | Comment  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                               | IS 450/200/10/20/0                                                                                                     | I-section welded IS                                                | No                                                                                                                                                |                                                |          | 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                               | T IS 400/200/10/18/0                                                                                                   | I-section welded IS                                                | No                                                                                                                                                |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                               | T IS 250/250/10/15/0                                                                                                   | I-section welded IS                                                | No                                                                                                                                                |                                                |          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                               | T IS 250/250/10/15/0                                                                                                   | I-section welded IS                                                | No                                                                                                                                                |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                               | IS 450/200/10/20/0                                                                                                     | I-section welded IS                                                | No                                                                                                                                                |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                               | IS 200/200/8/15/0                                                                                                      | I-section welded IS                                                | No                                                                                                                                                |                                                |          | 420.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                               | TO 80/80/5/5/5/5                                                                                                       | Box welded                                                         | No                                                                                                                                                |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                               | Circle 24                                                                                                              | Round bar                                                          | No                                                                                                                                                |                                                |          | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                               | T IS 250/250/10/15/0                                                                                                   | I-section welded IS                                                | No                                                                                                                                                |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                               | T IS 360/150/8/12/0                                                                                                    | I-section welded IS                                                | No                                                                                                                                                |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                        |                                                                    |                                                                                                                                                   |                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                        |                                                                    |                                                                                                                                                   |                                                | <b>B</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ection Valu                                                                                                                                                                                                                                                                     | ies - IS 450/200/10/20/0                                                                                               |                                                                    |                                                                                                                                                   | <b>X</b>                                       | <b>i</b> | Cross-section No. 1 used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ection Valu<br>Section Ty                                                                                                                                                                                                                                                       | ies - IS 450/200/10/20/0                                                                                               |                                                                    | I-section welded                                                                                                                                  |                                                |          | <ul> <li>Image: A state of the state of</li></ul> |
| Cross<br>Sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ection Valu<br>Section Ty<br>on Height                                                                                                                                                                                                                                          | ies - IS 450/200/10/20/0                                                                                               | h                                                                  | 450.0 mm                                                                                                                                          | -                                              |          | Cross-section No. 1 used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cross<br>Section<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ection Valu<br>Section Ty<br>on Height<br>on Width                                                                                                                                                                                                                              | ies - IS 450/200/10/20/0                                                                                               | b                                                                  | 450.0 mm<br>200.0 mm                                                                                                                              |                                                |          | Cross-section No. 1 used in<br>Members No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cross<br>Section<br>Section<br>Web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness                                                                                                                                                                                                                 | ies - IS 450/200/10/20/0                                                                                               | b<br>tw                                                            | 450.0 mm<br>200.0 mm<br>10.0 mm                                                                                                                   |                                                |          | Cross-section No. 1 used in<br>Members No.:<br>5,6,8,12,14,93,94,96,100,102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cross<br>Section<br>Section<br>Web<br>Flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness                                                                                                                                                                                                  | ies - IS 450/200/10/20/0                                                                                               | b<br>tw<br>tf                                                      | 450.0 mm<br>200.0 mm<br>10.0 mm<br>20.0 mm                                                                                                        |                                                |          | Cross-section No. 1 used in<br>Members No.:<br>5,6,8,12,14,93,94,96,100,102<br>Sets of members No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cross<br>Section<br>Section<br>Web<br>Flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area                                                                                                                                                                                          | ies - IS 450/200/10/20/0                                                                                               | b<br>tw<br>tf<br>At                                                | 450.0 mm<br>200.0 mm<br>10.0 mm<br>20.0 mm<br>12100.0 mm                                                                                          | 2                                              |          | Cross-section No. 1 used in<br>Members No.:<br>5,6,8,12,14,93,94,96,100,102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area                                                                                                                                                                                  | ies - IS 450/200/10/20/0                                                                                               | b<br>tw<br>tf<br>At<br>Ay                                          | 450.0 mm<br>200.0 mm<br>10.0 mm<br>20.0 mm                                                                                                        | 2 2                                            |          | Cross-section No. 1 used in<br>Members No.:<br>5,6,8,12,14,93,94,96,100,102<br>Sets of members No.:<br>1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area                                                                                                                                                                                  | es - IS 450/200/10/20/0<br>pe<br>s                                                                                     | b<br>t <sub>w</sub><br>tf<br>At<br>Ay<br>Az                        | 450.0 mm<br>200.0 mm<br>10.0 mm<br>20.0 mm<br>12100.0 mm<br>8000.0 mm                                                                             | 2 2 2 2 2                                      |          | Cross-section No. 1 used in           Members No.:         5,6,8,12,14,93,94,96,100,102           Sets of members No.:         1,2           Σ Lengths:         Σ Masses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area<br>Area                                                                                                                                                                          | es - IS 450/200/10/20/0                                                                                                | b<br>tw<br>tf<br>At<br>Ay                                          | 450.0 mm<br>200.0 mm<br>10.0 mm<br>20.0 mm<br>12100.0 mm<br>8000.0 mm<br>4500.0 mm                                                                | 2<br>2<br>2<br>2<br>4                          |          | Cross-section No. 1 used in           Members No.:         5,6,8,12,14,93,94,96,100,102           Sets of members No.:         1,2           Σ Lengths:         Σ Masses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Secor<br>Secor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area<br>Area<br>Area<br>d Moment                                                                                                                                                      | es - IS 450/200/10/20/0 ppe s of Area of Area                                                                          | b<br>tw<br>tf<br>At<br>Ay<br>Az<br>Iy                              | 450.0 mm<br>200.0 mm<br>10.0 mm<br>20.0 mm<br>12100.0 mm<br>8000.0 mm<br>4500.0 mm<br>4.27501E+0 mm                                               | 2<br>2<br>2<br>4<br>4                          |          | Cross-section No. 1 used in           Members No.:         5,6,8,12,14,93,94,96,100,102           Sets of members No.:         1,2           Σ Lengths:         Σ Masses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Secor<br>Torsion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area<br>Area<br>Area<br>and Moment                                                                                                                                                    | es - IS 450/200/10/20/0<br>ppe<br>s<br>of Area<br>of Area<br>nt                                                        | b<br>tw<br>lf<br>At<br>Ay<br>Az<br>ly<br>lz<br>J                   | 450.0 mm<br>200.0 mm<br>10.0 mm<br>12100.0 mm<br>8000.0 mm<br>4500.0 mm<br>4.27501E+0 mm<br>26700800.0 mm                                         | 2<br>2<br>2<br>4<br>4<br>4                     |          | Cross-section No. 1 used in           Members No.:         5,6,8,12,14,93,94,96,100,102           Sets of members No.:         1,2           Σ Lengths:         Σ Masses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cross<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Secor<br>Secor<br>Torsion<br>Radiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area<br>Area<br>and Moment<br>nal Consta                                                                                                                                              | s of Area of Area of Area of Area of Area                                                                              | b<br>tw<br>tr<br>At<br>Ay<br>Az<br>ly<br>lz                        | 450.0 mm<br>200.0 mm<br>10.0 mm<br>12100.0 mm<br>8000.0 mm<br>4500.0 mm<br>4.27501E+0 mm<br>26700800.0 mm<br>1142810.0 mm                         | 2<br>2<br>2<br>4<br>4<br>4<br>4                |          | Cross-section No. 1 used in           Members No.:           5.6.8,12,14,93,94,96,100,102           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           48.00 [m]         4.559 [           Material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shar<br>Shear<br>Shar<br>Shar<br>Shar<br>Shar<br>Shar<br>Shar<br>Shar<br>Sh | ection Value<br>Section Ty<br>in Height<br>in Width<br>Thickness<br>e Thickness<br>e Thickness<br>Area<br>Area<br>d Moment<br>inal Consta<br>s of Gyratic                                                                                                                       | es - IS 450/200/10/20/0<br>ppe<br>s<br>of Area<br>of Area<br>of Area<br>nt<br>on                                       | b<br>lw<br>lf<br>At<br>Ay<br>Az<br>ly<br>iz<br>J<br>ry<br>rz       | 450.0 mm<br>200.0 mm<br>20.0 mm<br>20.0 mm<br>12100.0 mm<br>4500.0 mm<br>4.27501E+0 mm<br>142810.0 mm<br>1142810.0 mm                             | 2<br>2<br>2<br>2<br>4<br>4<br>4<br>4           |          | Cross-section No. 1 used in           Members No.:         5.6.8.12,14,93,94,96,100,102           Sets of members No.:         1.2           Σ Lengths:         Σ Masses:           48.00 [m]         4.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shar<br>Shar<br>Shar<br>Shar<br>Shar<br>Shar<br>Shar<br>Sh                           | ection Value<br>Section Ty<br>in Height<br>in Width<br>Thickness<br>e Thickness<br>e Thickness<br>Area<br>Area<br>d Moment<br>ad Moment<br>inal Consta<br>s of Gyratic<br>s of Gyratic                                                                                          | es - IS 450/200/10/20/0 ppe s of Area of Area of Area nt nt on loculus                                                 | b<br>lw<br>lf<br>At<br>Ay<br>Az<br>ly<br>lz<br>J<br>ry             | 450.0 mm<br>200.0 mm<br>10.0 mm<br>220.0 mm<br>12100.0 mm<br>4500.0 mm<br>4.27501E+0 mm<br>142810.0 mm<br>1142810.0 mm<br>188.0 mm                | 2<br>2<br>2<br>4<br>4<br>4<br>3                |          | Cross-section No. 1 used in           Members No.:         5.6.8.12.14.93.94.96.100.102           Sets of members No.:         1.2           Σ         Lengths:         Σ           48.00         [m]         4.559           Material:         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cross<br>Sectic<br>Sectic<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Secor<br>Torsic<br>Radiu<br>Elastic<br>Elastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ection Valu<br>Section Ty<br>on Height<br>on Width<br>Thickness<br>a Thickness<br>a Thickness<br>a Thickness<br>a Thickness<br>a Thickness<br>a Thickness<br>a Thickness<br>a Thickness<br>a Strate<br>a Strate<br>s of Gyratic<br>s of Gyratic<br>s of Gyratic<br>s of Gyratic | es - IS 450/200/10/20/0 es - IS 450/200/10/20/0 s of Area of Area of Area of Area of Area on n Aodulus loculus loculus | b<br>lw<br>lf<br>At<br>Ay<br>Az<br>ly<br>iz<br>J<br>fy<br>fz<br>Zy | 450.0 mm<br>200.0 mm<br>20.0 mm<br>12100.0 mm<br>4500.0 mm<br>427501E+0 mm<br>26700800.0 mm<br>1142810.0 mm<br>1142810.0 mm<br>47.0 mm<br>47.0 mm | 2<br>2<br>2<br>2<br>4<br>4<br>4<br>4<br>3<br>3 |          | Cross-section No. 1 used in           Members No.:           5.6.8,12,14,93,94,96,100,102           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           48.00 [m]         4.559 [           Material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Figure 2.8: Window 1.3 Cross-sections

### **Cross-Section Description**

The cross-sections defined in RSTAB are preset together with the assigned material numbers.



To modify a cross-section, click the entry in column B selecting this field. Click [Cross-section Library] or [...] in the field or press function key [F7] to open the cross-section table of the current input field (see the following figure).

In this dialog box, you can select a different cross-section or a different cross-section table. To select a different cross-section category, click [Back to cross-section library] to access the general cross-section library.

Chapter 4.3 of the RSTAB manual describes how cross-sections can be selected from the library.

| Welded Cross-Sections - I symmet                                                                                                                                                                                                         | ric                                                                                                                                                                     |                   |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| Cross-Section Type<br>$\begin{array}{c c} I & I & I & T \\ \hline T & L & L & D \\ \hline C & I & T & T \\ \hline O & \nabla & I & I \\ \hline I & T & I \\ \hline I & I & T \\ \hline I & I \\ \hline I & L \\ \hline I \\ \end{array}$ | 360.0 m/m       [mm]         b:       170.0 m/m       [mm]         s:       8.0 m/m       [mm]         t:       14.0 m/m       [mm]         a:       0.0 m/m       [mm] |                   |           |
| ٩                                                                                                                                                                                                                                        |                                                                                                                                                                         | IS 360/170/8/14/0 |           |
|                                                                                                                                                                                                                                          |                                                                                                                                                                         |                   | OK Cancel |

Figure 2.9: IS cross-sections in the cross-section library

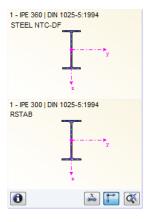
The new cross-section description can be entered in the input field directly. If the data base contains an entry, STEEL NTC-DF imports these cross-section parameters, too.

A modified cross-section will be highlighted in blue.

If cross-sections set in STEEL NTC-DF are different from the ones used in RSTAB, both crosssections are displayed in the graphic on the right. The designs will be performed with the internal forces from RSTAB for the cross-section selected in STEEL NTC-DF.

#### **Cross-Section Type for Classification**

The cross-section type used for the classification is displayed. The cross-sections listed in [1] Table 5.2 can be designed plastically or elastically depending on the Class. Cross-sections that are not covered by this table are classified as *General*.


#### Max. Design Ratio

This table column is displayed only after the calculation. It is a decision support for the optimization. By means of the displayed design ratio and colored relation scales, you can see which cross-sections are little utilized and thus oversized, or overloaded and thus undersized.

#### Optimize

You can optimize every cross-section from the library: For the RSTAB internal forces, the program searches the cross-section that comes as close as possible to a user-defined maximum utilization ratio. You can define the maximum ratio in the *Other* tab of the *Details* dialog box, (see Figure 3.4, page 31).

To optimize a cross-section, open the drop-down list in column D or E and select the desired entry: *From Current Row* or, if available, *From favorites 'Description'*. Recommendations for the cross-section optimization can be found in chapter 7.2 on page 53.





#### Remark

This column shows remarks in the form of footers that are described in detail below the crosssection list.

A warning might appear before the calculation: *Incorrect type of cross-section!* This means that there is a cross-section that is not stored in the data base. This may be a user-defined cross-section or a SHAPE-THIN cross-section that has not been calculated yet. To select an appropriate cross-section for design, click [Library] (see description in Figure 2.8).

#### Member with tapered cross-section

For tapered members with different cross-sections at the member start and member end, the module displays both cross-section numbers in two tables, in accordance with the definition in RSTAB.

STEEL NTC-DF also designs tapered members, provided that the cross-section at the member's start has the same number of stress points as the cross-section at the member end. For example, the normal stresses, are determined from the moments of inertia and the centroidal distances of the stress points. If the cross-sections at the start and the end of a tapered member have a different number of stress points, the intermediate values cannot be interpolated. The calculation is possible neither in RSTAB nor in STEEL NTC-DF.

The cross-section's stress points including numbering can also be checked graphically: Select the cross-section in window 1.3 and click [Info]. The dialog box shown in Figure 2.10 appears.

### Info About Cross-Section

In the dialog box *Info About Cross-Section*, you can view the cross-section properties, stress points, and c/t-parts.

| Cross-Section Value Description             | Symbol            | Value     | Unit               | - | HE B 360   DIN 1025-2:1995              |
|---------------------------------------------|-------------------|-----------|--------------------|---|-----------------------------------------|
| Depth                                       | h                 | 36.00     | cm                 |   |                                         |
| Width                                       | Ь                 | 30.00     | cm                 |   |                                         |
| Web thickness                               | tw                | 1.25      | cm                 |   |                                         |
| Flange Thickness                            | t <del>r</del>    | 2.25      | cm                 |   | 30.00                                   |
| Root fillet radius                          | r                 | 2.70      | cm                 | Ξ | +                                       |
| Cross-sectional area                        | A                 | 181.00    | cm <sup>2</sup>    | - | 10                                      |
| Shear area                                  | Ay                | 112.63    | cm <sup>2</sup>    |   | 2.70                                    |
| Shear area                                  | Az                | 39.80     | cm <sup>2</sup>    |   |                                         |
| Shear area according to EC 3                | Av.y              | 139.94    | cm <sup>2</sup>    |   |                                         |
| Shear area according to EC 3                | A <sub>v,z</sub>  | 60.96     | cm <sup>2</sup>    |   |                                         |
| √eb area                                    | Aweb              | 39.40     | cm <sup>2</sup>    |   | 8                                       |
| Plastic shear area                          | A <sub>pl,y</sub> | 135.00    | cm <sup>2</sup>    |   | N N N N N N N N N N N N N N N N N N N   |
| Plastic shear area                          | A <sub>pl,z</sub> | 42.19     | cm <sup>2</sup>    |   |                                         |
| Moment of inertia                           | ly                | 43190.00  | cm <sup>4</sup>    |   | 1.25                                    |
| foment of inertia                           | Iz                | 10140.00  | cm <sup>4</sup>    |   |                                         |
| Governing radius of gyration                | ſy                | 15.50     | cm                 |   |                                         |
| Governing radius of gyration                | ٢z                | 7.49      | cm                 |   |                                         |
| Polar radius of gyration                    | ro                | 17.21     | cm                 |   | ↓ · · · · · · · · · · · · · · · · · · · |
| Radius of gyration of flange plus 1/5 of we | ſzg               | 8.03      | cm                 |   | Z                                       |
| /olume                                      | V                 | 18100.00  | cm <sup>3</sup> /m |   |                                         |
| √eight                                      | wt                | 142.1     | kg/m               |   |                                         |
| Surface                                     | Asurf             | 1.850     | m²/m               |   |                                         |
| Section factor                              | A <sub>m</sub> /V | 102.210   | 1/m                |   |                                         |
| Forsional constant                          | J                 | 293.00    | cm <sup>4</sup>    |   | 🔲 🔝 Stress points 🛛 🖓 🚰                 |
| Warping constant                            | Cw                | 2.883E+06 | cm <sup>6</sup>    |   | C/t-Parts                               |
| lastic section modulus                      | s.,               | 2400.00   | cm <sup>3</sup>    | Ŧ |                                         |

Figure 2.10: Dialog box Info About Cross-Section

In the right part of the dialog box, the currently selected cross-section is displayed.







The buttons below the graphic are reserved for the following functions:

| Button   | Function                                                                          |
|----------|-----------------------------------------------------------------------------------|
| I        | Displays or hides the stress points                                               |
|          | Displays or hides the c/t-parts                                                   |
| 123      | Displays or hides the numbering of stress points or c/t-parts                     |
|          | Displays or hides the details of the stress points or c/t-parts (see Figure 2.11) |
| ×        | Displays or hides the dimensions of the cross-section                             |
| <b>1</b> | Displays or hides the principal axes of the cross-section                         |
| X        | Resets the full view of the cross-section graphic                                 |

Table 2.2: Buttons of cross-section graphic

Click [Details] to call up detailed information on stress points (distance to center of gravity, statical moments of area, normalized warping constants etc.) and c/t-parts.

|         | A      | B      | С                     | D                                 | E         | F                                  | G         | HE B 260   |
|---------|--------|--------|-----------------------|-----------------------------------|-----------|------------------------------------|-----------|------------|
| StressP | Coordi | nates  | Statical Mome         | ents of Area                      | Thickness | Warp                               |           |            |
| No.     | y [cm] | z [cm] | Qy [cm <sup>3</sup> ] | Q <sub>z</sub> [cm <sup>3</sup> ] | t [cm]    | W <sub>no</sub> [cm <sup>2</sup> ] | Sω [cm 4] |            |
| 1       | -13.00 | -13.00 | 0.00                  | 0.00                              | 1.75      | 157.63                             | 0.00      |            |
| 2       | -2.90  | -13.00 | -213.95               | -140.47                           | 1.75      | 35.16                              | -1703.76  |            |
| 3       | 0.00   | -13.00 | -280.04               | -148.63                           | 1.75      | 0.00                               | -1792.98  |            |
| 4       | 2.90   | -13.00 | -213.95               | 140.47                            | 1.75      | -35.16                             | 1703.76   |            |
| 5       | 13.00  | -13.00 | 0.00                  | 0.00                              | 1.75      | -157.63                            | 0.00      | 1 2 3 4 5  |
| 6       | -13.00 | 13.00  | 0.00                  | 0.00                              | 1.75      | -157.63                            | 0.00      |            |
| 7       | -2.90  | 13.00  | -214.31               | 140.52                            | 1.75      | -35.16                             | -1703.76  |            |
| 8       | 0.00   | 13.00  | -280.04               | 148.63                            | 1.75      | 0.00                               | -1792.98  |            |
| 9       | 2.90   | 13.00  | -214.31               | -140.52                           | 1.75      | 35.16                              | 1703.76   | 13 Y       |
| 10      | 13.00  | 13.00  | 0.00                  | 0.00                              | 1.75      | 157.63                             | 0.00      |            |
| 11      | 0.00   | -8.85  | -599.75               | 0.00                              | 1.00      | 0.00                               | 0.00      |            |
| 12      | 0.00   | 8.85   | -600.56               | 0.00                              | 1.00      | 0.00                               | 0.00      |            |
| 13      | 0.00   | 0.00   | -638.91               | 0.00                              | 1.00      | 0.00                               | 0.00      | 6 7 8 9 10 |
|         |        |        |                       |                                   |           |                                    |           | z          |
|         |        |        |                       |                                   |           |                                    |           |            |
|         |        |        |                       |                                   |           |                                    |           |            |
|         |        |        |                       |                                   |           |                                    |           |            |
|         |        |        |                       |                                   |           |                                    |           |            |
|         |        |        |                       |                                   |           |                                    |           |            |
|         |        |        |                       |                                   |           |                                    |           |            |
| 2       | -      |        |                       |                                   |           |                                    |           | Close      |

Figure 2.11: Dialog box Stress Points of HE B 260

Q



# 2.4 Intermediate Lateral Restraints

In window 1.4, you can define intermediate lateral restraints for members. STEEL NTC-DF always assumes this kind of support to be perpendicular to the cross-section's minor axis z (see Figure 2.10). Thus, it is possible to influence the members' effective lengths which are important for the stability analyses concerning flexural buckling and lateral-torsional buckling.

For the calculation, intermediate lateral restraints are considered as torsional supports.



1.4 Intern ediate Late В D Membe No. Lateral Number L [m] Restraint х3 X5 X1 X2 X4 X6 X9 19 20 0.500 ✓
 ✓ 0.500 24 🛐 😼 💊 🔽 Relatively (0 ... 1) Settings - Member No. 21 Cross-Section Lateral Restraints Member Length Number of Intermediate Lateral Restraints 0.500 Location of Lateral Restraint No. 1 X1 Set input for members No. V AI A

Figure 2.12: Window 1.4 Intermediate Lateral Restraints

can define the distances manually in the upper table.

In the upper part of the window, you can assign up to nine lateral restraints for each member. The *Settings* section shows the input as column overview for the member selected above.



To define the intermediate restraints of a member, select the *Lateral Restraint* check box in column A. To graphically select the member and to activate its row, click [<sup>\begin</sup>]. By selecting the check box, the other columns become available for you to enter the parameters.

In column C, you specify the number of the intermediate restraints. Depending on the specification, one or more of the following *Intermediate Lateral Restraints* columns for the definition of the x-locations are available.

If the check box *Relatively* (0... 1) is selected, the support points can be defined by relative in-

put. The positions of the intermediate restraints are determined from the member length and the relative distances from the member start. If the *Relatively (0 ... 1)* check box is cleared, you

📝 Relatively (0 ... 1)

5

In case of cantilevers, avoid intermediate restraints because such supports divide the member into segments. For cantilevered beams, this would result in segments with lateral torsional restraints on one end each that are statically underdetermined.



### 2.5 Effective Lengths - Members

The window is subdivided into two parts. The table in the upper part contains summarized information about the factors for the lengths of buckling and lateral-torsional buckling as well as the equivalent member lengths of the members to be designed. The effective lengths defined in RSTAB are preset. In the *Settings* section, you can see further information on the member whose row is selected in the upper section.



....

Click the button [<sup>^</sup>] to select a member graphically and to show its row.

Changes can be made in the table as well as in the Settings tree.

|        | A                         | B                     | C           | D       | E                     | F            | G                   | H        |                    | J              | K             | L                            |
|--------|---------------------------|-----------------------|-------------|---------|-----------------------|--------------|---------------------|----------|--------------------|----------------|---------------|------------------------------|
| Member | Buckling                  | Buck                  | ing About A | xis y   | Buck                  | ling About A | xis z               | Lateral- | Torsional and      | Torsional-Flex | ural Buckling |                              |
| No.    | Possible                  | Possible              | Ky          | KyL [m] | Possible              | Kz           | KzL [m]             | Possible | L <sub>w</sub> [m] | LT [m]         | Mu[kNm]       | Comment                      |
| 1      | <b>V</b>                  | <b>V</b>              | 1.000       | 3.000   | <b>V</b>              | 1.000        | 3.000               | <b>V</b> | 3.000              | 3.000          | Eigenvalue    |                              |
| 2      | <b>V</b>                  |                       | 1.000       | 3.000   | √                     | 1.000        | 3.000               | <b>V</b> | 3.000              | 3.000          | Eigenvalue    |                              |
| 3      |                           | <ul> <li>✓</li> </ul> | 1.000       | 5.000   | <ul> <li>✓</li> </ul> | 1.000        | 5.000               |          | 5.000              | 5.000          | Eigenvalue    |                              |
| 4      | √                         | <ul> <li>✓</li> </ul> | 1.000       | 5.000   | <ul> <li>✓</li> </ul> | 1.000        | 5.000               |          | 5.000              | 5.000          | Eigenvalue    |                              |
| 5      | √                         | √                     | 1.000       | 3.000   | 2                     | 1.000        | 3.000               | <b>V</b> | 3.000              | 3.000          | Eigenvalue    |                              |
| 6      | √                         | <ul> <li>✓</li> </ul> | 1.000       | 3.000   | V                     | 1.000        | 3.000               | <b>V</b> | 3.000              | 3.000          | Eigenvalue    |                              |
| 7      | <b>V</b>                  | 2                     | 1.000       | 5.000   | V                     | 1.000        | 5.000               |          | 5.000              | 5.000          | Eigenvalue    |                              |
| 8      | √                         | <ul> <li>✓</li> </ul> | 1.000       | 6.000   | V                     | 1.000        | 6.000               | <b>V</b> | 6.000              | 6.000          | Eigenvalue    |                              |
| 9      | √                         | ✓                     | 1.000       | 5.000   | ✓                     | 1.000        | 5.000               |          | 5.000              | 5.000          | Eigenvalue    |                              |
| 10     |                           |                       | 1.000       | 7.810   |                       | 1.000        | 7.810               |          | 7.810              | 7.810          | Eigenvalue    | This type of member is not a |
|        | Member No                 | . 1                   |             |         |                       |              |                     |          |                    |                | IS 250/       | 250/10/15/0                  |
| Cross- | Section                   |                       |             |         |                       | 15 - IS 1    | 250/250/10          | /15/0    |                    |                |               |                              |
| Length |                           |                       |             |         | L                     |              | 3.000 m             |          |                    |                |               |                              |
|        | ng Possible               |                       |             |         |                       |              | <b>S</b>            |          |                    |                |               |                              |
|        |                           | jor Axis y Pos        | sible       |         |                       |              | ✓                   |          |                    |                |               |                              |
|        | ctive Length              |                       |             |         | Ky                    |              | 1.000               |          |                    |                |               | + 250.0 +                    |
|        | ctive Length              |                       |             |         | KyL                   |              | 3.000 <u></u> m     |          |                    |                |               |                              |
|        |                           | nor Axis z Pos        | sible       |         |                       |              | √                   |          |                    |                |               | 0.0                          |
|        | ctive Length              |                       |             |         | Kz                    |              | 1.000               |          |                    |                |               | 0.0                          |
|        | ctive Length              |                       |             |         | KzL                   |              | 3.000 m             |          |                    |                | - 9           |                              |
|        | Length                    | uckling Possil        | bie         |         | -                     |              |                     |          |                    |                | 250.0         |                              |
|        | s Length<br>sional Length |                       |             |         | Lw<br>LT              | -            | 3.000 m<br>3.000 m  |          |                    |                |               | 10.0                         |
| - Tors | sonai Lengtr              |                       |             |         | LI                    | D-           | 3.000 m<br>jenvalue |          |                    |                |               |                              |
| Comme  | ant                       |                       |             |         |                       | Eig          | envalue             |          |                    |                |               | annanna                      |
| Comme  |                           |                       |             |         | _                     |              |                     |          |                    |                |               | 1                            |
|        |                           |                       |             |         | _                     |              |                     |          |                    |                |               | z                            |
|        |                           |                       |             |         |                       | _            |                     |          |                    |                |               |                              |
|        |                           |                       |             |         |                       |              |                     |          |                    |                |               |                              |
|        |                           |                       |             |         |                       |              |                     |          |                    |                |               |                              |
| Set in | put for memb              | ers No.:              |             |         |                       |              |                     |          |                    |                |               |                              |
|        |                           |                       |             |         |                       |              |                     |          |                    |                |               |                              |

Figure 2.13: Window 1.5 Effective Lengths - Members

The effective lengths for buckling about the minor z-axis are aligned automatically with the entries of the 1.4 *Intermediate Lateral Restraints* window. If intermediate restraints divide the member into member segments of different lengths, the program displays no values in the table columns G, I, and J of window 1.5.

The effective lengths can be entered manually in the table and in the *Settings* tree, or defined graphically in the work window after clicking [...]. This button is enabled when you click in the input field (see figure above).

The Settings tree manages the following parameters:

- Cross-Section
- Member Length
- Buckling Possible for member (cf columns B and E)
- Buckling about Axis y Possible (cf columns C and D)
- Buckling about Axis z Possible (cf columns F and G)
- Lateral-Torsional Buckling Possible (cf columns I K)

In this table, you can specify for the currently selected member whether to carry out a buckling or a lateral-torsional buckling analysis. In addition to this, you can adjust the *Effective Length Factor* for the respective lengths. When a coefficient is modified, the equivalent member length is adjusted automatically, and vice versa.

#### 2 Input Data



~

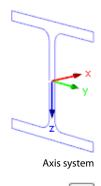
You can also define the buckling length of a member in a dialog box. To open it, click the button shown on the left. It is located on the right below the upper table of the window.

| Select Effective Length Factor                            | ×                                                                              |
|-----------------------------------------------------------|--------------------------------------------------------------------------------|
| Buckling About Axis y                                     | Buckling About Axis z                                                          |
| © Ky = 2.0                                                | © Kz = 2.0 Z++++                                                               |
| • K <sub>y</sub> = 1.0                                    | Kz = 1.0     Y     Y     Y                                                     |
| © Ky = 0.7                                                | © K₂ = 0.7                                                                     |
| © Ky = 0.5                                                | © Kz = 0.5                                                                     |
| © User-defined                                            | User-defined<br>Kz =                                                           |
| Import from add-on module RSBUCK<br>(Eigenvalue Analysis) | <ul> <li>Import from add-on module RSBUCK<br/>(Eigenvalue Analysis)</li> </ul> |
| RSBUCK-Case:                                              | RSBUCK-Case:                                                                   |
| CA1 - Stability analysis 🔹                                | CA1 - Stability analysis                                                       |
| Buckling shape<br>No.:                                    | Buckling shape<br>No.:                                                         |
| Export effective length factor Ky: 1.000                  | Export effective length factor Kz : 1.000                                      |
| D                                                         | OK Cancel                                                                      |

Figure 2.14: Dialog box Select Effective Length Factor

For each direction, the buckling length can be defined according to one of the Euler buckling modes or *User-defined*. If a RSBUCK case calculated according to the eigenvalue analysis is already available, you can also define a *Buckling Shape* to determine the factor.

#### **Buckling Possible**


A stability analysis for flexural buckling requires the ability of members to absorb compressive forces. Therefore, members for which such absorption is not possible because of the member type (for example tension members, elastic foundations, rigid connections) are excluded from design in the first place. The corresponding rows appear dimmed and a note is displayed in the *Comment* column.

The *Buckling Possible* check boxes in table row A and in the *Settings* tree offer you a control option for the stability analyses: They determine whether the analysis should or should not be performed for a member.

#### Buckling about Axis y or Axis z

With the check boxes in the *Possible* table columns, you decide whether a member is susceptible to buckling about the y-axis and/or z-axis. These axes represent the local member axes, with axis y being the major and axis z the minor member axis. The buckling length coefficients K<sub>y</sub> and K<sub>z</sub> for buckling about the major or the minor axis can be selected freely.

You can check the position of the member axes in the cross-section graphic in the 1.3 *Cross-Sections* window (see Figure 2.8, page 13). To access the RSTAB work window, click [View mode]. In the work window, you can display the local member axes by using the member's context menu or the *Display* navigator (see figure below).



۲

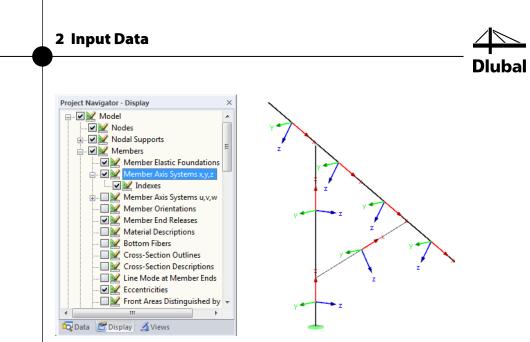



Figure 2.15: Selecting the member axis systems in the Display navigator of RSTAB

If buckling is possible about one or even both member axes, you can enter the effective length factors as well as the buckling lengths in the columns C and D or F and G. The same is possible in the *Settings* tree.

To specify the buckling lengths in the work window graphically, click [...]. This button becomes available when you click in a *KL*-input field (see Figure 2.13).

When you specify the effective length factor *K*, the program determines the effective length *KL* by multiplying the member length *L* by the effective length factor *K*. The input fields *K* and *KL* are interactive.

#### Lateral-Torsional and Torsional-Flexural Buckling Possible

Table column H shows you for which members the program performs an analysis of lateraltorsional and torsional-flexural buckling.

With the check box in the *Possible* columns, you decide whether a member is susceptible to torsional buckling. The LTB lengths  $L_w$  and the torsional lengths  $L_T$  in columns I and J can be edited by the user.

#### **Elastic Buckling Moment Mu**

The list in column K includes four options for the calculation of the nominal bending resistance moment  $M_u$ . It can be accessed by clicking the button [ $\checkmark$ ] which appears after clicking in a cell of this table column.

• Eq. (3.24)

 $M_u$  is calculated according to [1] clause 3.3.2.2.

$$M_{u} = \frac{\pi}{CL} \sqrt{E \cdot I_{z} \cdot G \cdot J + \left(\frac{\pi \cdot E}{L}\right)^{2} \cdot I_{z} \cdot C_{a}}$$

#### Use factor C<sub>b</sub>

The modification factor  $C_b$  is calculated according to the AISC standard [2] equation F1-1.

$$C_{b} = \frac{12.5M_{max}}{2.5M_{max} + 3M_{A} + 4M_{B} + 3M_{C}}$$

where

| $M_{max}$      | absolute value of maximum bending moment in unbraced segment    |
|----------------|-----------------------------------------------------------------|
| M <sub>A</sub> | absolute value of bending moment at quarter point of segment    |
| MB             | absolute value of bending moment at center of member or segment |

M<sub>c</sub> absolute value of bending moment at three-quarter point of segment

Mu [kNm] Eigenvalue ▼ Eq. (3.24) Use factor Cb Eigenvalue Manually

....



The nominal bending resistance moment is then calculated with this modification factor.

$$\mathsf{M}_{\mathsf{u}} = \mathsf{C}_{\mathsf{b}} \frac{\pi}{\mathsf{CL}} \sqrt{\mathsf{E} \cdot \mathsf{I}_{\mathsf{z}} \cdot \mathsf{G} \cdot \mathsf{J} + \left(\frac{\pi \cdot \mathsf{E}}{\mathsf{L}}\right)^2 \cdot \mathsf{I}_{\mathsf{z}} \cdot \mathsf{C}_{\mathsf{a}}}$$

#### • Eigenvalue

This option is set as default. It uses the general eigenvalue solver to determinate the elastic buckling moment.

• Manually

The value of  $M_u$  can be defined individually.

#### Comment

In the last table column, you can enter your own comments for each member to describe, for example, the selected effective member lengths.

# 2.6 Effective Lengths - Sets of Members

This window appears only if you have selected at least one set of members for design in the 1.1 *General Data* window (see Figure 3.2, page 28).

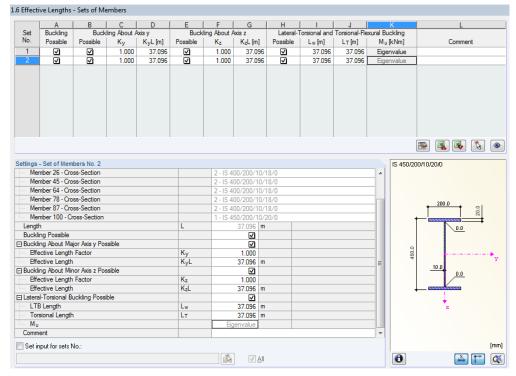



Figure 2.16: Window 1.6 Effective Lengths - Sets of Members

The concept of this window is similar to the one in the previous 1.5 *Effective Lengths - Members* window. In this window, you can enter the effective lengths for the buckling about the two principal axes of the set of members as described in chapter 2.5.





# 2.7 Nodal Supports - Sets of Members

This window is displayed only if you have selected at least one set of members for the design in the 1.1 *General Data* window.

If the *Member-Like Input* is selected for sets of members in the dialog box *Details* dialog box, tab *Stability* (see Figure 3.2, page 28), window 1.7 will not be displayed. In that case, you can define the intermediate lateral restraints by using division points in window 1.4.

|           | Α           | B              | С            | D                        | E           | F             | G       | H        |         |
|-----------|-------------|----------------|--------------|--------------------------|-------------|---------------|---------|----------|---------|
| upport    | Node        | Support        | Lat. Support | Rotational               | Restraint   | Warping       | Eccer   | tricity  |         |
| No.       | No.         | Rotation ß [°] | uy.          | φ <sub>X</sub> [kNm/rad] | φZ'         | Restraint ω   | ex [mm] | e z [mm] | Comment |
| 1         | 13          | 0.00           | 2            | 2                        |             |               | 0.0     | 0.0      |         |
| 2         | 16          | 0.00           | 2            | 12.800 💌                 |             |               | 0.0     | -150.0   |         |
| 3         |             |                |              |                          |             |               |         |          |         |
| 4         |             |                |              |                          |             |               |         |          |         |
| 5         |             |                |              |                          |             |               |         |          |         |
| 6         |             |                |              |                          |             |               |         |          |         |
| 7         |             |                |              |                          |             |               |         |          |         |
| 8         |             |                |              |                          |             |               |         |          |         |
| 9         |             |                |              |                          |             |               |         |          |         |
| 10        |             |                |              |                          |             |               |         |          |         |
| ettings - | Node Sun    | port No. 16    |              |                          |             |               |         |          |         |
|           | Members     | port no. To    |              |                          |             |               |         |          |         |
|           | nber 13     |                |              |                          |             |               |         |          |         |
|           | tart        |                |              |                          | 3 - IPE 400 | DIN 1025-5:19 | 94      |          |         |
| E         | nd          |                |              |                          |             | DIN 1025-5:19 |         |          |         |
| Men       | nber 14 - C | ross-Section   |              |                          |             | DIN 1025-5:19 |         |          |         |
| Men       | nber 15 - C | ross-Section   |              |                          |             | DIN 1025-5:19 |         |          |         |
| Node 1    | with Suppo  | nt             |              | No.                      |             | 16            |         |          |         |
| Suppo     | rt Rotation |                |              | β                        |             | 0.00 °        |         |          |         |
| Lateral   | Support in  | ۱Y             |              | UY.                      |             | 2             |         |          |         |
| Restra    | int About X | C.             |              | φx.                      | 12          | 800 kNm/rad   |         |          |         |
| Restra    | int About Z |                |              | 07                       |             |               |         |          | V V     |

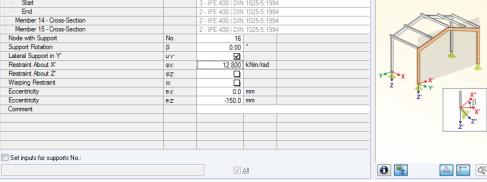



Figure 2.17: Window 1.7 Nodal Supports - Set of Members



Details.

To determine critical buckling factor of lateral-torsional buckling, a planar framework is created with four degrees of freedom for each node, which you have to define in window 1.7. This window refers to the <u>current</u> set of members (selected in the add-on module's navigator on the left).

The orientation of the axes in the set of members is important for the definition of nodal supports. The program checks the position of the nodes and internally defines, according to Figure 2.18 to Figure 2.21, the axes of the nodal supports for window 1.7.



Figure 2.18: Auxiliary coordinate system for nodal supports - straight set of members

If all members of a set of members lie in a straight line as shown in Figure 2.18, the local coordinate system of the first member in the set of members corresponds to the equivalent coordinate system of the entire set of members.



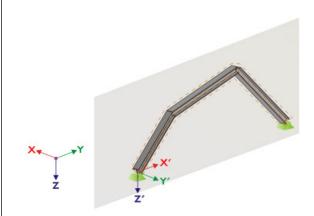



Figure 2.19: Auxiliary coordinate system for nodal supports - set of members in vertical plane

If members of a set of members are not lying in a straight line, they must at least lie in the same plane. In Figure 2.19, they are lying in a vertical plane. In this case, the axis X' is horizontal and aligned in direction of the plane. The axis Y' is horizontal as well and defined perpendicular to the axis X'. The axis Z' is directed perpendicularly downwards.

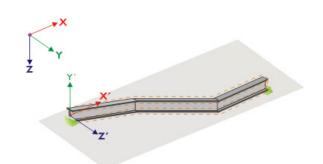



Figure 2.20: Auxiliary coordinate system for nodal supports - set of members in horizontal plane

If the members of a buckled set of members are lying in a horizontal plane, the X'-axis is defined parallel to the X-axis of the global coordinate system. Thus, the Y'-axis is oriented in the opposite direction to the global Z-axis and the axis Z' is directed parallel to the global Y-axis.

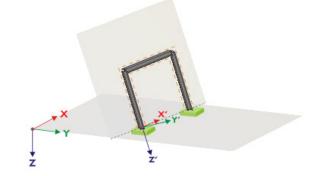



Figure 2.21: Auxiliary coordinate system for nodal supports - set of members in inclined plane

Figure 2.21 shows the general case of a buckled set of members: The members are not lying in one straight line but in an inclined plane. The definition of the X'-axis arises out of the intersection line of the inclined plane with the horizontal plane. Thus, the Y'-axis is defined perpendicular to the axis X' and directed perpendicular to the inclined plane. The Z'-axis is defined perpendicular to the X'- and Y'-axes.



# 2.8 Member End Releases - Sets of Members

This window is displayed only if you have selected at least one set of members for the design in the 1.1 *General Data* window. Here, you can define releases for members and sets of members that, due to structural reasons, do not transfer the locked degrees of freedom specified in window 1.7 as internal forces. This window refers to the <u>current</u> set of members (selected in the add-on module's navigator on the left).

Window 1.8 will not be displayed when in the Details dialog box (see Figure 3.2, page 28) the

Details...

| .8 Member End R                  | eleases - Set of N | Members No. 2 - I | b          |              |                |         |
|----------------------------------|--------------------|-------------------|------------|--------------|----------------|---------|
| A                                | В                  | C                 | D          | E            | F              | G       |
| Release Member                   |                    | Shear Release     | Moment     |              | Warp Releas    |         |
| No. No.                          | Side               | Vy                | Мт         | Mz [kNm/rad] |                | Comment |
| 1 15                             | Start              | Ó                 |            |              | Ő              |         |
| 2 13                             | End                | - H               | — <u> </u> | 15.000       |                |         |
| 3                                |                    |                   |            | 10.000       |                |         |
| 4                                |                    |                   |            |              |                |         |
| 5                                |                    |                   |            |              |                |         |
| 6                                |                    |                   |            |              |                |         |
| 7                                |                    |                   |            |              |                |         |
| 8                                |                    |                   |            |              |                |         |
| 9                                |                    |                   |            |              |                |         |
| 10                               |                    |                   |            |              |                |         |
|                                  | -                  |                   |            |              | •              |         |
| Settings - Member                |                    |                   |            |              |                |         |
| Set of Members                   |                    |                   |            | b            |                | ×       |
| <ul> <li>Member 1 - C</li> </ul> | ross-Section       |                   |            | 1 - HE A     | 100   Euronor  | n 53-62 |
| Member 3                         |                    |                   |            |              |                |         |
| Start                            |                    |                   |            |              | 450   DIN 1025 |         |
| End                              |                    |                   |            |              | 360   DIN 1025 |         |
| - Member 4 - C                   |                    |                   |            |              | 360   DIN 1025 |         |
| Member 5 - C                     |                    |                   |            |              | 360   DIN 1025 |         |
| - Member 6 - C                   |                    |                   |            |              | 360   DIN 1025 |         |
| <ul> <li>Member 7 - C</li> </ul> | ross-Section       |                   |            | 2 - IPE 3    | 360   DIN 1025 | 5:1994  |
| Member 8                         |                    |                   |            |              |                |         |
| Start                            |                    |                   |            |              | 360   DIN 1025 | -3.1334 |
| End                              |                    |                   |            |              | 450   DIN 1025 |         |
| Member 2 - C                     |                    |                   |            | 1 - HE A     | 100   Euronor  | n 53-62 |
|                                  | elease at the End  |                   | No.        |              | 13             |         |
| Member Side                      |                    |                   | Side       |              | End            |         |
| Shear Release                    |                    |                   | Vy         |              |                |         |
| Torsional Relea                  |                    |                   | MT         |              |                |         |
| Moment Releas                    |                    |                   | Mz         |              | 15.000 kNm     | /rad    |
| Warping Releas                   | e                  |                   | Μω         |              |                | ▼       |
| Set inputs for r                 | elease No.:        |                   |            |              | V All          | 🏹 📑 🏹 🕄 |

Figure 2.22: Window 1.8 Member Releases - Set of Members

Member-Like Input is selected for sets of members.

Member Side Start End Both

In table column B, you define the *Member Side* to which the release should be assigned. You can also connect the releases to both member sides.

In the columns C through F, you can define releases or spring constants to align the set of members model with the support conditions in window 1.7.



# 2.9 Serviceability Data

This input window controls several settings for the serviceability limit state design. It is only available if you have set the according entries in the *Serviceability Limit State* tab of window 1.1 (see chapter 2.1.2, page 10).

|     | A              | B              | C        | D          | E      | F         | G                   | Н       |
|-----|----------------|----------------|----------|------------|--------|-----------|---------------------|---------|
|     |                | Set of Members |          | nce Length | Direc- | Precamber |                     |         |
| No. | Reference to   | No.            | Manually | L [m]      | tion   | wc[mm]    | Beam Type           | Comment |
| 1   | Set of Members | 2              |          | 37.096     | y, z   | 0.0       | Beam                |         |
| 2   | Set of Members | 5              |          | 25.000     | y, z   | 0.0       | Beam                |         |
| 3   | Member         | 81             |          | 6.546      | y, z   | 0.0       | Beam                |         |
| 4   | Member         | 82             | <b>V</b> | 7.094      | y, z   | 0.0       | Cantilever End Free |         |
| 5   | Member         | 83             | <b>V</b> | 6.546      | y, z   | 0.0       | Cantilever End Free |         |
| 6   | Member         | 15             |          | 6.274      | y. z   | 0.0       | Beam                |         |
| 7   | Member         | 16             |          | 6.274      | y, z   | 0.0       | Beam                |         |
| 8   | Member         | 25             |          | 6.274      | y, z   | 0.0       | Beam                |         |
| 9   | Member         | 26             |          | 6.274      | y, z   | 0.0       | Beam                |         |
| 10  |                |                |          |            |        |           |                     |         |
| 11  |                |                |          |            |        |           |                     |         |
| 12  |                |                |          |            |        |           |                     |         |
| 13  |                |                |          |            |        |           |                     |         |
| 14  |                |                |          |            |        |           |                     |         |
| 15  |                |                |          |            |        |           |                     |         |
| 16  |                |                |          |            |        |           |                     |         |
| 17  |                |                |          |            |        |           |                     |         |
| 18  |                |                |          |            |        |           |                     |         |
| 19  |                |                |          |            |        |           |                     |         |
| 20  |                |                |          |            |        |           |                     |         |
| 21  |                |                |          |            |        |           |                     |         |
| 22  |                |                |          |            |        |           |                     |         |
| 23  |                |                |          |            |        |           |                     |         |
| 24  |                |                |          |            |        |           |                     |         |
| 25  |                |                |          |            |        |           |                     |         |
| 26  |                |                |          |            |        |           |                     |         |
| 27  |                |                |          |            |        |           |                     |         |
| 28  |                |                |          |            |        |           |                     |         |
| 29  |                |                |          |            |        |           |                     |         |
| 30  |                |                |          |            |        |           |                     |         |
| 31  |                |                |          |            |        |           |                     |         |
| 32  |                |                |          |            |        |           |                     |         |
|     |                |                |          |            |        |           |                     |         |
|     |                |                |          |            |        |           |                     |         |



....



| • |
|---|
|   |
|   |
|   |
|   |

Details...

Figure 2.23: Window 1.9 Serviceability Data

In column A, you decide whether you want to apply the deformation to single members, lists of members, or sets of members.

In table column B, you enter the numbers of the members or sets of members that you want to design. You can also click [...] to select them graphically in the RSTAB work window. Then, the *Reference Length* appears in column D automatically. This column presets the lengths of the members, sets of members, or member lists. If required, you can adjust these values after selecting the *Manually* check box in column C.

In table column E, you define the governing *Direction* for the deformation analysis. You can select the directions of the local member axes y and z (or u and v for unsymmetrical cross-sections).

In column F, you can consider a precamber w<sub>c</sub>.

The *Beam Type* is of vital importance for the correct application of limit deformations. In column G, you can specify whether there is a beam or a cantilever and which end should have no support.

The settings in the *Serviceability* tab of the *Details* dialog box decide whether the deformations are related to the undeformed initial model or to the shifted ends of members or sets of members (see Figure 3.3, page 30).



# 2.10 Parameters - Members

The last input window controls additional design parameters for members.

If the *Cross-Sectional Area* of a member is to be considered by specific parameters, set a check in relevant line of column A. You can then define the *Cross-sectional areas for tension design* in the *Settings* table below (net and effective areas, shear lag factor U).

|                                              |         |                  | В               |       |  |  |  |  |  |
|----------------------------------------------|---------|------------------|-----------------|-------|--|--|--|--|--|
| Iember Cross-Sectional                       |         |                  | 0               |       |  |  |  |  |  |
| No. Area                                     | Comment |                  |                 |       |  |  |  |  |  |
| 1 💟                                          | Comment |                  |                 |       |  |  |  |  |  |
| 2                                            |         |                  |                 |       |  |  |  |  |  |
| 3                                            |         |                  |                 |       |  |  |  |  |  |
| 4                                            |         |                  |                 |       |  |  |  |  |  |
| 5 2                                          |         |                  |                 |       |  |  |  |  |  |
| 6 🗖                                          |         |                  |                 |       |  |  |  |  |  |
| 7                                            |         |                  |                 |       |  |  |  |  |  |
| 8 2                                          |         |                  |                 |       |  |  |  |  |  |
| 9 0                                          |         |                  |                 |       |  |  |  |  |  |
| 10                                           |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 | 🛃 😼 🐧 |  |  |  |  |  |
|                                              |         |                  |                 |       |  |  |  |  |  |
| ttings - Member No. 8                        |         |                  |                 |       |  |  |  |  |  |
| Cross-Section                                |         | 1 - IS 450/200/1 | 10/20/0         |       |  |  |  |  |  |
| Cross-sectional area for tension design      |         |                  |                 |       |  |  |  |  |  |
| ⊟ Start (x=0 m)                              |         | 1 - IS 450/200/  | 10/20/0         |       |  |  |  |  |  |
| <ul> <li>Cross-Sectional Area</li> </ul>     | At      | 12100.0          |                 |       |  |  |  |  |  |
| <ul> <li>Net Cross-Sectional Area</li> </ul> | Anet    | 10000.0          |                 |       |  |  |  |  |  |
| Effective Area                               | Ae      | 10000.0          |                 |       |  |  |  |  |  |
| Shear Lag Factor U                           | U       | 1.000            |                 |       |  |  |  |  |  |
| 🖃 End (x=l)                                  |         | 1 - IS 450/200/  |                 |       |  |  |  |  |  |
| <ul> <li>Cross-Sectional Area</li> </ul>     | At      | 12100.0          | mm <sup>2</sup> |       |  |  |  |  |  |
| <ul> <li>Net Cross-Sectional Area</li> </ul> | Anet    | 9000.0           |                 |       |  |  |  |  |  |
| - Effective Area                             | Ae      | 7200.0           |                 |       |  |  |  |  |  |
| Shear Lag Factor U                           | U       | 0.800            |                 |       |  |  |  |  |  |
| Comment                                      |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 | -Anet |  |  |  |  |  |
|                                              |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 |       |  |  |  |  |  |
| Set input for members No.:                   |         |                  |                 |       |  |  |  |  |  |
|                                              |         |                  |                 | 0     |  |  |  |  |  |

Figure 2.24: Window 1.10 Parameters - Members

Those parameters are relevant for the design of member connections and of cross-sections with tension.



# 3. Calculation

# 3.1 Detail Settings

Calculation



Before you start the [Calculation], it is recommended to check the design details. You can open the corresponding dialog box in all windows of the add-on module by clicking [Details].

The dialog box *Details* contains the following tabs:

- Ultimate Limit State
- Stability
- Serviceability
- Other

### 3.1.1 Ultimate Limit State

| tails                                    |                    |         |
|------------------------------------------|--------------------|---------|
| Jltimate Limit State Stability Service   | ability Other      |         |
| Options                                  |                    |         |
| Plastic design acc. to 1.5               |                    |         |
| Elastic design (also compact cross-      | sections)          |         |
| Elastic design (based on Von Mises       | stress)            |         |
| Shear design of solid cross-sections     |                    |         |
| 📝 Shear buckling design of webs          |                    |         |
| General elastic design of shear bas      | ed on shear stress |         |
| Limit Internal Forces for Interaction    |                    |         |
| Allow design without influence of torsio | n if:              |         |
| $\tau_t / F_R 0.6 F_y \le 0.500$         |                    |         |
| Seismic design                           |                    |         |
| Factor of seismic behavior Q:            | 1.500 🚔            |         |
|                                          |                    |         |
| 2 🔤 🔿 📭 📭                                |                    | OK Canc |

Figure 3.1: Dialog box Details, tab Ultimate Limit State

#### Options

According to [1] clause 1.5, there is also a *Plastic design* possible for members. If the requirements given in clause 1.5(a) are satisfied, hot-formed doubly symmetric I-sections can be designed according to this option. Cross-sections that are assigned to type 1 or 2 ("compact") will be designed plastically in STEEL NTC-DF. If you do not want to perform a plastic design, you can activate the *Elastic design* for these cross-sections, too. Then all cross-sections will be considered as type 3 ("non-compact").



Alternatively, a conservative general elastic design based on stress analysis in stress points and VON MISES equivalent stresses can be applied. This option is useful for cross-sections with complex shapes or for members with torsional moments etc.

If the *Shear design* of solid flat or round bars or *Shear buckling design* of webs is not required in special cases, this design option can be deactivated.

The conservative *General elastic design of shear* based on the shear stress analysis in stress points can be activated additionally.

#### **Limit Internal Forces for Interaction**

The standard [1] offers no exact procedure how to design cross-sections under the torsion. Therefore, there is an option to ignore shear stress due to torsion for the cross-section design. You can enter the maximum ratio of torsional shear stress and shear strength so that the design is possible in spite of small torsional moments.

### **Seismic Design**

The factor of seismic behavior Q can be edited, if necessary. This value is used to determine the cross-section type according to [1] Table 2.1.

### 3.1.2 Stability

| Details                                                                                                                                     |                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ultimate Limit State Stability Serviceability General                                                                                       |                                                                                                                                                                                                                 |
| Stability Analysis                                                                                                                          | Sets of Members - Member-Like Input                                                                                                                                                                             |
| V Use                                                                                                                                       | O not use member-like input                                                                                                                                                                                     |
| Second Order Effects Acc. to 1.5.1.1 and 3.4.3.3(b)<br>Bending about major y-axis                                                           | <ul> <li>Use for all sets of members</li> <li>Use only for straight sets of members</li> <li>Use only for straight sets of members without intermediate restraints<br/>(simole beams or cantilevers)</li> </ul> |
| increasing the bending moment<br>Bending about minor z-axis<br>Include effects from second order theory by<br>increasing the bending moment | Welded L and H-Section Fabrication Determination of factor n acc. to 3.2.2.1                                                                                                                                    |
| Determination of factor C<br>(a) C = 1.00<br>(b) d. 1.5.1.1(a) and (b)                                                                      | Rolled     Fame-cut Limit Load for Special Cases                                                                                                                                                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                        | Cross-sections with compression and bending<br>Do not consider small moments and allow stability<br>design acc. to 3.2 (intended axial compression) if:<br>Bending Muoy / FR Mp,y ≤ 0.010 (⇒)                   |
| Lateral-Torsional Buckling *                                                                                                                | M <sub>uoz</sub> / F <sub>R</sub> M <sub>p,z</sub> ≤ 0.010 (▲)                                                                                                                                                  |
| Load application of positive transverse loads:<br>On cross-section edge directed to shear center<br>(e.g. top flange, destabilizing effect) | Do not consider small compression forces and allow<br>stability design acc. to 3.3 (bending without<br>compression) f:                                                                                          |
| In shear center     On cross-section edge directed from shear center     (e.g. bottom flange, stabilizing effect)                           | Compression         Pu / FR Rp ≤         0.010 ⇒                                                                                                                                                                |
| *(set of members only)                                                                                                                      | Limit shear stress for stability designs:<br>$\tau_t / F_R 0.6 F_y \le 0.010$                                                                                                                                   |
| Determination of Design Bending Moment Resistance Mm Use approximate calculation acc. to Eq. (3.57) (only I-sections)                       |                                                                                                                                                                                                                 |
|                                                                                                                                             | OK Cancel                                                                                                                                                                                                       |

Figure 3.2: Dialog box Details, tab Stability

#### **Stability Analysis**

The Use check box controls whether to run, in addition to the cross-section checks, a stability analysis. If you clear the check box, the input windows 1.4 through 1.8 will not be displayed.



### **Second Order Effects**

If a load case is calculated according to a linear static analysis, you can consider the *effects from* 2<sup>nd</sup> order theory by increasing the bending moment about the major and/or minor axis, according to [1] clauses 1.5.1.1 and 3.4.3.3(b). When you design, for example, a frame whose governing buckling mode is represented by lateral displacement, you can determine the internal forces according to linear static analysis and increase them by the appropriate factors. If you increase the bending moment, it does not affect the flexural-buckling analysis according to [1] as it is performed by using the axial forces.

The Determination of factor C can be by default C = 1.00 or according to clause 1.5.1.1(a) and (b). The bending moments  $M_{ti}$  and  $M_{tp}$  are determined in very simple way – as constant ratio to the total bending moment value. This ratio is constant for all members. If second order effects are included, the factors B1 and B2 are used to calculate the final design values  $M_{uo}$  and  $M^*_{uo}$  according to [1] Eq. (1.1) and (1.2) for plastic design and also according to Eq. (3.59) to (3.62). The *Stability factor* I of the entire frame (model) according to clause 2.2.2 can be edited, if necessary.

### Lateral-Torsional Buckling

If transverse loads are present, it is important to define where these forces are acting on the cross-section: Depending on the *Load application* point, transverse loads can be stabilizing or destabilizing, and thus can decisively influence the ideal critical moment. The determination of the buckling factor  $\alpha_{cr}$  for set of members is based on those settings. Please note that the load application point is only taken into account for sets of members.

### Determination of Bending Design Resistance M<sub>m</sub>

The value of the bending design resistance  $M_m$  is required for cross-section types 1 or 2 according to [1] clause 3.4.3.2, Eq. (3.56). This value can be calculated according to clause 3.3.2 or, approximately, according to Eq. (3.57) for I-sections. When this option is checked,  $M_m$  is determined, the *approximate calculation* is applied according to the Eq. (3.57) for I-sections, and according to clause 3.3.2 for all other cross-sections.

### Set of Members - Member-Like Input

It is recommended to apply the STEEL NTC-DF design only for straight sets of members. The stability data can be defined as member-like in window 1.6 (to treat a set of member like one single member) or as general in windows 1.7 and 1.8 (default). If the latter option *Do not use member-like input* is set, the support conditions have to be defined in window 1.7 for the sets of members.

With the option *Use for all sets of members*, you can define all stability data for sets of members in window 1.6 analogically to window 1.5 for single members. In this case, windows 1.7 and 1.8 are not displayed. The default simple girder values are used to determine the support conditions  $\beta$ ,  $u_y$ ,  $\phi_x$ ,  $\phi_z$  and  $\omega$ .

It is possible to use the member-like input *only for straight sets of members* with equal crosssection parameters. Windows 1.7 and 1.8 won't be displayed for straight sets. This option can be used e.g. for continuous beams.

The fourth option applies the member-like input only to *straight sets of members without intermediate restraints* modeled in RSTAB. Thus, only sets of members which have RSTAB supports/ restraints at their ends will be considered for the member-like input. This option can be used to design e.g. simple beams or cantilevers. The connection of transverse beams to the intermediate nodes of the set is not accounted for, however. Windows 1.7 and 1.8 won't be displayed for straight sets that have no intermediate restraints.

### Welded I- and H-Section Fabrication

For I- and H-sections, *Rolled* or *Flame-cut* fabrication methods are possible. The member section constant *n* as specified in [1] clause 3.2.2.1(a) depends on this type of fabrication. The selected type is then applied to <u>all</u> I and H sections of the design case.





### **Limit Load for Special Cases**

To design cross-sections for intended axial compression according to [1] clause 3.2, it is possible to neglect *small moments* about the major and the minor axes by settings defined in this dialog section.

In the same way, you can switch off small *compression forces* for the pure design of bending by defining a limit ratio for  $P_u$  to  $F_R R_p$ .

Intended *torsion* is not clearly specified in [1]. If a torsional stress is available that is not exceeding the shear stress ratio of 1 % preset by default, it is not considered in the stability design. In this case, the output shows results for flexural buckling and lateral-torsional buckling.



If one of the limits in this dialog section is exceeded, a note appears in the results window. No stability analysis is carried out. Nevertheless, the cross-section checks are run independently. These limit settings are <u>not</u> part of the Mexican standard. Changing the limits is in the responsibility of the program user.

### 3.1.3 Serviceability

| tails                                  |                 | ( |
|----------------------------------------|-----------------|---|
| Ultimate Limit State Stability Servi   | ceability Other |   |
| Deformation Relative to                |                 |   |
| Shifted members ends / set of me       | mbers ends      |   |
| Undeformed system                      |                 |   |
|                                        |                 |   |
| Serviceability Limits (Deflections) Ad |                 |   |
| Limit L / 24                           | Cantilevers     |   |
| L/ 24                                  |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |
|                                        |                 |   |

Figure 3.3: Dialog box Details, tab Serviceability

#### **Deformation Relative to**

The option fields control whether the maximum deformations are related to the shifted ends of members or sets of members (connection line between start and end nodes of the deformed system) or to the undeformed initial system. As a rule, the deformations have to be checked relative to the displacements in the entire structural system.

#### Serviceability Limits (Deflections)

Here you can check and, if necessary, adjust the limit deformations of beams and cantilevers.



### 3.1.4 Other

| tails                                              |                                                   |
|----------------------------------------------------|---------------------------------------------------|
| Itimate Limit State Stability Serviceability Other |                                                   |
| Cross-Section Optimization                         | Display Result Tables                             |
| Ma <u>x</u> allowable design                       | ✓ 2.1 Design by Load Case                         |
| ratio: 1.000 牵                                     | ✓ 2.2 Design by Cross-Section                     |
| Check of Member Slendernesses                      | ✓ 2.3 Design by Set of Members                    |
| Members with λlimit                                | 2.4 Design by Member                              |
| Tension only: 300                                  | ✓ 2.5 Design by x-Location                        |
| Compression / flexure: 200                         | ☑ 3.1 Governing Internal Forces by Member         |
|                                                    | ☑ 3.2 Governing Internal Forces by Set of Members |
|                                                    | 3.3 Member Slendemesses                           |
|                                                    | 4.1 Parts List by Member                          |
|                                                    | ✓ 4.2 Parts List by Set of Members                |
|                                                    | Only for members / sets to be designed            |
|                                                    | ○ Of all members / sets of members                |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
|                                                    |                                                   |
| ) 🚾 🔿 📭 🕋                                          | OK Cance                                          |

Figure 3.4: Dialog box Details, tab Other

#### **Cross-Section Optimization**

The optimization is targeted on the maximum stress ratio of 100 %. If necessary, you can specify a different limit value in this input field.

#### **Check of Member Slendernesses**

In the two input fields, you can specify the limit values  $\lambda_{\text{limit}}$  (the ratios K · L/r) in order to define member slendernesses. It is possible to enter specifications separately for members with pure tension forces and members with bending and compression. The default values are given in [1] clause 2.2.3.

The limit values are compared to the real member slendernesses in window 3.3. This window is available after the calculation (see chapter 4.8, page 40) if the corresponding check box is selected in the *Display Result Tables* dialog box section.

#### **Display Result Tables**

In this dialog section, you can select the results windows including parts list that you want to be displayed. Those windows are described in chapter 4 *Results*.

The 3.3 Member Slendernesses window is inactive by default.



# 3.2 Start Calculation

Calculation

To start the calculation, click the [Calculation] button that is available in all input windows of the STEEL NTC-DF add-on module.

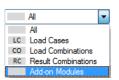
STEEL NTC-DF searches for the results of the load cases, load combinations, and result combinations to be designed. If these cannot be found, the program starts the RSTAB calculation to determine the design relevant internal forces.

You can also start the calculation in the RSTAB user interface: The dialog box *To Calculate* (menu *Calculate*  $\rightarrow$  *To Calculate*) lists design cases of the add-on modules like load cases and load combinations are listed.

| lot Calculated                                                                                                                                                                                                                                                                                                     | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                                                                                                                                                                                                                                                              | Selected fr | or Calculation                                             |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------|---|
| No.                                                                                                                                                                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | -                                                                                                                                                                                                                                                                                                                            | No.         | Description                                                |   |
| AB         LC2           QW         LC4           QW         LC4           QW         LC5           QW         LC6           Imp         LC8           Imp         LC10           C011         C012           C013         C014           C015         C016           C017         C018           C019         RC2 | Snow Load           Wind at peak v +Y           Wind at peak v -Y           Wind positive           Imperfections v +X           Imperfections v +Y           LC1 + LC2 + LC3 + LC7 + LC8           LC1 + LC2 + LC3 + LC7 + LC8           LC1 + LC3 + LC8           LC1 + LC4 + LC8           LC1 + LC4 + LC8           LC1 + LC4 + LC7           LC1 + LC4 + LC7 + LC9           SLS | E | <ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul> <li></li> |             | STEEL NTC-DF - Design of steel members according to NTC-DF | - |
| All                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |                                                                                                                                                                                                                                                                                                                              |             |                                                            |   |

Figure 3.5: Dialog box To Calculate

If the STEEL NTC-DF cases are missing in the *Not Calculated* section, select *All* or *Add-on Modules* in the drop-down list at the end of the list.


To transfer the selected STEEL NTC-DF cases to the list on the right, use the button [▶]. Click [OK] to start the calculation.

To calculate a design case directly, use the list in the toolbar. Select the STEEL NTC-DF case in the toolbar list, and then click [Show Results].

| <u>Options</u> | Add-on Modules     | <u>W</u> indow | Help                                         |
|----------------|--------------------|----------------|----------------------------------------------|
|                | STEEL NTC-DF CA1   | - Desigr 👻     | < > 🕑 🎬 🔗 💯 🚳 📾 📾 🦉 🏶 🥵 🏦                    |
| 1              | <b>R ( ) () ()</b> | ¥ 17 5         | 🗱 + 🛂 +   🚳 + Show Results ] 🐂 🗸 🗸 🗤 🗤 🦏 🥁 🗍 |

Figure 3.6: Direct calculation of a STEEL NTC-DF design case in RSTAB

Subsequently, you can observe the design process in a separate dialog box.



>



4. Results

Window 2.1 *Design by Load Case* is displayed immediately after the calculation.

|                                                     | Z.I Desigi | n by Load Case                |         |          |        |      |                   |                 |              |                   |         |             |             |               |          |
|-----------------------------------------------------|------------|-------------------------------|---------|----------|--------|------|-------------------|-----------------|--------------|-------------------|---------|-------------|-------------|---------------|----------|
| put Data                                            |            | A                             | В       | С        | D      | E    |                   |                 |              | F                 |         |             |             |               | G        |
| - General Data                                      | Load-      |                               | Member  | Location | Design |      |                   |                 |              |                   |         |             |             |               |          |
| - Materials                                         | ing        | Description                   | No.     | x [m]    | Ratio  |      |                   |                 | Desi         | gn According to   | Formu   | la          |             |               | DS       |
| - Cross-Sections                                    |            | Ultimate Limit State Design   |         |          |        |      |                   |                 |              |                   |         |             |             |               |          |
| Intermediate Lateral Restraints                     | LC1        | Dead Load                     | 12      | 1.000    |        |      |                   |                 |              | ut y-axis and com |         |             |             |               |          |
| Effective Lengths - Members                         | LC2        | Snow Load                     | 87      | 3.011    |        |      |                   |                 |              | ut y-axis and com |         |             | 3.3.2.2 an  | id 3.4.3.2(a) | 1        |
| <ul> <li>Effective Lengths - Sets of Men</li> </ul> | LC3        | Wind v +X                     | 12      | 5.700    |        |      |                   |                 |              | nal buckling acc  | . to 3. | 3.2.2       |             |               |          |
| - Nodal Supports                                    | LC4        | Wind at peak v +Y             | 99      | 0.000    |        |      | 101) Cross-secti  |                 |              |                   |         |             |             |               |          |
| <ul> <li>Set of members No. 1</li> </ul>            | LC5        | Wind at peak v -Y             | 98      | 0.000    |        |      | 101) Cross-secti  |                 |              |                   |         |             |             |               |          |
| - Set of members No. 2                              | LC6        | Wind positive                 | 17      | 0.000    | 0.08   | ≤1   | 321) Stability an | alysis - La     | teral-torsio | nal buckling acc  | . to 3. | 3.2.2       |             |               |          |
| Member End Releases                                 | LC7        | Live Load                     | 20      | 3.125    | 0.04   | ≤1   | 321) Stability an | alysis - La     | teral-torsio | nal buckling acc  | to 3.   | 3.2.2       |             |               |          |
| - Set of members No. 1                              | CO1        |                               | 87      | 3.011    | 0.83   | ≤1   | 331) Stability an | alysis - Be     | nding abo    | ut y-axis and com | npress  | ion acc. to | 3.3.2.2 an  | id 3.4.3.2(a) | 1        |
| - Set of members No. 2                              | CO2        |                               | 87      | 3.011    | 0.76   | ≤1   | 331) Stability an | alysis - Be     | nding abo    | ut y-axis and com | npress  | ion acc. to | 3.3.2.2 an  | d 3.4.3.2(a)  |          |
| Serviceability Data<br>Parameters - Members         |            |                               |         | Max      | 0.83   | ≤1   | •                 |                 |              | <b>?</b> 8        | •       |             | 7,1 😂       |               | 3        |
| esults                                              |            |                               |         |          |        |      |                   |                 |              |                   |         |             |             |               |          |
| <ul> <li>Design by Load Case</li> </ul>             |            | Member 12 - x: 1.000 m - LC1  |         |          |        |      |                   |                 |              |                   |         | 1 - IS 450  | 0/200/10/20 | )/D           |          |
| - Design by Cross-Section                           |            | al Values - Steel B-254 (ASTM |         |          |        |      |                   |                 |              |                   | ^       |             |             |               |          |
| <ul> <li>Design by Set of Members</li> </ul>        |            | Section Values - IS 450/200/  | 10/20/0 |          |        |      |                   |                 |              |                   |         |             |             |               |          |
| - Design by Member                                  |            | n Internal Forces             |         |          |        |      |                   |                 |              |                   |         |             |             |               |          |
| - Design by x-Location                              |            | Section Type                  |         |          |        |      |                   |                 |              |                   |         |             | . 200       | .0.           |          |
| <ul> <li>Governing Internal Forces by M</li> </ul>  | 🖃 Desig    |                               |         |          |        |      |                   |                 |              |                   |         |             |             |               | 20.0     |
| - Governing Internal Forces by Si                   |            | d Strength                    |         |          | F      |      | 250.000           |                 |              | 1.3.1             |         | 1           |             |               | -        |
| - Member Slendernesses                              |            | npression Axial Force         |         |          | P      |      | 25.499            |                 |              |                   |         |             |             | 0.0           |          |
| - Parts List by Member                              |            | tion Resistance               |         |          | R      |      | 2722.500          |                 |              | 3.2               |         |             |             |               |          |
| - Parts List by Set of Members                      |            | stic Buckling Stress          |         |          | F      |      | 50.680            |                 |              |                   |         |             |             |               |          |
|                                                     |            | minal Critical Stress         |         |          | F      |      | 42.298            |                 |              |                   |         | 150.0       |             |               | <b>-</b> |
|                                                     |            | mber Resistance               |         |          | R      | c    | 460.628           | kN              |              | Eq. (3.3)         |         | 1           | 10.0        |               |          |
|                                                     |            | sign Component for N          |         |          | η      |      | 0.06              |                 | ≤1           | 3.4.3.2(a)        |         |             | 10.0        | 0.0           |          |
|                                                     |            | nding Moment                  |         |          |        | luoy | 8.777             |                 |              |                   |         |             |             |               |          |
|                                                     |            | ximum Bending Moment          |         |          | N      | uoy. |                   |                 |              |                   |         |             |             |               |          |
|                                                     |            | sign Bending Resistance       |         |          |        | Ry   | 481.556           |                 |              |                   |         |             |             |               |          |
|                                                     |            | dulus of Elasticity           |         |          | E      |      | 200000.000        |                 |              |                   |         |             |             | z             |          |
|                                                     |            | ar Modulus                    |         |          | G      |      | 77200.000         |                 |              |                   |         |             |             |               |          |
|                                                     |            | cond Moment of Area           |         |          | 12     |      | 26700800.0        |                 |              |                   |         |             |             |               |          |
|                                                     | Tor        | sional Constant               |         |          | J      |      | 1142810.0         | mm <sup>4</sup> |              |                   |         |             |             |               |          |
|                                                     | Wa         | rping Constant                |         |          | C      | a    | 1.23267E+1        | mm <sup>6</sup> |              |                   |         |             |             |               | ſπ       |
|                                                     | - Seg      | ment Length                   |         |          | L      |      | 6.000             | m               |              |                   |         | _           |             |               |          |
|                                                     | - Sta      | bility Factor                 |         |          | α      | or   | 7.161             |                 |              |                   | -       | 0           |             | 📥 🕽           |          |
| 4 11                                                |            |                               |         |          |        |      |                   |                 |              |                   |         |             |             |               |          |

Figure 4.1: Results window with designs and intermediate values

The designs are shown in the results windows 2.1 through 2.5, sorted by different criteria.

The windows 3.1 and 3.2 list the governing internal forces. Window 3.3 informs you about the member slendernesses. The last two results windows 4.1 and 4.2 show the parts lists sorted by member and set of members.

**4** 

ОК

Every window can be selected by clicking the corresponding entry in the navigator. To set the previous or next input window, use the buttons shown on the left. You can also use the function keys to select the next [F2] or previous [F3] window.

Click [OK] to save the results. You exit STEEL NTC-DF and return to the main program.

Chapter 4 *Results* describes the different results windows one by one. Evaluating and checking results is described in chapter 5 *Results Evaluation*, page 43.

9 🍳



### 4.1 Design by Load Case

The upper part of the window provides a summary, sorted by load cases, load combinations, and result combinations of the governing designs. Furthermore, the list is divided in ultimate limit state, serviceability and stability designs.

The lower part gives detailed information on the cross-section properties, analyzed internal forces, and design parameters for the load case selected above.

|                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                   | B      | C        | D                                                      | E                                                         |                                                                                                                                                   |                                                                                                       |               | F                 |         |            |         |          |           | G        | ٦ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|-------------------|---------|------------|---------|----------|-----------|----------|---|
| -bao                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     | Member | Location | Design                                                 |                                                           |                                                                                                                                                   |                                                                                                       |               |                   |         |            |         |          |           |          |   |
| ing                                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                         | No.    | x [m]    | Ratio                                                  |                                                           |                                                                                                                                                   |                                                                                                       | Des           | ign According to  | Formu   | ıla        |         |          |           | DS       |   |
|                                                                                                                                                                                              | Ultimate Limit State Design                                                                                                                                                                                                                                                                                                                         |        |          |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               |                   |         |            |         |          |           |          |   |
| LC1                                                                                                                                                                                          | Dead Load                                                                                                                                                                                                                                                                                                                                           | 12     | 1.000    |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               | ut y-axis and cor |         |            |         |          |           |          |   |
| LC2                                                                                                                                                                                          | Snow Load                                                                                                                                                                                                                                                                                                                                           | 87     | 3.011    |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               | ut y-axis and cor |         |            | o 3.3.2 | .2 and 3 | .4.3.2(a) |          |   |
| LC3                                                                                                                                                                                          | Wind v +X                                                                                                                                                                                                                                                                                                                                           | 12     | 5.700    |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               | nal buckling acc  | . to 3. | 3.2.2      |         |          |           |          |   |
| LC4                                                                                                                                                                                          | Wind at peak v +Y                                                                                                                                                                                                                                                                                                                                   | 99     | 0.000    |                                                        |                                                           | 01) Cross-secti                                                                                                                                   |                                                                                                       |               |                   |         |            |         |          |           |          |   |
| LC5                                                                                                                                                                                          | Wind at peak v -Y                                                                                                                                                                                                                                                                                                                                   | 98     | 0.000    | 0.12                                                   | ≤1 1(                                                     | 01) Cross-secti                                                                                                                                   | on check                                                                                              | - Tension     | acc. to 3.1       |         |            |         |          |           |          |   |
| LC6                                                                                                                                                                                          | Wind positive                                                                                                                                                                                                                                                                                                                                       | 17     | 0.000    | 0.08                                                   | ≤1 3                                                      | 21) Stability an                                                                                                                                  | alysis - La                                                                                           | ateral-torsio | nal buckling acc  | . to 3. | 3.2.2      |         |          |           |          |   |
| LC7                                                                                                                                                                                          | Live Load                                                                                                                                                                                                                                                                                                                                           | 20     | 3.125    |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               | nal buckling acc  |         |            |         |          |           |          |   |
| CO1                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                     | 87     | 3.011    |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               | ut y-axis and cor |         |            |         |          |           |          |   |
| CO2                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                     | 87     | 3.011    | 0.76                                                   | ≤1 33                                                     | 31) Stability an                                                                                                                                  | alysis - Be                                                                                           | ending abo    | ut y-axis and con | npress  | ion acc. t | o 3.3.2 | .2 and 3 | .4.3.2(a) |          |   |
|                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                     |        | Max      | 0.83                                                   | ≤1 🙂                                                      | )                                                                                                                                                 |                                                                                                       |               | 91 2              | -       | L          | 751     | 2        | 3         | 8        | ŕ |
| ] Cross                                                                                                                                                                                      | n Internal Forces<br>-Section Type                                                                                                                                                                                                                                                                                                                  |        |          |                                                        |                                                           |                                                                                                                                                   |                                                                                                       |               |                   |         |            |         | 200.0    |           |          |   |
| Cross<br>Desig                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                     |        |          | F کار ا                                                |                                                           | 250.000<br>35.661                                                                                                                                 |                                                                                                       |               | 1.3.1             | T T     |            | <br>►_  | 200.0    |           | 18.0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se                                                                                                                                                            | -Section Type<br>In Ratio<br>Id Strength<br>mpression Axial Force<br>ction Resistance                                                                                                                                                                                                                                                               |        |          | P R                                                    | J<br>5                                                    | 35.661<br>2439.000                                                                                                                                | kN<br>kN                                                                                              |               | 1.3.1             |         |            | t<br>∎  |          |           | 18.0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela                                                                                                                                                     | -Section Type<br>In Ratio<br>Id Strength<br>mpression Axial Force<br>ction Resistance<br>astic Buckling Stress                                                                                                                                                                                                                                      |        |          | Pi<br>R<br>Fe                                          | 1<br>5                                                    | 35.661<br>2439.000<br>40.102                                                                                                                      | kN<br>kN<br>MPa                                                                                       |               |                   |         |            | +<br>•  |          |           | 18:0     |   |
| Cross<br>  Desig<br>Yie<br>Co<br>Se<br>Ela<br>No                                                                                                                                             | -Section Type<br>gn Ratio<br>Id Strength<br>mpression Avial Force<br>ction Resistance<br>stic Buckling Stress<br>minal Critical Stress                                                                                                                                                                                                              |        |          | Pi<br>R<br>Fe<br>Fr                                    | 1<br>5<br>2                                               | 35.661<br>2439.000<br>40.102<br>34.666                                                                                                            | kN<br>kN<br>MPa<br>MPa                                                                                |               | 3.2               |         | 0.001      | t<br>S  |          |           | 18.0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>No                                                                                                                                               | -Section Type<br>In Ratio<br>Id Strength<br>mpression Axial Force<br>ction Resistance<br>stic Buckling Stress<br>minal Critical Stress<br>miber Resistance                                                                                                                                                                                          |        |          | Pi<br>R<br>Fe                                          | 1<br>5<br>2                                               | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206                                                                                                 | kN<br>kN<br>MPa<br>MPa                                                                                |               | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          |           | 18.0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>No<br>Me<br>De                                                                                                                                   | Section Type<br>pn Ratio<br>sld Strength<br>mpression Avial Force<br>ction Resistance<br>stic Buckling Stress<br>minal Critical Stress<br>miber Resistance<br>sign Component for N                                                                                                                                                                  |        |          | Pr<br>R<br>Fr<br>Fr<br>R<br>T                          | 1<br>5<br>1<br>0<br>N                                     | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11                                                                                         | kN<br>kN<br>MPa<br>MPa<br>kN                                                                          | ≤1            | 3.2               |         | 400.0      |         |          |           | 180      |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>No<br>Me<br>De<br>Be                                                                                                                             | Section Type<br>n Ratio<br>d3 Strength<br>mpression Axial Force<br>ction Resistance<br>setic Buckling Stress<br>miber Resistance<br>sign Component for N<br>nding Moment                                                                                                                                                                            |        |          | Pr<br>R<br>Fr<br>Fr<br>R<br>M                          | J<br>S<br>S<br>S<br>S<br>S<br>N<br>UOY                    | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11<br>207.633                                                                              | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm                                                                   | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | 181      |   |
| I Cross<br>I Desig<br>Co<br>Co<br>Se<br>Ela<br>No<br>Me<br>De<br>Be<br>Ma                                                                                                                    | Section Type<br>n Ratio<br>sld Strength<br>mpression Axial Force<br>ction Resistance<br>satic Buckling Stress<br>minal Critical Stress<br>smber Resistance<br>sign Component for N<br>nding Moment<br>soimum Bending Moment                                                                                                                         |        |          | Fr<br>Fr<br>M<br>M<br>M                                | s<br>s<br>c<br>N<br>uoy<br>uoy,se                         | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11<br>207.633<br>207.633                                                                   | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm                                                            | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | 18.0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>No<br>De<br>Be<br>Be<br>Ma                                                                                                                       | Section Type<br>pn Ratio<br>d3 Strength<br>mpression Axial Force<br>ction Resistance<br>satic Bucking Stress<br>minal Critical Stress<br>smber Resistance<br>sign Component for N<br>nding Moment<br>sximum Bending Moment<br>sximum Bending Resistance                                                                                             |        |          | Pi<br>R;<br>Fr<br>R.<br>M<br>M<br>M                    | J<br>S<br>S<br>S<br>S<br>S<br>N<br>UOY                    | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11<br>207.633<br>207.633<br>383.949                                                        | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm                                                     | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | 18:0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>No<br>De<br>Be<br>Ma<br>De<br>Ma                                                                                                                 | Section Type<br>pn Ratio<br>d3 Strength<br>mpression Axial Force<br>ction Resistance<br>stic Bucking Stress<br>minel critical Stress<br>miber Resistance<br>sign Component for N<br>nding Moment<br>sign Bending Moment<br>sign Bending Moment<br>sign Bending Resistance<br>dulus of Basticity                                                     |        |          | Р                                                      | s<br>s<br>c<br>N<br>uoy<br>uoy,se                         | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11<br>207.633<br>207.633<br>383.949<br>200000.000                                          | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm<br>MPa                                              | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | 18:0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>No<br>De<br>Be<br>Ma<br>De<br>Ma<br>De<br>Sh                                                                                                     | Section Type<br>n Ratio<br>sld Strength<br>mpression Axial Force<br>ction Resistance<br>sstic Buckling Stress<br>minal Critical Stress<br>smber Resistance<br>sign Component for N<br>nding Moment<br>particular Stress<br>somum Bending Resistance<br>viduus of Elasticity<br>ear Modulus                                                          |        |          | Р                                                      | s<br>s<br>c<br>N<br>uoy<br>uoy,se                         | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11<br>207.633<br>383.949<br>200000.000<br>77200.000                                        | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm<br>MPa<br>MPa                                       | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.h      |         |          | 0.0       | 18.0     |   |
| Cross<br>Desig<br>Yie<br>Co<br>See<br>Ela<br>No<br>Me<br>Be<br>Be<br>Be<br>Be<br>Ma<br>De<br>Sh<br>Se                                                                                        | Section Type<br>pn Ratio<br>d3 Strength<br>mpression Axial Force<br>ction Resistance<br>stic Bucking Stress<br>minal Critical Stress<br>minar Castion Stress<br>sign Component for N<br>nding Moment<br>sign Bending Resistance<br>sign Bending Resistance<br>sign Bending Resistance<br>odulus of Elasticity<br>ear Modulus<br>cond Moment of Area |        |          | Р                                                      | s<br>s<br>c<br>N<br>uoy<br>uoy,se                         | 35.661<br>2439.000<br>40.102<br>34.666<br>338.206<br>0.11<br>207.633<br>207.633<br>383.949<br>200000.000<br>77200.000<br>24030300.0               | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm<br>MPa<br>MPa<br>mm <sup>4</sup>                    | ≤1<br>        | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | 180      |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>Na<br>De<br>Be<br>Be<br>Ma<br>De<br>Ma<br>Sh<br>Se<br>To                                                                                         | Section Type<br>pn Ratio<br>d3 Strength<br>mpression Axial Force<br>ction Resistance<br>stic Bucking Stress<br>miber Resistance<br>sign Component for N<br>nding Moment<br>sign Bending Noment<br>sign Bending Moment<br>sign Bending Moment<br>sign Bending Moment<br>cond Moment of Area<br>rional Constant                                       |        |          | Pr<br>R<br>Fr<br>R<br>M<br>M<br>M<br>E<br>G<br>G<br>Iz | s<br>e<br>n<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>y<br>se | 35.661<br>2439.000<br>40.102<br>33.666<br>0.11<br>207.633<br>207.633<br>383.949<br>20000.000<br>77200.000<br>24030300.0<br>860847.0               | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm<br>MPa<br>MPa<br>mm <sup>4</sup><br>mm <sup>4</sup> | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       |          |   |
| Cross<br>Desig<br>Yie<br>Co<br>Se<br>Ela<br>Na<br>Me<br>De<br>Be<br>Ma<br>De<br>Be<br>Ma<br>Sh<br>Se<br>To                                                                                   | Section Type<br>In Ratio<br>43 Strength<br>mpression Avial Force<br>ction Resistance<br>stic Bucking Stress<br>minal Critical Stress<br>mber Resistance<br>sign Component for N<br>nding Moment<br>sign Bending Nement<br>sign Bending Resistance<br>dulus of Easticity<br>ear Modulus<br>cond Moment of Area<br>rsional Constant<br>aping Constant |        |          | Р                                                      | s<br>e<br>n<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>y<br>se | 35.661<br>2439.000<br>40.102<br>34.666<br>0.11<br>207.633<br>207.633<br>383.949<br>20000.000<br>77200.000<br>24030300.0<br>860847.0<br>8.75544E+1 | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm<br>MPa<br>MPa<br>mm <sup>4</sup><br>mm <sup>6</sup> | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | <b>≠</b> |   |
| Cross<br>Design<br>Yié<br>Co<br>See<br>Ela<br>Noo<br>See<br>Be<br>Be<br>Be<br>Ma<br>De<br>Ma<br>Sh<br>Se<br>To<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se<br>Se | Section Type<br>pn Ratio<br>d3 Strength<br>mpression Axial Force<br>ction Resistance<br>stic Bucking Stress<br>miber Resistance<br>sign Component for N<br>nding Moment<br>sign Bending Noment<br>sign Bending Moment<br>sign Bending Moment<br>sign Bending Moment<br>cond Moment of Area<br>rional Constant                                       |        |          | Pr<br>R<br>Fr<br>R<br>M<br>M<br>M<br>E<br>G<br>G<br>Iz | s<br>e<br>n<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>y<br>se | 35.661<br>2439.000<br>40.102<br>33.666<br>0.11<br>207.633<br>207.633<br>383.949<br>20000.000<br>77200.000<br>24030300.0<br>860847.0               | kN<br>kN<br>MPa<br>MPa<br>kN<br>kNm<br>kNm<br>kNm<br>MPa<br>MPa<br>mm <sup>4</sup><br>mm <sup>6</sup> | ≤1            | 3.2<br>Eq. (3.3)  |         | 400.0      |         |          | 0.0       | [r]      |   |

Figure 4.2: Window 2.1 Design by Load Case

#### Description

This column shows the descriptions of the load cases, load combinations, and result combinations used for the designs.

#### Member No.

This column shows the number of the member that bears the maximum stress ratio of the designed loading.

#### Location x

This column shows the respective x-location where the member's maximum stress ratio occurs. For the table output, the program uses the following member locations *x*:

- Start and end node
- Division points according to possibly defined member division (see RSTAB table 1.6)
- Member division according to specification for member results (RSTAB dialog box *Calculation Parameters*, tab *Global Register Parameters*)
- Extreme values of internal forces

#### Design

Columns D and E display the design conditions according to [1].

The length of the colored scale represents the respective utilization ratio.



### **Design according to Formula**

This column lists the code's equations by which the designs have been performed.

# 4.2 Design by Cross-Section

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                                                                                                                                            | B                                                                                     | С         | D      | E                                                                                                                                                                                                     |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               | F                                          |        |                |             |                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|----------------|-------------|-------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Member                                                                                                                                                                                                                                       | Location                                                                              | Load      | Design |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.                                                                                                                                                                                                                                          | x [m]                                                                                 | Case      | Ratio  |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  | Desig                                                                                                                                                                                                                                         | n According to Formu                       | ıla    |                |             |                   |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IS 450/20                                                                                                                                                                                                                                    | 00/10/20/0                                                                            |           |        |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                            | 1.000                                                                                 | LC5       |        |                                                                                                                                                                                                       | 100) Negligible interna                                                                       |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                            | 0.900                                                                                 | LC6       |        |                                                                                                                                                                                                       | 101) Cross-section ch                                                                         |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                                                                                                                                                                                                                                           | 0.000                                                                                 | CO1       |        |                                                                                                                                                                                                       | 102) Cross-section ch                                                                         |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                            | 5.700                                                                                 | LC3       |        |                                                                                                                                                                                                       | 105) Cross-section ch                                                                         |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                           | 3.000                                                                                 | LC4       |        |                                                                                                                                                                                                       | 106) Cross-section ch                                                                         |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93                                                                                                                                                                                                                                           | 0.750                                                                                 | CO1       |        |                                                                                                                                                                                                       | 115) Cross-section check - Shear force in z-axis acc. to 3.3.3                                |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                            | 0.000                                                                                 | LC1       |        | 0.00     ≤ 1     126) Cross-section check - Shear buckling acc. to 3.3.3 - Shear force in z-axis       0.05     ≤ 1     141) Cross-section check - Bending about y-axis and shear force acc. to 3.3.4 |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93                                                                                                                                                                                                                                           | 3.000                                                                                 | CO5       |        |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93                                                                                                                                                                                                                                           | 3.000                                                                                 | C01       | 0.56   | ≤1                                                                                                                                                                                                    | 171) Cross-section ch                                                                         | eck - Axial ford                                                                                                 | e, bending ab                                                                                                                                                                                                                                 | out y-axis and shear f                     | orce a | cc. to 3.3.4 a | and 3.4.3.1 |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                              |                                                                                       | Max       | 0.83   | <1                                                                                                                                                                                                    | 3                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                               | 9                                          | 2      |                | جا 😫        |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                              |                                                                                       |           |        |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
| ± Cross-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section Va<br>n Internal F                                                                                                                                                                                                                   | alues - IS 45<br>Forces                                                               | 0/200/10/ | 20/0   |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Internal F<br>Section Ty<br>n Ratio                                                                                                                                                                                                        | orces                                                                                 | 0/200/10/ | 20/0   |                                                                                                                                                                                                       |                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                               |                                            |        |                | 200.0       | <b>†</b> 31       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Internal F<br>Section Ty<br>n Ratio<br>al Force                                                                                                                                                                                            | Forces<br>/pe                                                                         | 0/200/10/ | 20/0   |                                                                                                                                                                                                       | P*                                                                                            | -55.693                                                                                                          |                                                                                                                                                                                                                                               |                                            |        | +              | 200.0       | 20.0              |  |  |  |
| E Cross-<br>Design<br>Cross-<br>Design<br>Axia<br>Ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome                                                                                                                                                                              | Forces<br>/pe                                                                         | 0/200/10/ | 20/0   |                                                                                                                                                                                                       | Muoy                                                                                          | 200.910                                                                                                          | kNm                                                                                                                                                                                                                                           |                                            |        | t              |             |                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>ear Force                                                                                                                                                                 | Forces<br>/pe                                                                         | 0/200/10/ | 20/0   |                                                                                                                                                                                                       | M <sub>uoy</sub><br>V*z                                                                       | 200.910<br>88.308                                                                                                | kNm<br>kN                                                                                                                                                                                                                                     |                                            |        | t t            |             | si <u></u>        |  |  |  |
| Cross-<br>Design<br>Cross-<br>Design<br>Axia<br>Ber<br>She<br>We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>ear Force<br>ab Depth                                                                                                                                                     | Forces<br>/pe<br>ent                                                                  | 0/200/10/ | 20/0   |                                                                                                                                                                                                       | M <sub>uoy</sub><br>V*z<br>h                                                                  | 200.910<br>88.308<br>410.0                                                                                       | kNm<br>kN<br>mm                                                                                                                                                                                                                               | 3.3.3                                      |        | •              |             | si <u></u>        |  |  |  |
| Cross-     Design     Cross-     Design     Cross-     Design     Axia     Ber     She     We     We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>ading Mome<br>ear Force<br>b Depth<br>b Thicknes                                                                                                                                        | Forces<br>/pe<br>ent                                                                  | 0/200/10/ | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>tw                                                                        | 200.910<br>88.308<br>410.0<br>10.0                                                                               | kNm<br>kN<br>mm<br>mm                                                                                                                                                                                                                         | 3.3.3                                      |        | 450.0          |             | si <u></u>        |  |  |  |
| Cross-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>ar Force<br>b Depth<br>b Thicknes<br>ar Area                                                                                                                              | orces<br>pe<br>ent<br>ss                                                              |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>t <sub>w</sub><br>Az                                                      | 200.910<br>88.308<br>410.0<br>10.0<br>4100.0                                                                     | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup>                                                                                                                                                                                                      |                                            |        | 450.0          |             | si <u></u>        |  |  |  |
| Cross-<br>Design<br>Cross-<br>Design<br>Axia<br>Ber<br>She<br>We<br>We<br>She<br>Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>ar Force<br>b Depth<br>b Thickness<br>ar Area<br>minal Shear                                                                                                              | r Resistance                                                                          |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN,z                                                          | 200.910<br>88.308<br>410.0<br>10.0<br>4100.0<br>676.500                                                          | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN                                                                                                                                                                                                | 3.3.3                                      |        | 450.0          | 10.0        | si <u></u>        |  |  |  |
| Cross<br>Design<br>Cross<br>Design<br>Axia<br>Ber<br>Axia<br>Ber<br>She<br>We<br>We<br>She<br>Nor<br>Design<br>Nor<br>Design<br>Cross<br>Design<br>Axia<br>Ber<br>She<br>Nor<br>Design<br>Cross<br>Cross<br>Design<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cross<br>Cros | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>ding Mome<br>ar Force<br>b Depth<br>b Thicknes<br>ear Area<br>minal Shear                                                                                                               | orces<br>pe<br>ent<br>ss                                                              |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN.z<br>VR.z                                                  | 200.910<br>88.308<br>410.0<br>10.0<br>4100.0<br>676.500<br>608.850                                               | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN<br>kN                                                                                                                                                                                          |                                            |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross<br>Design<br>Cross-<br>Design<br>Axia<br>Ber<br>She<br>We<br>We<br>She<br>Nor<br>Design<br>She<br>She<br>She<br>She<br>She<br>She<br>She<br>She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>ding Mome<br>ar Force<br>b Depth<br>b Thicknes<br>ar Area<br>minal Shear<br>sign Shear<br>ear Force                                                                                     | r Resistance                                                                          |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>Łw<br>Az<br>VN.z<br>VR.z<br>V*y                                           | 200.910<br>88.308<br>410.0<br>10.0<br>4100.0<br>676.500<br>608.850<br>0.008                                      | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN                                                                                                                                                                                    | 3.3.3                                      |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross<br>Design<br>Cross<br>Design<br>Axia<br>Ber<br>She<br>We<br>We<br>She<br>Nor<br>Des<br>She<br>She<br>She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>ding Mome<br>aar Force<br>b Depth<br>b Thickness<br>aar Area<br>minal Shear<br>sign Shear<br>saar Force<br>ear Area                                                                     | orces<br>pe<br>ent<br>ss<br>r Resistance<br>Resistance                                |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>Lw<br>Az<br>VN.z<br>VR.z<br>VR.z<br>V <sup>*</sup> y<br>Ay                | 200.910<br>88.308<br>410.0<br>10.0<br>676.500<br>608.850<br>0.008<br>8000.0                                      | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN<br>kN<br>kN<br>mm <sup>2</sup>                                                                                                                                                     | 3.3.3<br>Eq. (3.38)                        |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross     Design     Cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>ding Mome<br>aar Force<br>b Depth<br>b Thicknew<br>aar Area<br>minal Shear<br>sign Shear<br>aar Area<br>minal Shear<br>aar Area                                                         | orces<br>pe<br>ent<br>ss<br>r Resistance<br>Resistance                                |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>Az<br>VN.z<br>VR.z<br>VR.z<br>VR.z<br>VR.y<br>VN.y                        | 200.910<br>88.308<br>410.0<br>10.0<br>4100.0<br>676.500<br>608.850<br>0.008<br>8000.0<br>1320.000                | kNm<br>kN<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN<br>kN<br>kN<br>kN                                                                                                                                                                        | 3.3.3<br>Eq. (3.38)                        |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross     Design     Cross     Design     Cross     Design     Axia     Ber     She     We     We     She     Nor     Des     She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>ding Mome<br>aar Force<br>b Depth<br>b Thicknes<br>ear Area<br>minal Shear<br>sar Area<br>minal Shear<br>sign Shear                                                                     | Forces<br>pe<br>ent<br>ss<br>r Resistance<br>Resistance<br>r Resistance<br>Resistance |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>kw<br>Az<br>VR.z<br>VR.z<br>VR.z<br>VR.y<br>VR.y<br>VR.y                  | 200.910<br>88.308<br>410.0<br>676.500<br>608.850<br>0.008<br>8000.0<br>1320.000<br>1188.000                      | kNm kN mm mm mm 2 kN                                                                                                                                                                                      | 3.3.3<br>Eq. (3.38)<br>3.3.3<br>Eq. (3.38) |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross     Design     Cross     Design     Cross     Design     Axia     Ber     She     We     We     She     Nor     Des     She     She     Nor     Des     She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>ear Force<br>b Depth<br>b Thickner<br>ear Area<br>minal Shear<br>sar Force<br>ear Area<br>minal Shear<br>sar Force<br>ear Area<br>minal Shear<br>sign Shear<br>d Strength | Forces<br>pe<br>ent<br>ss<br>r Resistance<br>r Resistance<br>r Resistance             |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>Az<br>VN.z<br>VR.z<br>VR.z<br>V*y<br>Ay<br>VN.y<br>VR.y<br>Fy             | 200.910<br>88.308<br>410.0<br>676.500<br>608.850<br>0.008<br>8000.0<br>1320.000<br>1188.000<br>250.000           | kNm         kNm           kN         mm           mm         mm²           kN         kN           kN         kN           kN         kN           kN         kN           Mm²         kN           MM²         MM²           MPa         MPa | 3.3.3<br>Eq. (3.38)                        |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross     Design     Cross     Design     Cross     Design     Axiz     Ber     She     We     We     She     Nor     Des     She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>aar Force<br>b Depth<br>b Thicknes<br>aar Area<br>minal Shea<br>sigan Shear<br>Area<br>minal Shear<br>sign Shear<br>d Strength<br>stic Section                            | Forces<br>pe<br>ent<br>ss<br>r Resistance<br>Resistance<br>r Resistance<br>n Modulus  |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>Az<br>VN.z<br>VR.z<br>VR.z<br>VR.y<br>VN.y<br>VR.y<br>VN.y<br>VR.y<br>Z y | 200.910<br>88.308<br>410.0<br>4100.0<br>676.500<br>608.850<br>0.008<br>8000.0<br>1320.000<br>1188.000<br>250.000 | kNm<br>kN<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN<br>kN<br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN<br>kN<br>mm <sup>3</sup>                                                                                                                | 3.3.3<br>Eq. (3.38)<br>3.3.3<br>Eq. (3.38) |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |
| Cross     Cross     Cross     Cross     Cross     Design     Axiz     Ber     She     We     We     She     Nor     Des     She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Internal F<br>Section Ty<br>n Ratio<br>al Force<br>nding Mome<br>ear Force<br>b Depth<br>b Thickner<br>ear Area<br>minal Shear<br>sar Force<br>ear Area<br>minal Shear<br>sar Force<br>ear Area<br>minal Shear<br>sign Shear<br>d Strength | Forces<br>pe<br>ent<br>ss<br>r Resistance<br>r Resistance<br>n Modulus<br>n Modulus   |           | 20/0   |                                                                                                                                                                                                       | Muoy<br>V*z<br>h<br>Az<br>VN.z<br>VR.z<br>VR.z<br>V*y<br>Ay<br>VN.y<br>VR.y<br>Fy             | 200.910<br>88.308<br>410.0<br>676.500<br>608.850<br>0.008<br>8000.0<br>1320.000<br>1188.000<br>250.000           | kNm<br>kN<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN<br>kN<br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN<br>kN<br>mm <sup>3</sup>                                                                                                                | 3.3.3<br>Eq. (3.38)<br>3.3.3<br>Eq. (3.38) |        | 450.0          | 10.0        | <b>0</b> <u>0</u> |  |  |  |

Figure 4.3: Window 2.2 Design by Cross-Section

This window lists the maximum ratios of all members and actions selected for design, sorted by cross-section. The results are sorted by cross-section design, stability analysis and serviceability limit state design.

If there is a tapered member, both cross-section descriptions are displayed in the table row next to the section number.



# 4.3 Design by Set of Members

| Set         Member         Location         Load         Design         Design According to Formula           1         (Wember No. 14, 18,274,665,79,88,102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | B                                    | B          | C         | D       | E  |                                  |                   |                 | F                      |         |              |             |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------|---------|----|----------------------------------|-------------------|-----------------|------------------------|---------|--------------|-------------|------|
| No.         No.         Plane         Plane         Plane           10         (Member No.         14,18,27,46,56,73,88,102)         Image: state of the |                                                                                             |                                      |            | Load      |         |    |                                  |                   |                 |                        |         |              |             |      |
| 65       1.046       LC3       0.00       ≤1       100, Negligible internal forces         102       0.000       CO2       0.02       ≤1       102, Cross-section check - Compression acc. to 3.2         46       5.647       LC2       0.04       ≤1       105, Cross-section check - Bending about y-axis acc. to 3.3.2.1         102       0.000       CO1       0.03       ≤1       116) Cross-section check - Shear force in z-axis acc. to 3.3.3         114       0.000       CO1       0.03       ≤1       115) Cross-section check - Shear force in z-axis acc. to 3.3.4         46       3.585       LC2       0.04       ≤1       120; Cross-section check - Shear force in z-axis         46       3.585       LC2       0.04       ≤1       117) Cross-section check - Shear force in z-axis and shear force acc. to 3.3.4         88       3.011       CO1       0.03       ≤1       107) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         0.73       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         0.77       1.087       CO1 <td< td=""><td>No.</td><td>x [m]</td><td>(m)</td><td>Case</td><td>Ratio</td><td></td><td></td><td></td><td>Desig</td><td>gn According to Formu</td><td>ila</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No.                                                                                         | x [m]                                | (m)        | Case      | Ratio   |    |                                  |                   | Desig           | gn According to Formu  | ila     |              |             |      |
| 102       0.000       CO2       0.02       ≤1       102/Coss-section check - Compression acc. to 3.2         46       5.647       LC2       0.04       ≤1       105/Cross-section check - Bending about z-axis acc. to 3.3.2.1         14       3.000       LC4       0.02       ≤1       105/Cross-section check - Shearf force in z-axis acc. to 3.3.2.1         102       0.000       CO1       0.03       ≤1       115/Cross-section check - Shear force in z-axis acc. to 3.3.3         14       0.000       LC1       0.00       ≤1       126/Cross-section check - Shear force in z-axis acc. to 3.3.4         46       3.585       LC2       0.04       ≤1       111/Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181/Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181/Cross-section check - Axial force, bending about z-axis and shear force acc. to 3.3.4 and 3.4.3.1         Max       0.83       ≤1       Stores-section check - Axial force, bending about z-axis and shear force acc. to 3.3.4 and 3.4.3.1         Uross-Section Values - LS A00/200/10/L8/O       Store acc. to 3.3.4 and 3.4.3.1       Stores-Section Values - LS 400/200/10/L8/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Member No                                                                                   | No. 14,18,27,                        | 14,18,27,4 | 46,65,79, | 88,102) |    |                                  |                   |                 |                        |         |              |             |      |
| 46       5.647       LC2       0.04       ≤1       105) Cross-section check - Bending about y-axis acc. to 3.3.2.1         14       3.000       LC4       0.02       ≤1       106) Cross-section check - Bending about y-axis acc. to 3.3.2.1         102       0.000       CO1       0.03       ≤1       115) Cross-section check - Shear force in z-axis acc. to 3.3.3         14       0.000       LC1       0.00       ≤1       126) Cross-section check - Shear buckling acc. to 3.3.3 - Shear force acc. to 3.3.4         46       3.585       LC2       0.04       ≤1       141) Cross-section check - Main force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         Max:       0.83       ≤1       Statis         Max:       0.83       ≤1       Statis         Max:       0.83       ≤1       Statis         Max:       0.83       ≤1       Statis       Statis <t< td=""><td>65</td><td>1.046</td><td>1.046</td><td>LC3</td><td>0.00</td><td>≤1</td><td>100) Negligible interna</td><td>al forces</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65                                                                                          | 1.046                                | 1.046      | LC3       | 0.00    | ≤1 | 100) Negligible interna          | al forces         |                 |                        |         |              |             |      |
| 14       3.000       LC4       0.02       ≤1       106) Cross-section check - Bending about z-axis acc. to 3.3.2.1         102       0.000       CO1       0.03       ≤1       115) Cross-section check - Shear force in z-axis acc. to 3.3.3         14       0.000       LC1       0.00       ≤1       115) Cross-section check - Shear force in z-axis         46       3.585       LC2       0.04       ≤1       117) Cross-section check - Bending about y-axis and shear force acc. to 3.3.4         88       3.011       CO1       0.03       ≤1       171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         Max:       0.83       ≤1       171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         Max:       0.83       ≤1       151) Cross-Section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         107:oss-Section Values - 15400/200/10/18/0       Interval force       Interval force       2.1 \$400/200/10/18/0         10:oss-Section Values - 15400/200/10/18/0       Interval force       Y       2.2 0.23       kN       2.1 \$400/200/10/18/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102                                                                                         | 0.000                                | 0.000      | CO2       |         |    |                                  |                   |                 |                        |         |              |             |      |
| 102         0.000         CO1         0.03         ≤1         115) Cross-section check - Shear force in z-axis acc. to 3.3.3           14         0.000         LC1         0.00         ≤1         126) Cross-section check - Shear bucking about y-axis and shear force acc. to 3.3.4           46         3.555         LC2         0.04         ≤1         1110) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4           88         3.011         CO1         0.03         ≤1         171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1           27         1.087         CO1         0.03         ≤1         171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1           27         1.087         CO1         0.03         ≤1         181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1           27         1.087         CO1         0.03         ≤1         180         Cross-section check - Axial force.         Example         15         46         5         5         14         15         14         10.020         16         16         16         16         16         16         16         16         16         16         16         16         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                                                                          |                                      |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
| 14       0.000       LC1       0.00       ≤1       126) Cross-section check - Shear buckling acc. to 3.3.3 - Shear force in z-axis         46       3.585       LC2       0.04       ≤1       141) Cross-section check - Mail force, bending about y-axis and shear force acc. to 3.3.4         88       3.011       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         Marc       0.83       ≤1       Statis - Member 88 - x: 3.011 m - CO1         Max       0.83       ≤1       Statis - Member 88 - x: 3.011 m - CO1       Statis - Member 88 - x: 3.011 m - CO1         Internal Values - Steel B-254 (ASTM A36)       Cross-Section Type       Cross-Section Type       Cross-Section Type         Design Internal Forces       Cross-Section Type       Cross-Section Type       Cross-Section Type       Cross-Section Type         Design Internal Forces       V*z       29.594       N       3.3.3       Cross-Section Type         Design Internal Forces       V*z       29.594       N       3.3.3       Cross-Section Type         Design Internal Force       V*z       29.594       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                          |                                      |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
| 46       3.585       LC2       0.04       ≤1       141) Cross-section check - Bending about y-axis and shear force acc. to 3.3.4         88       3.011       CO1       0.03       ≤1       171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.4 and 3.4.3.1         Waterial Values - Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)         10 Cross-Section Values - 15 400/200/10/18/0       Image: Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)         10 Design Ratio       Image: Steel B-254 (KSTM A36)         10 Design Ratio       Image: Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)       Image: Steel B-254 (KSTM A36)       Image: Steel A-254 (KSTM A36)       Image: Stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                         |                                      |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
| 88       3.011       CO1       0.36       ≤1       171) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         Mark       0.83       ≤1       21       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         Mark       0.83       ≤1       2       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         0.83       ≤1       2       181) Cross-section check - Axial force, bending about y-axis and shear force acc. to 3.3.4 and 3.4.3.1         0.83       ≤1       2       15       2       15       400/200/10/18/0         0.7005       Cross-Section Values - 15       54.00/200/10/18/0       2       -15       400/200/10/18/0         0.83       Jones force       P*       -20.233       kN       2       -15       400/200/10/18/0         0.84       If Ston Zov       V*       2       29.594       kN       3.3.3       2       -         0.85       If Web Thickness       If W       10.0       mm       3.3.3       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                          |                                      |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
| 27       1.087       CO1       0.03       ≤1       181) Cross-section check - Axial force, bending about z-axis and shear force acc. to 3.3.4 and 3.4.3.1         Mark       0.83       ≤1       Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2"         Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2"         Image: Colspan="2" <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                      |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
| Max       0.83       ≤1       Image       Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                      |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
| stais - Member 88 - x: 3.011 m - C01         IMaterial Values - Steel B-254 (ASTM A36)         Cross-Section Values - IS 400/200/10/18/0         Design Internal Forces         Cross-Section Type         Design Ratio         Shear Area         Nominal Shear Resistance         Viry       0.001 kN         Shear Area         Ayy         Tores         Nominal Shear Resistance         Viry       0.001 kN         Shear Area         Ayy         Tores         Nominal Shear Resistance         Viry       10.00 mm²         Shear Area         Ayy       7200.00 mm²         Shear Area         Nominal Shear Resistance         Viry       10.00 kN         Shear Area         Ayy       7200.00 mm²         Shear Area <t< td=""><td>27</td><td>1.087</td><td>1.087</td><td>CO1</td><td>0.03</td><td> ≤1</td><td>181) Cross-section ch</td><td>neck - Axial ford</td><td>e, bending ab:</td><td>out z-axis and shear f</td><td>orce ad</td><td>cc. to 3.3.4</td><td>and 3.4.3.1</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                          | 1.087                                | 1.087      | CO1       | 0.03    | ≤1 | 181) Cross-section ch            | neck - Axial ford | e, bending ab:  | out z-axis and shear f | orce ad | cc. to 3.3.4 | and 3.4.3.1 |      |
| atalis - Member 88 - x: 3.011 m - C01       Material Values - Steel B-254 (ASTM A36)       Coss-Section Values - 15 400/200/10/18/0       Design Internal Forces       Oross-Section Values - 15 400/200/10/18/0       Design Internal Forces       Oross-Section Values - 15 400/200/10/18/0       Design Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                      |            | Max       | 0.83    | <1 | 8                                |                   |                 | 9                      |         |              | 🏹 😂 🖪       | 1 🚯  |
| Bending Moment         Mucy         117.477         kNm         Fill           Shear Force         V*z         29.594         kN         Shear Force         Shear Area         Az         33.3         Shear Area         Shear Area         Shear Force         Shear Area         Shear Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atio                                                                                        | pe                                   |            |           |         |    | D.                               | 20.202            | LN              |                        |         |              | 200.0       | 18.0 |
| Shear Force         V*z         29 594         kN         F           Web Depth         h         364.0         mm         3.3.3           Web Thickness         Lw         10.0         mm         3.3.3           Shear Area         Az         3640.0         mm²         3.3.3           Nominal Shear Resistance         VNz         600.600         kN         3.3.3           Design Shear Resistance         VRz.         540.540         kN         Eq. (3.38)           Shear Area         Ay         7200.0         mm²         mm²           Nominal Shear Resistance         VNy         1188.000         kN         3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             | ant                                  |            |           |         |    |                                  |                   |                 |                        | -110    | I †          | _ innihuma  | ===‡ |
| Web Depth         h         364.0         mm         3.3.3           Web Thickness         I.w         10.0         mm         3.3.3           Shear Area         Az         3640.0         mm <sup>2</sup> 3.3.3           Nominal Shear Resistance         VN.z         600.600 kN         3.3.3           Design Shear Resistance         VR.z         540.540 kN         Eq. (3.38)           Shear Area         Ay         7200.0 mm <sup>2</sup> 7200.0 mm <sup>2</sup> Nominal Shear Resistance         VN.y         1188.000 kN         3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                      |            |           |         |    |                                  |                   |                 |                        | - =     |              | 0.0         | -    |
| Web Thickness         Iw         10.0         mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                      |            |           |         |    |                                  |                   |                 | 3.3.3                  |         |              |             |      |
| Shear Area         Az         3640.0         mm²         10.0           Nominal Shear Resistance         VN.z         600.600 kN         3.3.3           Design Shear Resistance         VR.z         540.540 kN         Eq. (3.38)           Shear Area         Ay         7200.0 mm²         -           Nominal Shear Resistance         VN.y         1188.000 kN         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | 38                                   |            |           |         |    | tw                               | 10.0              | mm              |                        |         | 0.00         |             |      |
| Normal Shear Resistance         V N.z         b00.600         kN         3.3.3           Design Shear Resistance         V R.z         5405.540         kN         Eq. (3.3)           Shear Force         V * y         0.001         kN         Eq. (3.3)           Shear Area         Ay         7200.0         mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                           |                                      |            |           |         |    | Az                               | 3640.0            | mm <sup>2</sup> |                        |         | 40           |             |      |
| Shear Force         V*y         0.001         kN           Shear Area         Ay         7200.0         mm²           Nominal Shear Resistance         VN.y         1188.000         kN         3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area                                                                                        | r Resistance                         | sistance   |           |         |    | V <sub>N,z</sub>                 | 600.600           | kN              | 3.3.3                  |         |              | 10.0        |      |
| - Shear Area Ay 7200.0 mm <sup>2</sup><br>- Nominal Shear Resistance VN.y 1188.000 kN 3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             | Resistance                           | istance    |           |         |    | V <sub>R,z</sub>                 |                   |                 | Eq. (3.38)             |         |              |             | -    |
| - Nominal Shear Resistance VN,y 1188.000 kN 3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Shear R                                                                                  |                                      |            |           |         |    | V°y                              |                   |                 |                        |         | ↓            |             |      |
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Shear R<br>Shear Re                                                                      |                                      |            |           |         |    | Ay                               |                   |                 |                        |         |              | 1           |      |
| Design Share Basistence V/a 1069 200 I-NI Ec. (2.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al Shear R<br>Shear Re<br>Force<br>Area                                                     |                                      | sistance   |           |         |    |                                  |                   |                 |                        |         |              | z           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Shear R<br>Shear Re<br>Force<br>Area<br>al Shear R                                       |                                      |            |           |         |    | V <sub>R,y</sub>                 |                   |                 | Eq. (3.38)             |         |              |             |      |
| Yield Strength Fy 250.000 MPa 1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al Shear R<br>Shear Re<br>Force<br>Area<br>al Shear R<br>Shear Re                           | Resistance                           | stance     |           |         |    | E.,                              | 250,000           |                 | 1.3.1                  |         |              |             |      |
| Elastic Section Modulus Zy 1515240.0 mm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al Shear R<br>Shear Re<br>Force<br>Area<br>al Shear Re<br>Shear Re<br>trength               | Resistance                           |            |           |         |    |                                  |                   |                 |                        |         |              |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Shear R<br>Shear Re<br>Force<br>Area<br>al Shear R<br>Shear Re<br>trength<br>Section M   | Resistance<br>n Modulus              | dulus      |           |         |    | Zy                               |                   |                 |                        |         |              |             |      |
| Slendemess Limit         λ <sub>s,1,My</sub> 69.296           Slendemess Limit         λ <sub>s,2,My</sub> 104.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al Shear R<br>Shear Re<br>Force<br>Area<br>al Shear Re<br>trength<br>Section M<br>Section M | Resistance<br>n Modulus<br>n Modulus | dulus      |           |         |    | Z <sub>y</sub><br>S <sub>y</sub> | 1706440.0         |                 |                        |         |              |             | ſ    |

Figure 4.4: Window 2.3 Design by Set of Members

This results window is displayed if you have selected at least one set of members for design. The window lists the maximum utilization ratios sorted by set of members.

The *Member No*. column shows the number of the one member within the set of members that bears the maximum ratio for the individual design criteria.

The output by set of members clearly presents the design for an entire structural group (for example a frame).



## 4.4 Design by Member

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A                                                                                                                                                                                                                                                                 | B                                                                     | С            | D    |                         |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 | E                                          |          |           |        |            |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|------|-------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|-----------|--------|------------|----|
| Member                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location                                                                                                                                                                                                                                                          | Load                                                                  | Design       |      |                         |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [m]                                                                                                                                                                                                                                                             | Case                                                                  | Ratio        |      |                         |                                                                                           |                                                                                                                           | Design Ac                                                                                                                                                                                                                                                                       | cording to Formula                         |          |           |        |            |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cross-section                                                                                                                                                                                                                                                     | n No. 15 -                                                            | IS 250/250/1 | 0/15 | /0                      |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.100                                                                                                                                                                                                                                                             | LC4                                                                   | 0.00         |      | 100) Negligible interr  |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                             | CO2                                                                   | 0.01         |      | 102) Cross-section cl   |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.200                                                                                                                                                                                                                                                             | LC5                                                                   |              |      | 106) Cross-section cl   |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.500                                                                                                                                                                                                                                                             | CO3                                                                   |              |      | 115) Cross-section cl   |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                             | LC3                                                                   | 0.00         | ≤1   | 126) Cross-section cl   | neck - Shea                                                                               | ar buckling acc                                                                                                           | . to 3.3.3 - Sh                                                                                                                                                                                                                                                                 | ear force in z-axis                        |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                             | LC3                                                                   |              |      | 141) Cross-section cl   |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                             | CO1                                                                   | 0.02         |      | 171) Cross-section cl   |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.750                                                                                                                                                                                                                                                             | CO9                                                                   | 0.01         |      | 181) Cross-section cl   |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            | to 3.3.4 | 4 and 3.4 | .3.1   |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                             | CO2                                                                   | 0.01         | ≤1   | 302) Stability analysis | - Flexural b                                                                              | ouckling about                                                                                                            | y-axis acc. to                                                                                                                                                                                                                                                                  | 3.2.2                                      |          |           |        |            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   | Max                                                                   | 0.83         |      | ۵                       |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 | 9                                          |          | F         | N 😂    | <b>I</b>   |    |
| T Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                       | /250/10/15/  | 0    |                         |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           |        |            |    |
| ∃ Cross<br>⊒ Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Internal Ford<br>-Section Type<br>n Ratio                                                                                                                                                                                                                       | ces                                                                   | /250/10/15/  | 0    |                         |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                            |          |           | ± 250. | <u>0</u> + |    |
| E Cross<br>E Desig<br>Axia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Internal Ford<br>-Section Type<br>n Ratio<br>al Force                                                                                                                                                                                                           | ces                                                                   | /250/10/15/  | 0    |                         | P*                                                                                        | -17.198                                                                                                                   |                                                                                                                                                                                                                                                                                 |                                            |          |           | 1      |            |    |
| E Cross<br>E Desig<br>Axi<br>Ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Internal Ford<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment                                                                                                                                                                                           | ces                                                                   | /250/10/15/  | 0    |                         | Muoy                                                                                      | 2.123                                                                                                                     | kNm                                                                                                                                                                                                                                                                             |                                            |          | +         | 250.   | ļunnum     | 6  |
| E Cross<br>Desig<br>Axia<br>Ber<br>She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>ear Force                                                                                                                                                                              | ces                                                                   | /250/10/15/  | 0    |                         | M <sub>uoy</sub><br>V°z                                                                   | 2.123<br>1.523                                                                                                            | kNm<br>kN                                                                                                                                                                                                                                                                       | 222                                        |          |           | 1      |            | 6  |
| E Cross<br>Desig<br>Axia<br>Ber<br>She<br>We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>ear Force<br>ab Depth                                                                                                                                                                  | ces                                                                   | /250/10/15/  | 0    |                         | M <sub>uoy</sub><br>V*z<br>h                                                              | 2.123<br>1.523<br>220.0                                                                                                   | kNm<br>kN<br>mm                                                                                                                                                                                                                                                                 | 3.3.3                                      | - E      | 4         | 1      | ļunnum     | 6  |
| E Cross<br>Desig<br>Axis<br>Ber<br>She<br>We<br>We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Internal Force<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>ear Force<br>ab Depth<br>ab Thickness                                                                                                                                                 | ces                                                                   | /250/10/15/  | 0    |                         | Muoy<br>V*z<br>h<br>tw                                                                    | 2.123<br>1.523<br>220.0<br>10.0                                                                                           | kNm<br>kN<br>mm<br>mm                                                                                                                                                                                                                                                           | 3.3.3                                      |          | 250.0     | 1      | ļunnum     |    |
| E Cross<br>Desig<br>Axia<br>Ber<br>She<br>We<br>We<br>She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>ear Force<br>ab Depth<br>ab Thickness<br>ear Area                                                                                                                                      | Ces                                                                   | /250/10/15/  | 0    |                         | Muoy<br>V*z<br>h<br>t <sub>w</sub><br>Az                                                  | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0                                                                                 | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup>                                                                                                                                                                                                                                        |                                            |          | 250.0     | 1      | 0.0        |    |
| E Cross<br>Desig<br>Axia<br>Ber<br>She<br>We<br>We<br>She<br>Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>ear Force<br>eb Depth<br>eb Thickness<br>ear Area<br>minal Shear Re                                                                                                                    | esistance                                                             | /250/10/15/  | 0    |                         | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN,z                                                      | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000                                                                      | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN                                                                                                                                                                                                                                  | 3.3.3                                      |          | 260.0     |        | ļunnum     |    |
| Cross     Cross     Desig     Axia     Ber     She     We     She     No     Oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>anding Moment<br>ear Force<br>ab Depth<br>ab Depth<br>ab Thickness<br>ear Area<br>minal Shear Re<br>sign Shear Re                                                                                      | esistance                                                             | /250/10/15/  |      |                         | Muoy<br>V*z<br>h<br>t <sub>w</sub><br>Az<br>V <sub>N,z</sub><br>V <sub>R,z</sub>          | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000<br>326.700                                                           | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN<br>kN                                                                                                                                                                                                                            |                                            |          | 250.0     |        | 0.0        | 2  |
| Cross     Cross     Cross     Desig     Axia     Ber     She     We     She     Nor     Des     She      | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>anding Moment<br>ear Force<br>ab Depth<br>ab Thickness<br>ear Area<br>minal Shear Re<br>sign Shear Re<br>ear Force                                                                                     | esistance                                                             | /250/10/15/  |      |                         | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>V*y                               | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000<br>326.700<br>0.002                                                  | kNm<br>kN<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN                                                                                                                                                                                                                            | 3.3.3                                      |          | 250.0     |        | 0.0        | 2  |
| Tross     Cross     Desig     Axi     Ber     She     We     We     She     No     Des     She     Sh    | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>aar Force<br>ab Depth<br>ab Thickness<br>ear Area<br>minal Shear Re<br>sign Shear Re<br>sar Force<br>ear Area                                                                          | esistance<br>sistance                                                 | /250/10/15/  |      |                         | Muoy<br>V*z<br>h<br>Lw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>V*y<br>Ay                         | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0                                        | kNm<br>kN<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN<br>kN<br>mm <sup>2</sup>                                                                                                                                                                                                   | 3.3.3<br>Eq. (3.38)                        |          | 260.0     |        | 0.0        | 3  |
| E Cross<br>Desig<br>Axia<br>Ber<br>She<br>We<br>She<br>She<br>She<br>She<br>She<br>She<br>She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>aar Force<br>ab Depth<br>ab Dhickness<br>ear Area<br>minal Shear Re<br>ear Force<br>ear Area<br>minal Shear Re                                                                         | esistance<br>esistance                                                | /250/10/15/  |      |                         | Muoy<br>V*z<br>h<br>Lw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>VR,z<br>V*y<br>Ay<br>VN,y         | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500                            | kNm<br>kN<br>mm<br>mm<br>mm <sup>2</sup><br>kN<br>kN<br>kN<br>kN<br>kN<br>kN                                                                                                                                                                                                    | 3.3.3<br>Eq. (3.38)                        |          | 260.0     |        | 0.0        |    |
| Tross     Cross     Desig     Axi     Ber     She     We     She     No     De:     She     She  | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>ding Moment<br>ear Force<br>ab Depth<br>ab Thickness<br>ear Area<br>minal Shear Re<br>ear Force<br>ear Area<br>minal Shear Re<br>ear Force<br>minal Shear Re<br>sign Shear Re                          | esistance<br>esistance                                                | /250/10/15/  |      |                         | Muoy<br>V*z<br>h<br>Lw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>VR,z<br>V*y<br>Ay<br>VN,y<br>VR,y | 2.123<br>1.523<br>220.0<br>363.000<br>366.700<br>0.002<br>7500.0<br>1237.500<br>1113.750                                  | kNm         kN           mm         mm           mm <sup>2</sup> kN           kN         kN                                     | 3.3.3<br>Eq. (3.38)<br>3.3.3<br>Eq. (3.38) |          | 260.0     |        | 0.0        | 2  |
| Tross     Cross     Coss     Desig     Axi     Ber     She     We     She     No     Des     She     She | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>aar Force<br>ab Depth<br>ab Dhickness<br>ear Area<br>minal Shear Re<br>ear Force<br>ear Area<br>minal Shear Re                                                                         | esistance<br>esistance<br>esistance<br>esistance                      | //250/10/15/ |      |                         | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>VR,z<br>VR,y<br>VR,y<br>Fy        | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750<br>250.000     | kNm         kN           mm         mm           mm <sup>2</sup> kN           kN         kN           kN         kN           kN         kN           kN         kN           Mm <sup>2</sup> kN           MM <sup>2</sup> kN           KN         kN           MPa         MPa | 3.3.3<br>Eq. (3.38)                        |          | 250.0     |        | 0.0        |    |
| Cross     Cross     Desig     Axi     Ber     She     We     She     No     Des     She     She  | n Internal Force<br>-Section Type<br>n Ratio<br>al Force<br>nding Moment<br>aar Force<br>ab Depth<br>ab Thickness<br>ar Area<br>minial Shear R<br>aar Force<br>aar Force<br>aar Force<br>aar Area<br>minial Shear R<br>aign Shear Re<br>do Strength<br>d Strength | esistance<br>esistance<br>esistance<br>lodulus                        | //250/10/15/ |      |                         | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>VR,z<br>VR,y<br>Fy<br>Zy          | 2.123<br>1.523<br>220.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750<br>250.000<br>900487.0 | kNm         kN           mm         mm           mm2         kN           kN         kN           kN         kN           kN         MPa           mm3         MPa                                                                                                              | 3.3.3<br>Eq. (3.38)<br>3.3.3<br>Eq. (3.38) |          | 250.0     |        | 0.0        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Internal Forc<br>-Section Type<br>n Ratio<br>al Force<br>al Force<br>ab Depth<br>b Depth<br>b Thickness<br>ear Area<br>minal Shear Re<br>sar Force<br>ear Area<br>minal Shear Re<br>sar Area<br>minal Shear Re<br>Id Strength                                   | esistance<br>esistance<br>esistance<br>sistance<br>lodulus<br>lodulus | //250/10/15/ |      |                         | Muoy<br>V*z<br>h<br>tw<br>Az<br>VN,z<br>VR,z<br>VR,z<br>VR,z<br>VR,y<br>VR,y<br>Fy        | 2.123<br>1.523<br>220.0<br>10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750<br>250.000     | kNm         kN           mm         mm           mm2         kN           kN         kN           kN         kN           kN         MPa           mm3         MPa                                                                                                              | 3.3.3<br>Eq. (3.38)<br>3.3.3<br>Eq. (3.38) |          | 250.0     |        | 0.0        | [n |

Figure 4.5: Window 2.4 Design by Member

This results window presents the maximum utilization ratios for the individual designs sorted by member number. The columns are described in detail in chapter 4.1 on page 34.

## 4.5 Design by x-Location

|                                                                                     | A                                                                                                                                                     | B                                                         | С      | D  |                                                                                                                                      |                                                                                                            |                                                                                            | E                   |         |               |                  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|----|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------|---------|---------------|------------------|
| Member                                                                              | Location                                                                                                                                              | Load                                                      | Design |    |                                                                                                                                      |                                                                                                            |                                                                                            |                     |         |               |                  |
| No.                                                                                 | x [m]                                                                                                                                                 | Case                                                      | Ratio  |    |                                                                                                                                      |                                                                                                            | Design Ac                                                                                  | cording to Formula  |         |               |                  |
|                                                                                     | 1.000                                                                                                                                                 | CO1                                                       | 0.00   | ≤1 | 401) Serviceability - Deflection in                                                                                                  | n z-direction (Be                                                                                          | eam)                                                                                       |                     |         |               |                  |
|                                                                                     | 1.000                                                                                                                                                 | CO7                                                       |        |    | 406) Serviceability - Deflection in                                                                                                  | n y-direction (Be                                                                                          | eam)                                                                                       |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | LC3                                                       | 0.00   |    | 100) Negligible internal forces                                                                                                      |                                                                                                            |                                                                                            |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | CO2                                                       | 0.01   |    |                                                                                                                                      | ss-section check - Compression acc. to 3.2                                                                 |                                                                                            |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | LC5                                                       | 0.01   |    | 106) Cross-section check - Bend                                                                                                      |                                                                                                            |                                                                                            |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | CO1                                                       | 0.00   |    | 126) Cross-section check - Shea                                                                                                      |                                                                                                            |                                                                                            |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | CO1                                                       | 0.01   |    | 171) Cross-section check - Axial                                                                                                     |                                                                                                            |                                                                                            |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | CO9                                                       |        |    | 181) Cross-section check - Axial                                                                                                     |                                                                                                            |                                                                                            |                     | o 3.3.4 | 4 and 3.4.3.1 |                  |
|                                                                                     | 1.200                                                                                                                                                 | CO2                                                       |        |    | 302) Stability analysis - Flexural b                                                                                                 |                                                                                                            |                                                                                            |                     |         |               |                  |
|                                                                                     | 1.200                                                                                                                                                 | CO2                                                       | 0.01   | ≤1 | 306) Stability analysis - Flexural b                                                                                                 | ouckling about                                                                                             | z-axis acc. to                                                                             | 3.2.2               |         |               |                  |
|                                                                                     |                                                                                                                                                       | Max                                                       | 0.83   | ≤1 | 9                                                                                                                                    |                                                                                                            |                                                                                            | <b>?</b>            | •       | <b>E</b> 🖌    | 😂 🖪 🚺            |
|                                                                                     | n Internal Ford<br>Section Type<br>n Ratio                                                                                                            |                                                           |        |    |                                                                                                                                      |                                                                                                            |                                                                                            |                     |         |               | 250.0            |
|                                                                                     | al Force                                                                                                                                              |                                                           |        |    | P*                                                                                                                                   | -12.563                                                                                                    | kN                                                                                         |                     |         |               | 235.5            |
| Ben                                                                                 | idina Moment                                                                                                                                          |                                                           |        |    | Muov                                                                                                                                 | 0.691                                                                                                      | kNm                                                                                        |                     |         |               | minnum           |
| She                                                                                 | ar Force                                                                                                                                              |                                                           |        |    | V*z                                                                                                                                  | 0.871                                                                                                      | kN                                                                                         |                     | =       |               | 0.0              |
|                                                                                     | b Depth                                                                                                                                               |                                                           |        |    | h                                                                                                                                    | 220.0                                                                                                      | mm                                                                                         | 3.3.3               |         |               |                  |
|                                                                                     |                                                                                                                                                       |                                                           |        |    |                                                                                                                                      |                                                                                                            |                                                                                            |                     |         | 9             | 5                |
| We                                                                                  | b Thickness                                                                                                                                           |                                                           |        |    | tw                                                                                                                                   | 10.0                                                                                                       | mm                                                                                         |                     |         | 2             |                  |
| Wel<br>Wel                                                                          |                                                                                                                                                       |                                                           |        |    | t <sub>w</sub><br>Az                                                                                                                 |                                                                                                            |                                                                                            |                     |         | 250.0         |                  |
| Wel<br>Wel<br>She                                                                   | b Thickness                                                                                                                                           | esistance                                                 |        |    |                                                                                                                                      | 10.0                                                                                                       | mm <sup>2</sup>                                                                            | 3.3.3               |         |               | <u>0.0</u>       |
| Wel<br>Wel<br>She<br>Non                                                            | b Thickness<br>ar Area                                                                                                                                |                                                           |        |    | Az                                                                                                                                   | 10.0<br>2200.0                                                                                             | mm <sup>2</sup><br>kN                                                                      | 3.3.3<br>Eq. (3.38) |         |               | 0.0              |
| Wel<br>Wel<br>She<br>Non<br>Des                                                     | b Thickness<br>ar Area<br>ninal Shear R                                                                                                               |                                                           |        |    | Az<br>V <sub>N,z</sub>                                                                                                               | 10.0<br>2200.0<br>363.000<br>326.700<br>0.002                                                              | mm <sup>2</sup><br>kN<br>kN<br>kN                                                          | 0.010               |         |               | 0.0              |
| Wel<br>Wel<br>She<br>Non<br>Des<br>She<br>She                                       | b Thickness<br>ar Area<br>ninal Shear R<br>sign Shear Re<br>ar Force<br>ar Area                                                                       | esistance                                                 |        |    | Az<br>VN,z<br>VR,z                                                                                                                   | 10.0<br>2200.0<br>363.000<br>326.700                                                                       | mm <sup>2</sup><br>kN<br>kN<br>kN                                                          | 0.010               |         |               | 0.0              |
| Wel<br>Wel<br>She<br>Non<br>Des<br>She<br>She<br>Non                                | b Thickness<br>ear Area<br>ninal Shear R<br>sign Shear Re<br>ear Force<br>ear Area<br>ninal Shear R                                                   | esistance                                                 |        |    | Az<br>V <sub>N,z</sub><br>V <sub>R,z</sub><br>V <sup>*</sup> y<br>Ay<br>V <sub>N,y</sub>                                             | 10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500                                        | mm <sup>2</sup><br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN                                 | Eq. (3.38)          |         |               | <u>0.0</u>       |
| Wel<br>Wel<br>She<br>Non<br>Des<br>She<br>She<br>Non<br>Des                         | b Thickness<br>ear Area<br>ninal Shear R<br>sign Shear Re<br>ear Force<br>ear Area<br>ninal Shear R<br>sign Shear Re                                  | esistance                                                 |        |    | Az<br>VN.z<br>VR.z<br>V <sup>*</sup> y<br>Ay                                                                                         | 10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750                            | mm <sup>2</sup><br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN<br>kN                           | Eq. (3.38)          |         |               | <u>0.0</u>       |
| Wel<br>Wel<br>She<br>Non<br>Des<br>She<br>She<br>Non<br>Des                         | b Thickness<br>ear Area<br>ninal Shear R<br>sign Shear Re<br>ear Force<br>ear Area<br>ninal Shear R                                                   | esistance                                                 |        |    | Az<br>VN.z<br>VR.z<br>V <sup>*</sup> y<br>Ay<br>VN.y<br>VR.y<br>Fy                                                                   | 10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750<br>250.000                 | mm <sup>2</sup> kN kN kN mm <sup>2</sup> kN kN Mm <sup>2</sup> kN kN MPa                   | Eq. (3.38)          |         |               | 0.0<br>2         |
| Wel<br>Wel<br>She<br>Des<br>She<br>She<br>She<br>Des<br>Yiel<br>Elas                | b Thickness<br>aar Area<br>ninal Shear Re<br>agn Shear Re<br>aar Force<br>aar Area<br>ninal Shear Re<br>dign Shear Re<br>d Strength<br>stic Section N | esistance<br>esistance<br>esistance                       |        |    | Az<br>VN,Z<br>V*y<br>Ay<br>VN,Y<br>VN,Y<br>VR,Y                                                                                      | 10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750<br>250.000<br>900487.0     | mm <sup>2</sup><br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN<br>kN<br>MPa<br>mm <sup>3</sup> | 3.3.3<br>Eq. (3.38) |         |               | <u>10.0</u><br>2 |
| Wel<br>Wel<br>She<br>Des<br>She<br>She<br>She<br>Des<br>Yiel<br>Elas                | b Thickness<br>ear Area<br>ninal Shear R<br>sign Shear Re<br>ear Force<br>ear Area<br>ninal Shear Re<br>sign Shear Re<br>d Strength                   | esistance<br>esistance<br>esistance                       |        |    | Az<br>VN.z<br>VR.z<br>V <sup>*</sup> y<br>Ay<br>VN.y<br>VR.y<br>Fy                                                                   | 10.0<br>2200.0<br>363.000<br>326.700<br>7500.0<br>1237.500<br>1237.500<br>250.000<br>900487.0<br>1002250.0 | mm <sup>2</sup><br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN<br>kN<br>MPa<br>mm <sup>3</sup> | 3.3.3<br>Eq. (3.38) |         |               |                  |
| Wel<br>Wel<br>She<br>Non<br>Des<br>She<br>She<br>Non<br>Des<br>Yîel<br>Elas<br>Plas | b Thickness<br>aar Area<br>ninal Shear Re<br>agn Shear Re<br>aar Force<br>aar Area<br>ninal Shear Re<br>dign Shear Re<br>d Strength<br>stic Section N | lesistance<br>esistance<br>sistance<br>lodulus<br>lodulus |        |    | Åz           VR.z.           VR.z.           V <sup>*</sup> y           Ay           VN.y.           VR.y.           Fy           Zy | 10.0<br>2200.0<br>363.000<br>326.700<br>0.002<br>7500.0<br>1237.500<br>1113.750<br>250.000<br>900487.0     | mm <sup>2</sup><br>kN<br>kN<br>kN<br>mm <sup>2</sup><br>kN<br>kN<br>MPa<br>mm <sup>3</sup> | 3.3.3<br>Eq. (3.38) |         |               |                  |

Figure 4.6: Window 2.5 Design by x-Location



This results window lists the maxima for each member at the locations **x** resulting from the division points in RSTAB:

- Start and end node
- Division points according to possibly defined member division (see RSTAB table 1.6)
- Member division according to specification for member results (RSTAB dialog box *Calculation Parameters*, tab *Global Register Parameters*)
- Extreme values of internal forces

## 4.6 Governing Internal Forces by Member

3.1 Governing Internal Forces by Memb

|        | A                                                                                                                                                             | В                                                                                                      | C                                                                                                                                                   | D                                                                                                                                           | E                                                                                                                                                      | F                                                                                                                                   | G                                                                                                                                         | H                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lember | Location                                                                                                                                                      | Load-                                                                                                  |                                                                                                                                                     | Forces [kN]                                                                                                                                 |                                                                                                                                                        |                                                                                                                                     | oments [kNm]                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| No.    | x [m]                                                                                                                                                         | ing                                                                                                    | N                                                                                                                                                   | Vy                                                                                                                                          | Vz                                                                                                                                                     | MT                                                                                                                                  | My                                                                                                                                        | Mz                                                                                                                                           | Design According to Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1      | Cross-section                                                                                                                                                 | No. 15 - IS                                                                                            | 6 250/250/10/                                                                                                                                       | 15/0                                                                                                                                        |                                                                                                                                                        |                                                                                                                                     |                                                                                                                                           |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 2.100                                                                                                                                                         | LC4                                                                                                    | 0.000                                                                                                                                               | 0.149                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.211                                                                                                                                        | 100) Negligible internal forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 0.000                                                                                                                                                         | CO2                                                                                                    | -17.395                                                                                                                                             | -0.004                                                                                                                                      | 0.137                                                                                                                                                  | 0.000                                                                                                                               | 0.409                                                                                                                                     | -0.012                                                                                                                                       | 102) Cross-section check - Compression acc. to 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 1.200                                                                                                                                                         | LC5                                                                                                    | 0.000                                                                                                                                               | 0.020                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000 -0.607                                                                                                                              |                                                                                                                                              | 106) Cross-section check - Bending about z-axis acc. to 3.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 1.500                                                                                                                                                         | CO3                                                                                                    | -9.413                                                                                                                                              | 0.000                                                                                                                                       | 0.741                                                                                                                                                  | 0.000                                                                                                                               | 0.436                                                                                                                                     | 0.000                                                                                                                                        | 115) Cross-section check - Shear force in z-axis acc. to 3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0.000                                                                                                                                                         | LC3                                                                                                    | -0.016                                                                                                                                              | 0.000                                                                                                                                       | 1.019                                                                                                                                                  | 0.000                                                                                                                               | 1.258                                                                                                                                     | 0.000                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 0.000                                                                                                                                                         | LC3                                                                                                    | -0.016                                                                                                                                              | 0.000                                                                                                                                       | 1.019                                                                                                                                                  | 0.000                                                                                                                               | 1.258                                                                                                                                     |                                                                                                                                              | 141) Cross-section check - Bending about y-axis and shear for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 0.000                                                                                                                                                         | CO1                                                                                                    | -17.198                                                                                                                                             | -0.002                                                                                                                                      | 1.523                                                                                                                                                  | 0.000                                                                                                                               | 2.123                                                                                                                                     |                                                                                                                                              | 171) Cross-section check - Axial force, bending about y-axis a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0.750                                                                                                                                                         | CO9                                                                                                    | -14.287                                                                                                                                             | 0.315                                                                                                                                       | +0.007                                                                                                                                                 | 0.000                                                                                                                               | 0.016                                                                                                                                     |                                                                                                                                              | 181) Cross-section check - Axial force, bending about z-axis a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0.000                                                                                                                                                         | CO2                                                                                                    | -17.395                                                                                                                                             | -0.004                                                                                                                                      | 0.137                                                                                                                                                  | 0.000                                                                                                                               | -0.409                                                                                                                                    |                                                                                                                                              | 302) Stability analysis - Flexural buckling about y-axis acc. to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 0.000                                                                                                                                                         | CO2                                                                                                    | -17.395                                                                                                                                             | -0.004                                                                                                                                      | 0.137                                                                                                                                                  | 0.000                                                                                                                               | 0.409                                                                                                                                     | -0.012                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 0.000                                                                                                                                                         | CO2                                                                                                    | 17.395                                                                                                                                              | -0.004                                                                                                                                      | 0.137                                                                                                                                                  | 0.000                                                                                                                               | 0.409                                                                                                                                     |                                                                                                                                              | 311) Stability analysis - Torsional buckling acc. to 3.2.2.2(a) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 0.000                                                                                                                                                         | LC3                                                                                                    | -0.016                                                                                                                                              | 0.000                                                                                                                                       | 1.019                                                                                                                                                  | 0.000                                                                                                                               | 1.258                                                                                                                                     | 0.000                                                                                                                                        | 321) Stability analysis - Lateral-torsional buckling acc. to 3.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 0.000                                                                                                                                                         | LC1                                                                                                    | 0.000                                                                                                                                               | 0.000                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.000                                                                                                                                        | 400) Serviceability - Negligible deflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 1.000                                                                                                                                                         | CO1                                                                                                    | 0.000                                                                                                                                               | 0.000                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.000                                                                                                                                        | 401) Serviceability - Deflection in z-direction (Beam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                               |                                                                                                        |                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                        |                                                                                                                                     |                                                                                                                                           |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 1.500                                                                                                                                                         | C07                                                                                                    | 0.000                                                                                                                                               | 0.000                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     |                                                                                                                                              | 406) Serviceability - Deflection in y-direction (Beam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2      |                                                                                                                                                               |                                                                                                        |                                                                                                                                                     | 0.000                                                                                                                                       |                                                                                                                                                        |                                                                                                                                     |                                                                                                                                           |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2      | Cross-section                                                                                                                                                 | No. 15 - 19                                                                                            | 6 250/250/10/                                                                                                                                       | 0.000                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.000                                                                                                                                        | 406) Serviceability - Deflection in y-direction (Beam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2      | Cross-section<br>2.850                                                                                                                                        | No. 15 - 19<br>LC5                                                                                     | 6 250/250/10/<br>0.000                                                                                                                              | 0.000                                                                                                                                       | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.000                                                                                                                                        | 406) Serviceability - Deflection in y-direction (Beam) 100) Negligible internal forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2      | Cross-section<br>2.850<br>1.800                                                                                                                               | No. 15 - 19<br>LC5<br>RC1                                                                              | 250/250/10/<br>0.000<br>-43.099                                                                                                                     | 0.000<br>15/0<br>0.551<br>0.195                                                                                                             | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.000                                                                                                                                        | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligble internal forces<br>102) Cross-section check - Compression acc. to 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000                                                                                                                      | No. 15 - IS<br>LC5<br>RC1<br>LC5                                                                       | 250/250/10/<br>0.000<br>-43.099<br>0.000                                                                                                            | 0.000<br>15/0<br>0.551<br>0.195<br>1.691                                                                                                    | 0.000                                                                                                                                                  | 0.000                                                                                                                               | 0.000                                                                                                                                     | 0.000<br>-0.213<br>0.137<br>2.981                                                                                                            | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850                                                                                                             | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4                                                                | 250/250/10/<br>0.000<br>-43.099<br>0.000<br>-38.455                                                                                                 | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001                                                                                           | 0.000                                                                                                                                                  | 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                 | 0.000<br>0.009<br>0.009<br>0.000<br>0.380                                                                                                 | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001                                                                                                   | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.3<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000                                                                                                    | N₀. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3                                                         | 5 250/250/10/<br>0.000<br>-43.099<br>0.000<br>-38.455<br>-0.016                                                                                     | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000                                                                                  | 0.000<br>0.000<br>0.010<br>0.000<br>0.822<br>2.620                                                                                                     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                  | 0.000<br>0.009<br>0.009<br>0.380<br>7.317                                                                                                 | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001<br>0.000                                                                                          | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Shearforce in z-axis acc. to 3.3.3<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>26) Cross-section check - Shear buckling acc. to 3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000<br>0.000                                                                                           | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3                                                  | 5 250/250/10/<br>0.000<br>-43.099<br>0.000<br>-38.455<br>-0.016<br>-0.016                                                                           | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000                                                                         | 0.000<br>0.010<br>0.000<br>0.822<br>2.620<br>2.620                                                                                                     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                         | 0.000<br>0.009<br>0.000<br>0.000<br>0.380<br>7.317<br>7.317                                                                               | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001<br>0.000<br>0.000                                                                                 | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>116) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>126) Cross-section check - Shear force in z-axis acc. to 3.3.3 - Shr<br>141) Cross-section check - Shear buckling acc. to 3.3.3 - Shr<br>141) Cross-section check - Bending about y-axis and shear for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000                                                                                  | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>LC3<br>CO1                                    | 250/250/10/<br>0.000<br>-43.099<br>0.000<br>-38.455<br>-0.016<br>-0.016<br>-50.067                                                                  | 0.000<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000<br>-0.010                                                                       | 0.000<br>0.000<br>0.010<br>0.000<br>0.822<br>2.620<br>2.620<br>4.454                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                       | 0.000<br>0.009<br>0.009<br>0.000<br>0.380<br>17.317<br>17.317<br>-13.135                                                                  | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001<br>0.000<br>0.000<br>-0.043                                                                       | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligble internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.3<br>126) Cross-section check - Shear force in z-axis acc. to 3.3.3 - Shr<br>141) Cross-section check - Shear buckling acc. to 3.3.3 - Shr<br>141) Cross-section check - Shear buckling about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171) Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for<br>171 Cross-section check - Axial force, bending about y-axis and shear for about y-axis and shear for a y-axis about y-axis and shear for a y-axis about y-axis and shear for a y-axis about y-axis abo                     |
| 2      | Cross-section<br>2.850<br>1.800<br>2.850<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                         | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>LC3<br>CO1<br>CO9                             | \$ 250/250/10/<br>0.000<br>43.099<br>0.000<br>38.455<br>-0.016<br>-0.016<br>-50.067<br>-50.053                                                      | 0.000<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>2.014                                                      | 0.000<br>0.010<br>0.000<br>0.822<br>2.620<br>2.620<br>4.454<br>0.010                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                              | 0.000<br>0.009<br>0.009<br>0.380<br>17.317<br>17.317<br>13.135<br>0.010                                                                   | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001<br>0.000<br>0.000<br>-0.043<br>3.391                                                              | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.3<br>115) Cross-section check - Shear buckling acc. to 3.3.3 - She<br>141) Cross-section check - Bending about y-axis and shear fo<br>171) Cross-section check - Axial force, bending about y-axis ar<br>181) Cross-section check - Axial force, bending about y-axis ar<br>181) Cross-section check - Axial force, bending about y-axis ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>1.800                                                       | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>LC3<br>CO1<br>CO9<br>RC1                      | 6 250/250/10/<br>0.000<br>-43.099<br>0.000<br>-38.455<br>-0.016<br>-0.016<br>-50.067<br>-50.053<br>-43.099                                          | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>0.010<br>2.014<br>0.195                            | 0.000<br>0.010<br>0.000<br>0.822<br>2.620<br>2.620<br>4.454<br>0.010<br>0.010                                                                          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | 0.000<br>0.009<br>0.000<br>0.380<br>7.317<br>7.317<br>-13.135<br>-0.010<br>0.009                                                          | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001<br>0.000<br>0.000<br>-0.043<br>3.391<br>0.137                                                     | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.2<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>126) Cross-section check - Shear force in z-axis acc. to 3.3.3 - She<br>141) Cross-section check - Bending about z-axis and shear for<br>171) Cross-section check - Axial force, bending about z-axis a<br>181) Cross-section check - Axial force, bending about z-axis a<br>202) Stability analysis - Revarial buckling about z-axis acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000<br>0.000<br>1.800<br>1.800                                                       | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>LC3<br>CO1<br>CO9<br>RC1<br>RC1               | \$ 250/250/10/<br>0.000<br>43.099<br>0.000<br>38.455<br>-0.016<br>-0.016<br>-50.067<br>-50.053<br>43.099<br>43.099                                  | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000<br>-0.010<br>2.014<br>0.195<br>0.195                                    | 0.000<br>0.010<br>0.010<br>0.822<br>2.620<br>2.620<br>4.454<br>0.010<br>0.010<br>0.010                                                                 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | 0.000<br>0.009<br>0.000<br>0.380<br>17.317<br>17.317<br>-13.135<br>0.010<br>0.009<br>0.009                                                | 0.000<br>-0.213<br>0.137<br>2.981<br>0.001<br>0.000<br>0.000<br>0.000<br>0.0043<br>3.391<br>0.137<br>0.137                                   | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligble internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.3<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3 - Sh<br>141) Cross-section check - Shear buckling acc. to 3.3.3 - Sh<br>141) Cross-section check - Anal force, bending about y-axis<br>at 181) Cross-section check - Axial force, bending about y-axis<br>1810; Cross-section check - Axial force, bending about y-axis<br>acc. to<br>302) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability analysis - Rexural buckling about y-axis acc. to<br>305) Stability anal |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000<br>1.800<br>1.800<br>1.800                                                       | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>CO1<br>CO9<br>RC1<br>RC1<br>RC1               | \$ 250/250/10/<br>0.000<br>43.099<br>0.000<br>38.455<br>-0.016<br>-0.016<br>-50.057<br>-50.053<br>-43.099<br>-43.099<br>-43.099                     | 15/0<br>0.551<br>0.195<br>1.691<br>0.000<br>0.000<br>0.000<br>0.000<br>2.014<br>0.195<br>0.195<br>0.195                                     | 0.000<br>0.000<br>0.010<br>0.000<br>0.822<br>2.620<br>4.454<br>0.010<br>0.010<br>0.010<br>0.010                                                        | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                            | 0.000<br>0.009<br>0.000<br>0.380<br>7.317<br>7.317<br>-13.135<br>0.010<br>0.009<br>0.009                                                  | 0.000<br>0.213<br>0.137<br>2.981<br>0.001<br>0.000<br>0.000<br>0.000<br>0.0043<br>3.391<br>0.137<br>0.137                                    | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>105) Cross-section check - Shear force in z-axis acc. to 3.3.2<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>126) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>127) Cross-section check - Axea force, bending about z-axis<br>131) Cross-section check - Axea force, bending about z-axis<br>132) Cross-section check - Axea force, bending about z-axis<br>132) Stability analysis - Flexural buckling about z-axis acc. to 3.2.2<br>306) Stability analysis - Flexural buckling about z-axis acc. to 3.2.2.2<br>131) Stability analysis - Trainal buckling about z-axis acc. to 3.2.2.2<br>131) Stability analysis - Trainal buckling about z-axis acc. to 3.2.2.2<br>131) Stability analysis - Trainal buckling about z-axis acc. to 3.2.2.2<br>131) Stability analysis - Trainal buckling about z-axis acc. to 3.2.2.2<br>131) Stability analysis - Trainal buckling about z-axis acc. to 3.2.2.2<br>131) Stability analysis - Trainal buckling acc. to 3.2.2<br>131) Stability analysis |
| 2      | Cross-section<br>2.850<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000<br>1.800<br>1.800<br>1.800<br>0.000                                                       | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>LC3<br>CO1<br>CO9<br>RC1<br>RC1<br>RC1<br>LC3 | 5 250/250/10/<br>0.000<br>43.099<br>0.000<br>38.455<br>-0.016<br>-0.016<br>-50.053<br>43.099<br>43.099<br>-43.099<br>-43.099<br>-0.016              | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000<br>0.000<br>0.010<br>2.014<br>0.195<br>0.195<br>0.195<br>0.195<br>0.195 | 0.000<br>0.010<br>0.022<br>2.620<br>2.620<br>4.454<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>2.620                                               | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | 0.000<br>0.009<br>0.000<br>0.380<br>17.317<br>17.317<br>13.135<br>0.010<br>0.009<br>0.009<br>0.009<br>17.317                              | 0.000<br>0.137<br>0.137<br>0.001<br>0.000<br>0.000<br>0.000<br>0.043<br>3.391<br>0.137<br>0.137<br>0.137<br>0.000                            | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.2<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>126) Cross-section check - Bending about y-axis and shear for<br>111) Cross-section check - Anal force, bending about y-axis<br>181) Cross-section check - Anal force, bending about y-axis and<br>181) Cross-section check - Avail force, bending about y-axis acc.<br>130) Stability analysis - Flexural buckling about y-axis acc. to<br>305 Stability analysis - Terrsional buckling acc. to 3.2.2 (2)<br>311) Stability analysis - Torsional buckling acc. to 3.2.2 (2)<br>313) Stability analysis - Torsional buckling acc. to 3.2.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2      | Cross-section<br>2.850<br>1.800<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000<br>1.800<br>1.800<br>1.800<br>1.800<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>CO1<br>CO1<br>RC1<br>RC1<br>RC1<br>LC3<br>CO1 | 5 250/250/10/<br>0.000<br>43.099<br>0.000<br>38.455<br>-0.016<br>-0.016<br>-50.067<br>-50.053<br>-43.099<br>-43.099<br>-43.099<br>-0.016<br>-50.067 | 15/0<br>0.551<br>0.195<br>1.691<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.195<br>0.195<br>0.195<br>0.195<br>0.195<br>0.195 | 0.000<br>0.010<br>0.000<br>0.822<br>2.620<br>2.620<br>2.620<br>4.454<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>0.4454 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.009<br>0.009<br>0.000<br>0.380<br>17.317<br>17.317<br>13.135<br>0.010<br>0.009<br>0.009<br>0.009<br>0.009<br>17.317<br>-13.135 | 0.000<br>0.213<br>0.137<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000<br>0.043<br>3.391<br>0.137<br>0.137<br>0.137<br>0.000<br>0.000<br>0.000 | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligble internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.3<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>126) Cross-section check - Shear buckling acc. to 3.3.3 - Sh<br>141) Cross-section check - Bending about z-axis ac<br>1810 Cross-section check - Axial force, bending about z-axis ac<br>1810 Cross-section check - Axial force, bending about z-axis ac<br>1810 Cross-section check - Valia force, bending about z-axis ac<br>1810 Cross-section check - Axial force, bending about z-axis ac<br>1810 Cross-section check - Axial force, bending about z-axis acc. to<br>305) Stability analysis - Texural buckling about z-axis acc. to<br>310) Stability analysis - Torsional buckling acc. to 3.2.2 (26) -<br>321) Stability analysis - Torsional buckling acc. to 3.3.2<br>331) Stability analysis - Bending about y-axis and compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2      | Cross-section<br>2.850<br>0.000<br>2.850<br>0.000<br>0.000<br>0.000<br>1.800<br>1.800<br>1.800<br>0.000                                                       | No. 15 - IS<br>LC5<br>RC1<br>LC5<br>CO4<br>LC3<br>LC3<br>LC3<br>CO1<br>CO9<br>RC1<br>RC1<br>RC1<br>LC3 | 5 250/250/10/<br>0.000<br>43.099<br>0.000<br>38.455<br>-0.016<br>-0.016<br>-50.053<br>43.099<br>43.099<br>-43.099<br>-43.099<br>-0.016              | 0.000<br>15/0<br>0.551<br>0.195<br>1.691<br>0.001<br>0.000<br>0.000<br>-0.010<br>2.014<br>0.195<br>0.195<br>0.195<br>0.195<br>0.195         | 0.000<br>0.010<br>0.022<br>2.620<br>2.620<br>4.454<br>0.010<br>0.010<br>0.010<br>0.010<br>0.010<br>2.620                                               | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | 0.000<br>0.009<br>0.000<br>0.380<br>17.317<br>17.317<br>13.135<br>0.010<br>0.009<br>0.009<br>0.009<br>17.317                              | 0.000<br>0.137<br>0.137<br>0.001<br>0.000<br>0.000<br>0.000<br>0.043<br>3.391<br>0.137<br>0.137<br>0.137<br>0.000                            | 406) Serviceability - Deflection in y-direction (Beam)<br>100) Negligible internal forces<br>102) Cross-section check - Compression acc. to 3.2<br>106) Cross-section check - Bending about z-axis acc. to 3.3.3<br>115) Cross-section check - Shear force in z-axis acc. to 3.3.3<br>126) Cross-section check - Shear buckling acc. to 3.3.3 - She<br>141) Cross-section check - Avial force, bending about y-axis and<br>171) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and<br>181) Cross-section check - Avial force, bending about y-axis and      |

Figure 4.7: Window 3.1 Governing Internal Forces by Member

For each member, this window displays the governing internal forces, that is, those internal forces that result in the maximum utilization in each design.

#### Location x

At this x location of the member, the respective maximum design ratio occurs.

#### Loading

This column displays the number of the load case, the load combination, or result combination whose internal forces result in the maximum design ratios.

#### Forces / Moments

For each member, this column displays the axial and shear forces as well as the torsional and bending moments producing maximum ratios in the respective cross-section designs, stability analyses, and serviceability limit state designs.

### **Design According to Formula**

The final column informs you about the design types and the equations by which the designs according to [1] have been performed.



## 4.7 Governing Internal Forces by Set of Members

|     | A          | В          | C             | D           | E       | F      | G             | Н      |                                                                     |
|-----|------------|------------|---------------|-------------|---------|--------|---------------|--------|---------------------------------------------------------------------|
| Set | Location   | Load-      |               | Forces [kN] |         |        | loments [kNm] |        |                                                                     |
| No. | x [m]      | ing        | N             | Vy          | Vz      | MT     | My            | Mz     | Design According to Formula                                         |
| 1   |            |            | 6,65,79,88,10 |             |         |        |               |        |                                                                     |
|     | 1.046      | LC3        | -0.197        | 0.000       | -0.633  | 0.000  | -0.766        | 0.000  |                                                                     |
|     | 0.000      | CO2        | -56.723       | 0.001       | 18.494  | -0.002 | 0.000         | 0.000  |                                                                     |
|     | 5.647      | LC2        | -4.686        | 0.000       | -0.034  | 0.000  | 15.680        | 0.000  |                                                                     |
|     | 3.000      | LC4        | 0.000         | 0.001       | 0.000   | 0.005  | 0.000         |        | 106) Cross-section check - Bending about z-axis acc. to 3.3.2       |
|     | 0.000      | CO1        | -56.325       | 0.000       | 21.304  | -0.002 | 0.000         |        | 115) Cross-section check - Shear force in z-axis acc. to 3.3.3      |
|     | 0.000      | LC1        | -32.222       | 0.000       | -8.132  | 0.000  | 0.000         | 0.000  |                                                                     |
|     | 3.585      |            |               | 0.000       | 1.193   | 0.000  | 14.486        | 0.000  | 141) Cross-section check - Bending about y-axis and shear for       |
|     | 3.011      | CO1        | -20.293       | -0.001      | -29.594 | 0.002  | -117.477      | -0.002 |                                                                     |
|     | 1.087      | CO1        | -18.905       | -0.055      | 16.837  | -0.002 | -0.615        |        | 181) Cross-section check - Axial force, bending about z-axis a      |
|     | 5.700      | CO9        | -31.776       | -0.741      | 17.282  | 0.007  | 98.954        |        | 191) Cross-section check - Axial force, biaxial bending and she     |
|     | 0.000      | CO2        | -56.723       | 0.001       | 18.494  | -0.002 | 0.000         |        | 302) Stability analysis - Flexural buckling about y-axis acc. to 3  |
|     | 0.000      | CO2        | -56.723       | 0.001       | 18.494  | -0.002 | 0.000         |        | 306) Stability analysis - Flexural buckling about z-axis acc. to 3  |
|     | 0.000      | CO2        | -56.723       | 0.001       | 18.494  | -0.002 | 0.000         |        | 311) Stability analysis - Torsional buckling acc. to 3.2.2.2(a) - I |
|     | 5.647      | LC2        | -4.686        | 0.000       | -0.034  | 0.000  | 15.680        |        | 321) Stability analysis - Lateral-torsional buckling acc. to 3.3.2  |
|     | 1.000      | CO1        | -52.208       | 0.000       | 20.744  | -0.002 | 20.991        | 0.000  | 331) Stability analysis - Bending about y-axis and compression      |
|     | 1.000      | RC1        | -51.115       | -1.122      | 17.409  | -0.007 | 17.398        | 1.386  | 341) Stability analysis - Biaxial bending and compression acc.      |
|     | 0.000      | LC1        | 0.000         | 0.000       | 0.000   | 0.000  | 0.000         | 0.000  | 400) Serviceability - Negligible deflections                        |
|     | 3.137      | CO1        | 0.000         | 0.000       | 0.000   | 0.000  | 0.000         | 0.000  | 401) Serviceability - Deflection in z-direction (Beam)              |
|     | 3.000      | CO6        | 0.000         | 0.000       | 0.000   | 0.000  | 0.000         | 0.000  | 406) Serviceability - Deflection in y-direction (Beam)              |
| 2   | (Member No | 12 17 26 4 | 5.64.78.87.10 | 0)          |         |        |               |        |                                                                     |
|     | 3.262      | LC5        | -0.943        | 0.027       | 0.883   | 0.007  | 0.364         | -0.166 | 100) Negligible internal forces                                     |
|     | 6.274      | LC5        | 7.090         | 0.014       | -0.885  | -0.007 | 0.364         |        | 101) Cross-section check - Tension acc. to 3.1                      |
|     | 0.000      | C09        | -81.459       | 0.002       | 31.894  | 0.006  | 0.000         |        | 102) Cross-section check - Compression acc. to 3.2                  |
|     | 6.274      | C07        | -1.515        | -0.021      | 0.850   | 0.009  | 50.785        | -0.104 |                                                                     |
|     | 0.000      | C01        | -71.379       | 0.000       | 38.052  | -0.002 | 0.000         |        | 115) Cross-section check - Shear force in z-axis acc. to 3.3.3      |
|     | 0.000      | LC1        | -27.449       | 0.000       | -8.777  | 0.000  | 0.000         | 0.000  |                                                                     |
|     | 0.314      | C07        | -1.560        | 0.020       | -1.294  | -0.009 | 50.449        | -0.111 | 141) Cross-section check - Bending about y-axis and shear for       |
|     | 3.137      | C07        | -1.904        | -0.014      | 5.288   | 0.009  | 41.158        |        | 161) Cross-section check - Biaxial bending and shear force ac       |
|     | 3.011      | C01        | -35.661       | -0.001      | -51.372 | 0.003  | -207.633      |        | 171) Cross-section check - Axial force, bending about y-axis a      |
|     | 1.468      | C07        | -14.314       | -0.052      | -13.030 | -0.002 | 0.005         |        | 181) Cross-section check - Axial force, bending about z-axis a      |
|     | 3.585      | CO2        | -33.100       | 0.051       | 10.878  | -0.003 | 103.754       | 0.171  | 191) Cross-section check - Axial force, biaxial bending and she     |
|     | 0.000      | C02        | -81.459       | 0.002       | 31.894  | 0.002  | 0.000         |        | 302) Stability analysis - Flexural buckling about v-axis acc. to 3  |

Figure 4.8: Window 3.2 Governing Internal Forces by Set of Members

This window shows the internal forces that result in the maximum ratios of the design for each set of members.



#### **Member Slendernesses** 4.8

|         | А                     | B      | С     | D                               | E               | F                  | G            | H       |  |
|---------|-----------------------|--------|-------|---------------------------------|-----------------|--------------------|--------------|---------|--|
| /lember |                       | Length |       | Major Axis y                    |                 |                    | Minor Axis z |         |  |
| No.     | Under Stress          | L [m]  | ky[-] | iy [mm]                         | λy[-]           | k <sub>z</sub> [-] | iz [mm]      | λz [-]  |  |
| 1       | Compression / Flexure | 3.000  | 1.000 | 107.7                           | 27.849          | 1.000              | 63.5         | 47.263  |  |
| 2       | Compression / Flexure | 3.000  | 1.000 | 107.7                           | 27.849          | 1.000              | 63.5         | 47.263  |  |
| 3       | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 4       | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 5       | Compression / Flexure | 3.000  | 1.000 | 188.0                           | 15.960          | 1.000              | 47.0         | 63.863  |  |
| 6       | Compression / Flexure | 3.000  | 1.000 | 188.0                           | 15.960          | 1.000              | 47.0         | 63.863  |  |
| 7       | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 8       | Compression / Flexure | 6.000  | 1.000 | 188.0                           | 31.921          | 1.000              | 47.0         | 127.727 |  |
| 9       | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 12      | Compression / Flexure | 6.000  | 1.000 | 188.0                           | 31.921          | 1.000              | 47.0         | 127.727 |  |
| 13      | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 14      | Compression / Flexure | 6.000  | 1.000 | 188.0                           | 31.921          | 1.000              | 47.0         | 127.727 |  |
| 15      | Compression / Flexure | 3.011  | 1.000 | 167.2                           | 18.010          | 1.000              | 47.1         | 63.958  |  |
| 16      | Compression / Flexure | 3.011  | 1.000 | 167.2                           | 18.010          | 1.000              | 47.1         | 63.958  |  |
| 17      | Compression / Flexure | 3.011  | 1.000 | 167.2                           | 18.010          | 1.000              | 47.1         | 63.958  |  |
| 18      | Compression / Flexure | 3.011  | 1.000 | 167.2                           | 18.010          | 1.000              | 47.1         | 63.958  |  |
| 19      | Compression / Flexure | 6.274  | 1.000 | 107.7                           | 58.240          | 1.000              | 63.5         | 98.840  |  |
| 20      | Compression / Flexure | 6.250  | 1.000 | 188.0                           | 33.251          | 1.000              | 47.0         | 133.049 |  |
| 21      | Compression / Flexure | 6.250  | 1.000 | 188.0                           | 33.251          | 1.000              | 47.0         | 133.049 |  |
| 24      | Compression / Flexure | 3.262  | 1.000 | 167.2                           | 19.512          | 1.000              | 47.1         | 69.292  |  |
| 25      | Compression / Flexure | 3.262  | 1.000 | 167.2                           | 19.512          | 1.000              | 47.1         | 69.292  |  |
| 26      | Compression / Flexure | 3.262  | 1.000 | 167.2                           | 19.512          | 1.000              | 47.1         | 69.292  |  |
| 27      | Compression / Flexure | 3.262  | 1.000 | 167.2                           | 19.512          | 1.000              | 47.1         | 69.292  |  |
| 28      | Compression / Flexure | 3.546  | 1.000 | 107.7                           | 32.918          | 1.000              | 63.5         | 55.865  |  |
| 29      | Compression / Flexure | 3.000  | 1.000 | 107.7                           | 27.849          | 1.000              | 63.5         | 47.263  |  |
| 30      | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 31      | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
| 32      | Compression / Flexure | 3.546  | 1.000 | 86.2                            | 41.123          | 1.000              | 52.1         | 68.012  |  |
| 33      | Compression / Flexure | 3.000  | 1.000 | 86.2                            | 34.791          | 1.000              | 52.1         | 57.540  |  |
| 34      | Compression / Flexure | 5.000  | 1.000 | 30.7                            | 162.938         | 1.000              | 30.7         | 162.938 |  |
|         |                       |        |       | More                            | bers with compr | reaction ( flow wa |              |         |  |
|         |                       |        |       | Max Kv/L                        |                 |                    | 9            |         |  |
|         |                       |        |       | Max KyL<br>Max K <sub>2</sub> L |                 |                    | 9            |         |  |

Figure 4.9: Window 3.3 Member Slendernesses

Details...

Details...

This results window appears only if you select the respective check box in the Other tab of the Details dialog box (see Figure 3.4, page 31).

The table lists the effective slendernesses of the designed members for both directions of the principal axes. They were determined depending on the type of load. At the end of the list, you find a comparison with the limit values that have been defined in the Details dialog box, tab Other (see Figure 3.4, page 31).

Members of the member type "Tension" or "Cable" are not included in this window.

This window is displayed only for information. No stability design of slendernesses is intended.



## 4.9 Parts List by Member

Finally, STEEL NTC-DF provides a summary of all cross-sections included in the design case.

| A                       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cross-Section           | Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Surface Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description             | Members                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [m <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [m <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [kg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [t]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15 - IS 250/250/10/15/0 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 228.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12 - TO 80/80/5/5/5/5   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 - IS 450/200/10/20/0  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 284.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 - IS 450/200/10/20/0  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 569.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13 - Circle 24          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 - IS 400/200/10/18/0  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 256.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 - IS 250/250/10/15/0  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 477.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 - IS 450/200/10/20/0  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 593.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13 - Circle 24          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 - IS 400/200/10/18/0  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 277.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 - IS 250/250/10/15/0  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 - IS 250/250/10/15/0  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 228.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 - IS 200/200/8/15/0  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 204.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 - IS 200/200/8/15/0  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 173.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16 - IS 360/150/8/12/0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 323.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 - IS 400/200/10/18/0  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 533.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 - IS 250/250/10/15/0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 311.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 - IS 200/200/8/15/0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 236.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 - IS 250/250/10/15/0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 540.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 - IS 250/250/10/15/0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 498.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 516.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 507.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 15 - IS 250/250/10/15/0<br>12 - TO 80/80/5/5/5/5<br>13 - Grob 80/80/5/5/5/5<br>13 - Grobe 24<br>2 - IS 400/200/10/20/0<br>13 - Grobe 24<br>2 - IS 400/200/10/18/0<br>7 - IS 250/250/10/15/0<br>13 - Grobe 24<br>2 - IS 400/200/10/18/0<br>6 - IS 250/250/10/15/0<br>10 - IS 200/200/8/15/0<br>10 - IS 200/200/8/15/0<br>16 - IS 360/150/18/12/0<br>2 - IS 400/200/11/8/0<br>6 - IS 250/250/10/15/0<br>10 - IS 200/200/8/15/0<br>10 - IS 200/200/8/15/0<br>6 - IS 250/250/10/15/0<br>10 - IS 200/200/8/15/0<br>6 - IS 250/250/10/15/0 | Description         Members           15 - IS 250/250/10/15/0         2           12 - TO 80/800/55/5/5         25           1 - IS 450/200/10/20/0         4           1 - IS 450/200/10/20/0         4           1 - IS 450/200/10/20/0         6           13 - Cricle 24         4           2 - IS 400/200/10/20/0         8           9 - IS 450/200/10/20/0         8           13 - Cricle 24         8           13 - Storle 24         8           6 - IS 250/250/10/15/0         2           6 - IS 250/250/10/15/0         2           10 - IS 200/200/8/15/0         3           10 - IS 200/200/8/15/0         1           11 - IS 200/200/8/15/0         1           12 - IS 400/200/10/18/0         1           6 - IS 250/250/10/15/0         1           10 - IS 200/200/8/15/0         1           6 - IS 250/250/10/15/0         1           6 - IS 250/250/10/15/0         1           6 - IS 250/250/10/15/0         1 | Description         Members         [m]           15 - IS 250/250/10/15/0         4         3.00           12 - TO 8/08/05/5/5/5         25         5.00           1 - IS 450/200/10/20/0         4         3.00           1 - IS 450/200/10/20/0         6         6.00           1 - IS 450/200/10/20/0         6         6.00           1 - IS 450/200/10/20/0         8         3.01           1 - Grebal         4         7.81           2 - IS 400/200/10/20/0         8         6.25           1 - Grebal         8         3.01           7 - IS 250/250/10/15/0         8         6.25           13 - Grebal         8         8.022           2 - IS 400/200/10/20/0         8         6.25           13 - Grebal         8         3.00           10 - IS 250/250/10/15/0         2         3.55           6 - IS 250/250/10/15/0         3         3.00           10 - IS 200/200/8/15/0         3         3.00           10 - IS 200/200/8/15/0         1         6.27           6 - IS 250/250/10/15/0         1         6.27           6 - IS 250/250/10/15/0         1         4.09           10 - IS 200/200/8/15/0         1         4.09 | Description         Members         [m]         [m]           15 - IS 250/250/10/15/0         4         3.00         12.00           12 - TO 80/80/55/5/5         25         5.00         125.00           1 - IS 450/200/10/20/0         4         3.00         12.00           1 - IS 450/200/10/20/0         6         6.00         36.00           1 - IS 450/200/10/20/0         6         6.00         36.00           1 - Screle 24         4         7.81         31.24           2 - IS 400/200/10/20/0         8         6.27         25.10           9 - IS 450/200/10/20/0         8         6.25         50.00           13 - Crele 24         8         8.02         641.8           2 - IS 400/200/10/20/0         8         6.25         50.00           13 - Crele 24         8         3.02         26.10           6 - IS 250/250/10/15/0         2         3.55         7.09           6 - IS 250/250/10/15/0         2         3.55         7.09           10 - IS 200/200/3/15/0         2         3.300         9.00           10 - IS 200/200/3/15/0         3         3.00         9.00           10 - IS 200/200/3/15/0         1         4.09         4.09 | Description         Members         [m]         [m]         [m²]           15 - IS 250/250/10/75/0         4         3.00         12.00         17.76           12 - TO 80/800/575/5         25         5.00         125.00         40.00           1 - IS 450/200/10/20/0         4         3.00         12.00         20.16           1 - IS 450/200/10/20/0         6         6.00         36.00         60.48           1 - Greta 24         4         7.81         31.24         2.36           2 - IS 400/200/10/20/0         4         6.27         25.10         37.14           9 - IS 450/200/10/20/0         8         6.25         50.00         84.00           13 - Crela 24         8         8.02         64.18         4.84           2 - IS 400/200/10/20/0         8         6.25         50.00         84.00           13 - Crela 24         8         8.02         64.18         4.84           2 - IS 400/200/10/20/0         8         3.26         26.10         41.24           6 - IS 250/250/10/15/0         2         3.35         7.09         10.50           6 - IS 250/250/10/15/0         3         3.00         9.00         13.32           10 - IS 200/200/8/15 | Description         Members         [m]         [m]         [m²]         [m³]           15 - IS 250/250/10/15/0         4         3.00         12.00         17.07.6         0.12           12 - TO 80/800/55/5/5         25         5.00         125.00         40.00         0.19           1 - IS 450/200/10/20/0         6         6.00         36.00         60.48         0.44           1 - IS 450/200/10/20/0         6         6.00         36.00         60.48         0.41           1 - Screle 24         4         7.81         31.24         2.36         0.01           2 - IS 400/200/10/20/0         8         3.01         24.09         38.06         0.26           7 - IS 250/250/10/15/0         4         6.27         25.10         37.14         0.24           9 - IS 450/200/10/20/0         8         6.26         50.00         0.84.00         0.61           13 - Crele 24         8         8.02         64.18         4.84         0.03           2 - IS 400/200/10/20/0         8         3.26         26.10         4.124         0.28           6 - IS 250/250/10/15/0         2         3.35         7.09         10.00         0.07           6 - IS 250/250/10/15/0 | Description         Members         [m]         [m]         [m2]         [m3]         [kg/m]           15 - IS 250/250/10/15/0         4         3.00         125.00         4.00.0         125.00         4.00.0         127.00         4.00.0         125.00         4.00.0         117.7           1 - IS 450/200/10/20/0         4         3.00         125.00         20.16         0.15         94.98           1 - IS 450/200/10/20/0         6         6.00         36.00         60.44         0.44         94.98           1 - IS 450/200/10/20/0         6         6.00         36.00         60.44         0.44         94.98           1 - Screle 24         4         7.81         31.24         2.36         0.01         35.5           2 - IS 400/200/10/18/0         8         3.01         2.409         38.06         0.26         85.09           7 - IS 250/250/10/15/0         4         6.27         25.10         37.14         0.24         78.15           1 - Sco/250/10/15/0         8         0.26         2.61.0         41.24         0.03         3.55           2 - IS 400/200/11/8/0         8         3.26         2.61.0         41.24         0.05         57.78           1 - S 250 | Description         Members         [m]         [m] |

Figure 4.10: Window 4.1 Parts List by Member

By default, this list contains only the designed members. If you need a parts list for all members of the model, select the corresponding option in the *Details* dialog box, tab *Other* (see Figure 3.4, page 31).

### Part No.

The program automatically assigns item numbers to similar members.

## **Cross-Section Description**

This column lists the cross-section numbers and descriptions.

## **Number of Members**

This column shows how many similar members are used for each part.

### Length

This column displays the respective length of an individual member.

### **Total Length**

This column shows the product determined from the two previous columns.

### **Surface Area**



Details..

For each part, the program indicates the surface area related to the total length. The surface area is determined from the *Surface Area* of the cross-sections that can be seen in windows 1.3 and 2.1 through 2.5 in the cross-section information (see Figure 2.10, page 15).



#### Volume

The volume of a part is determined from the cross-sectional area and the total length.

#### **Unit Weight**

The *Unit Weight* of the cross-section is relative to the length of one meter. For tapered cross-sections, the program averages both cross-section masses.

#### Weight

The values of this column are determined from the respective product of the entries in column C and G.

## **Total Weight**

The final column indicates the total mass of each part.

### Sum

At the bottom of the list, you find a sum of the values in the columns B, D, E, F, and I. The last data field of the column *Total Weight* gives information about the total amount of steel required.

## 4.10 Parts List by Set of Members

|      | A              | B       | C      | D            | E                 | F                 | G           | H          | 1            |
|------|----------------|---------|--------|--------------|-------------------|-------------------|-------------|------------|--------------|
| Part | Set of Members | Number  | Length | Total Length | Surface Area      | Volume            | Unit Weight | Weight     | Total Weight |
| No.  | Description    | of Sets | [m]    | [m]          | [m <sup>2</sup> ] | [m <sup>3</sup> ] | [kg/m]      | [kg]       | [t]          |
| 1    |                | 2       | 37.10  |              |                   | 0.83              |             | 3275.30    | 6.55         |
| Sum  |                | 2       | 57.10  | 74.19        |                   | 0.83              | 00.23       | 3273.30    | 6.55         |
|      |                | -       |        | 71.10        | 110.02            | 0.00              |             |            | 0.00         |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             |            |              |
|      |                |         |        |              |                   |                   |             | <b>E 3</b> | ] 🐧 🧕        |

Figure 4.11: Window 4.2 Parts List by Set of Members

The last results window is displayed if you have selected at least one set of members for design. The window summarizes an entire structural group (for example a horizontal beam) in a parts list.

Details on the various columns can be found in the previous chapter. If there are different cross-sections in a set of members, the program averages the surface area, the volume, and the cross-section weight.



# 5. **Results Evaluation**

You can evaluate the design results in different ways. The buttons below the first window part can help you to evaluate the results.

|                                                                                                    | A                               | B            | С           | D  |                   |                                                                         |                   |                | E                    |          |           |             |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------|--------------|-------------|----|-------------------|-------------------------------------------------------------------------|-------------------|----------------|----------------------|----------|-----------|-------------|--|--|
| Member                                                                                             | Location                        | Load         | Design      |    |                   |                                                                         |                   |                |                      |          |           |             |  |  |
| No.                                                                                                | x [m]                           | Case         | Ratio       |    |                   |                                                                         |                   | Design Ac      | cording to Formula   |          |           |             |  |  |
| 1                                                                                                  | Cross-section                   | n No. 15 - I | S 250/250/1 |    |                   |                                                                         |                   |                |                      |          |           |             |  |  |
|                                                                                                    | 2.100                           | LC4          |             |    | 100) Negligible   |                                                                         |                   |                |                      |          |           |             |  |  |
|                                                                                                    | 0.000                           | CO2          |             |    | 102) Cross-sect   |                                                                         |                   |                |                      |          |           |             |  |  |
|                                                                                                    | 1.200                           | LC5          |             |    | 106) Cross-sect   |                                                                         |                   |                |                      |          |           |             |  |  |
|                                                                                                    | 1.500                           | CO3          |             |    | 115) Cross-sect   |                                                                         |                   |                |                      |          |           |             |  |  |
| 0.000 LC3 0.00 ≤ 1 126) Cross-section check - Shear buckling acc. to 3.3.3 - Shear force in z-axis |                                 |              |             |    |                   |                                                                         |                   |                |                      |          |           |             |  |  |
|                                                                                                    | 0.000                           | LC3          |             |    |                   | ross-section check - Bending about y-axis and shear force acc. to 3.3.4 |                   |                |                      |          |           |             |  |  |
|                                                                                                    | 0.000                           | CO1          |             |    |                   |                                                                         |                   |                | and shear force acc. |          |           |             |  |  |
|                                                                                                    | 0.750                           | CO9          |             |    |                   |                                                                         |                   |                | and shear force acc. | to 3.3.4 | 4 and 3.4 | .3.1        |  |  |
|                                                                                                    | 0.000                           | CO2          | 0.01        | ≤1 | 302) Stability an | alysis - Flexural b                                                     | ouckling about    | y-axis acc. to | 3.2.2                |          |           |             |  |  |
|                                                                                                    |                                 | Max:         | 0.83        | ≤1 | ۲                 |                                                                         |                   |                | 9                    | -        | F         | 🏹 😂 🖪 🐧     |  |  |
| E Cross-                                                                                           | n Internal Ford<br>Section Type |              |             |    |                   |                                                                         |                   |                |                      |          |           |             |  |  |
| Design                                                                                             |                                 |              |             |    |                   |                                                                         |                   |                |                      | - 11     |           | 250.0       |  |  |
|                                                                                                    | I Force                         |              |             |    |                   | P*                                                                      | -17.198           |                |                      | - 11     | L +       |             |  |  |
|                                                                                                    | iding Moment                    |              |             |    |                   | Muoy                                                                    | 2.123             |                |                      | - =      |           | 0.0         |  |  |
|                                                                                                    | ar Force                        |              |             |    |                   | V*z                                                                     | 1.523             |                |                      | -11      |           | 0.0         |  |  |
|                                                                                                    | b Depth<br>h Thickness          |              |             |    |                   | h                                                                       |                   |                | 3.3.3                | -111     | 9         |             |  |  |
|                                                                                                    | ar Area                         |              |             |    |                   | t <sub>w</sub>                                                          | 10.0              |                |                      | -111     | 250.0     | •••••••     |  |  |
|                                                                                                    | ar Area<br>ninal Shear B        |              |             |    |                   | Az<br>VN z                                                              | 2200.0<br>363.000 |                | 333                  | - 11     |           | 10.0        |  |  |
|                                                                                                    | ion Shear R                     |              |             |    |                   | V N,z<br>V R z                                                          | 363.000           |                | 3.3.3<br>Eq. (3.38)  | - 11     |           | <u></u>     |  |  |
|                                                                                                    | agn Snear Re<br>ar Force        | sistance     |             |    |                   | VR,z<br>V*v                                                             | 0.002             |                | EQ. (3.38)           | _        |           | annungunnun |  |  |
| 0.10                                                                                               | ar Force<br>ar Area             |              |             |    |                   | Av                                                                      | 7500.0            |                |                      | -        |           | 1           |  |  |
|                                                                                                    | ninal Shear R                   | opietopop    |             |    |                   | V <sub>N,V</sub>                                                        | 1237.500          |                | 3.3.3                | -        |           | z           |  |  |
|                                                                                                    | ion Shear Re                    |              |             |    |                   | VN.y<br>VR.y                                                            | 1237.500          |                | Ea. (3.38)           | -11      |           |             |  |  |
|                                                                                                    | d Strenath                      | SISCONCE     |             |    |                   | F <sub>V</sub>                                                          | 250.000           |                | 1.3.1                | - 1      |           |             |  |  |
|                                                                                                    | tic Section N                   | lodulus      |             |    |                   | Zy                                                                      | 900487.0          |                | 1.3.1                | -        |           |             |  |  |
|                                                                                                    | tic Section N                   |              |             |    |                   | Sv<br>Sv                                                                | 1002250.0         |                |                      | -        |           |             |  |  |
|                                                                                                    |                                 |              |             |    |                   |                                                                         |                   |                |                      | - 1      |           |             |  |  |
| - Plas                                                                                             | ndemess I imi                   |              |             |    |                   | λs,1,My                                                                 | 69.296            |                |                      |          |           |             |  |  |

Figure 5.1: Buttons for results evaluation

The buttons have the following functions:

| Button      | Description                           | Function                                                                                |
|-------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| <b>Y</b>    | Ultimate Limit State Designs          | Shows or hides the results of the ultimate limit state design                           |
| 2           | Serviceability Limit State<br>Designs | Shows or hides the results of the serviceability limit state design                     |
|             | Show Color Bars                       | Shows or hides the colored relation scales in the results windows                       |
| <b>7</b> ,1 | Show Rows with Ratio > 1              | Displays only the rows where the ratio is greater than 1, and thus the design is failed |
|             | Result Diagrams                       | Opens the window <i>Result Diagram on Member</i><br>→ chapter 5.2, page 46              |
|             | Excel Export                          | Exports the table to MS Excel / OpenOffice<br>→ chapter 7.4.3, page 57                  |
| <b>A</b>    | Member Selection                      | Allows you to graphically select a member to display its results in the table           |
| ۲           | View Mode                             | Jumps to the RSTAB work window to change the view                                       |

Table 5.1: Buttons in results windows 2.1 to 2.5



## 5.1 Results in the RSTAB Model

To evaluate the design results, you can also use the RSTAB work window.

## **RSTAB background graphic and view mode**

The RSTAB work window in the background is useful when you want to find the position of a particular member in the model: The member selected in the STEEL NTC-DF results window is highlighted in the selection color in the background graphic. Furthermore, an arrow indicates the member's x-location that is displayed in the selected table row.

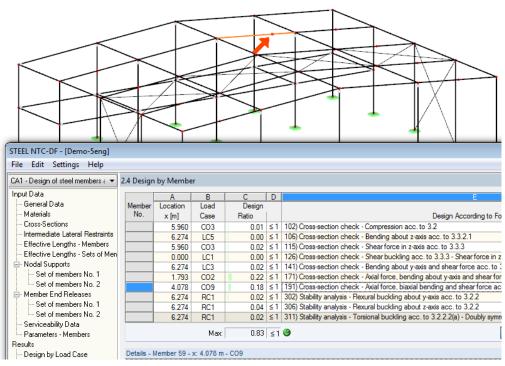



Figure 5.2: Indication of the member and the current Location x in the RSTAB model

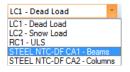
If you cannot improve the display by moving the STEEL NTC-DF module window, click [Jump to Graphic] to activate the *View Mode*: The program hides the module window so that you can modify the display in the RSTAB user interface. The view mode provides the functions of the *View* menu, for example zooming, moving, or rotating the display. The pointer remains visible.

Click [Back] to return to the add-on module STEEL NTC-DF.

## **RSTAB work window**

You can also graphically check the design ratios in the RSTAB model. Click [Graphics] to exit the design module. In the RSTAB work window, the design ratios are now displayed like the internal forces of a load case.

In the *Results* navigator, you can specify which design ratios of the service and ultimate limit state or fire resistance design you want to display graphically.


To turn the display of design results on or off, use the [Show Results] button known from the display of internal forces in RSTAB. To display the result values, click the [Show Values] toolbar button to the right.

The design cases can be set by means of the list in the RSTAB menu bar.

The RSTAB tables are of no relevance for the evaluation of design results









To adjust the graphical representation of the results, you can select  $Results \rightarrow Members$  in the *Display* navigator. The display of the design ratios is *Two-Colored* by default.

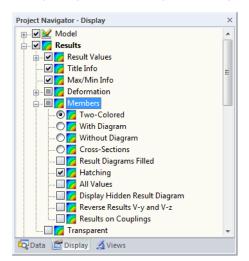



Figure 5.3: *Display* navigator: Results  $\rightarrow$  Members

When you select a multicolor representation (options *With/Without Diagram* or *Cross-Sections*), the color panel becomes available. It provides the common control functions described in detail in the RSTAB manual, chapter 3.4.6.

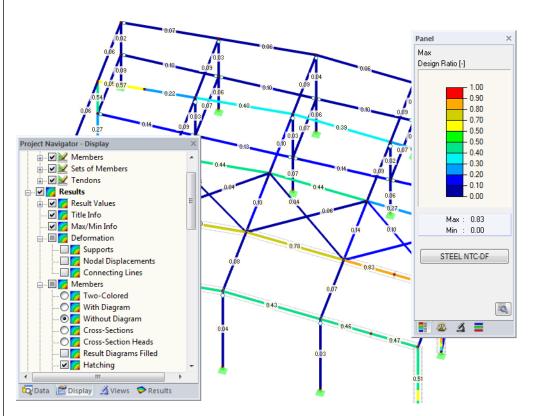



Figure 5.4: Design ratios with display option Without Diagram

The graphics of the design results can be transferred to the printout report (see chapter 6.2, page 49).

To return to the STEEL NTC-DF module, click [STEEL NTC-DF] in the panel.

STEEL NTC-DF



## 5.2 Result Diagrams

You can also graphically evaluate a member's result distributions in the result diagram.

To do this, select the member (or set of members) in the STEEL NTC-DF results window by clicking in the table row of the member. Then open the *Result Diagram on Member* dialog box by clicking the button shown on the left. The button is located below the upper results table (see Figure 5.1, page 43).

The result diagrams are also available in the RSTAB graphic. To display the diagrams, click

#### Results $\rightarrow$ Result Diagrams for Selected Members

or use the button in the RSTAB toolbar shown on the left.

A window opens, graphically showing the distribution of the maximum design values on the member or set of members.

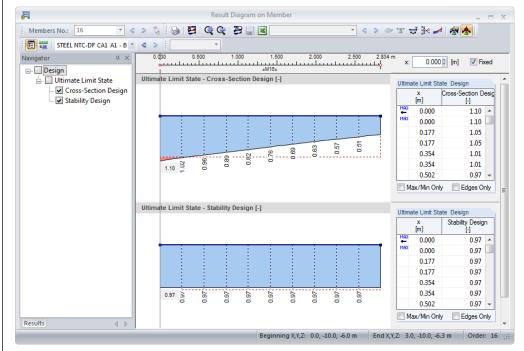
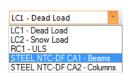




Figure 5.5: Dialog box Result Diagram on Member

Use the list in the toolbar above to choose the relevant STEEL NTC-DF design case.

The Result Diagram on Member dialog box is described in the RSTAB manual, chapter 9.5.





2

F



## 5.3 Filter for Results

The STEEL NTC-DF results windows allow you to sort the results by various criteria. In addition, you can use the filter options described in chapter 9.7 of the RSTAB manual to evaluate the design results graphically.

You can use the *Visibility* option also for STEEL NTC-DF (see RSTAB manual, chapter 9.7.1) to filter the members in order to evaluate them.

## **Filtering designs**

The design ratios can easily be used as filter criteria in the RSTAB work window which you can access by clicking [Graphics]. To apply this filter function, the panel must be displayed. If it is not shown, click

#### View $\rightarrow$ Control Panel (Color Scale, Factors, Filter)

or use the toolbar button shown on the left.

The panel is described in the RSTAB manual, chapter 3.4.6. The filter settings for the results must be defined in the first panel tab (Color spectrum). As this register is not available for the two-colored results display, you have to use the *Display* navigator and set the display options *Colored With/Without Diagram* or *Cross-Sections* first.

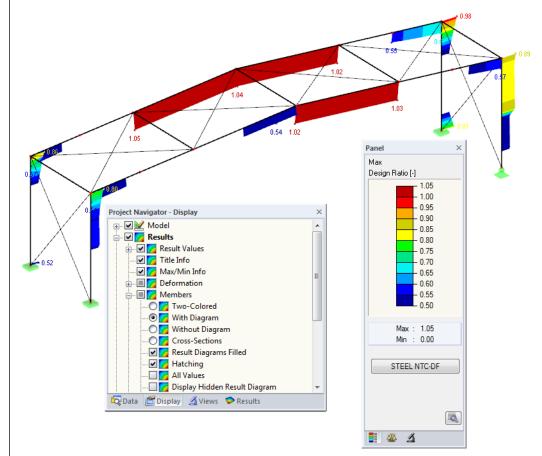



Figure 5.6: Filtering design ratios with adjusted color spectrum

As the figure above shows, the color spectrum can be set in such a way that only ratios higher than 0.50 are shown in a color range between blue and red.

If you select the *Display Hidden Result Diagram* option in the *Display* navigator (*Results*  $\rightarrow$  *Members*), you can display all design ratio diagrams that are not covered by the color spectrum. Those diagrams are represented by dotted lines.



× -





## Filtering members

1

In the *Filter* tab of the control panel, you can specify the numbers of particular members to display their results exclusively, that is, filtered. This function is described in detail in the RSTAB manual, chapter 9.7.3.

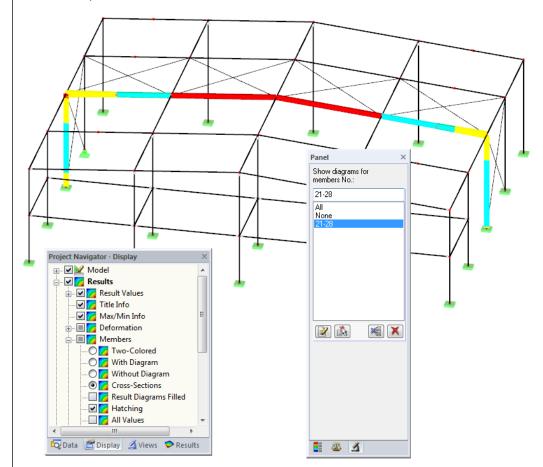



Figure 5.7: Member filter for the design ratios of a hall frame

Unlike the partial view function (*Visibilities*), the graphic displays the entire model. The figure above shows the design ratios of a hall frame. The remaining members are displayed in the model but are shown without design ratios.



# 6. Printout

## 6.1 Printout report

Similar to RSTAB, the program generates a printout report for the STEEL NTC-DF results, to which graphics and descriptions can be added. The selection in the printout report determines what data from the design module will be included in the printout.



The printout report is described in the RSTAB manual. In particular, chapter 10.1.3.5 *Selecting Data of Add-on Modules* describes how to select input and output data from add-on modules for the printout report.

For complex structural systems with many design cases, it is recommended to split the data into several printout reports, thus allowing for a clearly-arranged printout.

## 6.2 STEEL NTC-DF Graphic Printout

In RSTAB, you can add every picture that is displayed in the work window to the printout report or send it directly to a printer. In this way, you can prepare the design ratios displayed on the RSTAB model for the printout, too.



The printing of graphics is described in the RSTAB manual, chapter 10.2.

## **Designs on the RSTAB model**

To print the currently displayed graphic of the design ratios, click

#### $\textbf{File} \rightarrow \textbf{Print Graphic}$

or use the toolbar button shown on the left.

| ſ | 🗐 R | STAB         | 8.00 (6      | 4bit) - [    | Hall*]  |                   |                 |                |
|---|-----|--------------|--------------|--------------|---------|-------------------|-----------------|----------------|
|   | :4≥ | <u>F</u> ile | <u>E</u> dit | <u>V</u> iew | Insert  | <u>C</u> alculate | <u>R</u> esults | <u>T</u> ools  |
|   | : 🗋 | 2            | 33           |              | ) 🙀 🖻   |                   | 🔏 🍕             | Q 🔁            |
|   | 9   | - 2          | í 💁 🤅        | V. 🐒         | 왔 Print | Graphic           | 9   🎮 -         | <u>9×x</u>   ‡ |

Figure 6.1: Button Print Graphic in RSTAB toolbar

## **Result Diagrams**



You can also transfer the *Result Diagram on Member* to the report or print it directly by using the [Print] button.

| 肩 Result Diagram on Membe | r                  |               |
|---------------------------|--------------------|---------------|
| Members No.: 18           | - < > 🏷            | i 🚱 😕 🔍 🔍 🗃 🔜 |
| STEEL NTC-DF CA1          | ▼ < >              | Print         |
| Navigator $P \times$      | 0.000              | 0.500         |
| 🗹 Design Ratio            | <del>       </del> |               |

Figure 6.2: Button Print Graphic in the dialog box Result Diagram on Member

The Graphic Printout dialog box appears (see the following page).



| Graphic Picture                                                                      | Window To Print Graphic Size                                                                                                  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Oriectly to a printer     PR1     To a printout report:     PR1     To the Clipboard | Current only     More     Mass print     Asscreen view     Window filling     To scale 1: 20                                  |
| Graphic Picture Size and Rotation                                                    | Options                                                                                                                       |
| Use whole page height         Height:         50         [¼ of page]                 | <ul> <li>Show results for selected x-location in result<br/>diagram</li> <li>Lock graphic picture (without update)</li> </ul> |
| Rotation: 0 👘 [']                                                                    | ✓ Show printout report on [OK]                                                                                                |
| Header of Graphic Picture<br>STEEL NTC-DF - Design Ratio, CA1, Isometric             |                                                                                                                               |

Figure 6.3: Dialog box Graphic Printout, tab General

This dialog box is described in the RSTAB manual, chapter 10.2. The RSTAB manual also describes the *Options* and *Color Spectrum* tab.

You can move a graphic anywhere within the printout report by using the drag-and-drop function.

To adjust a graphic subsequently in the printout report, right-click the relevant entry in the navigator of the printout report. The *Properties* option in the context menu opens the *Graphic Printout* dialog box, offering various options for adjustment.

| Graphic Printout                         |              |                                 |                | <b>×</b> |
|------------------------------------------|--------------|---------------------------------|----------------|----------|
| General Options Color Spectrum           | Factors      |                                 |                |          |
| Script                                   | Symbols      |                                 | Frame          |          |
| Proportional                             | Proportional |                                 | © <u>N</u> one |          |
| Onstant                                  | Constant     |                                 | Framed         |          |
| Eactor:                                  | Factor: 1 🚔  |                                 | Title box      |          |
|                                          |              |                                 |                |          |
| Print Quality                            |              | Color                           |                |          |
| <u>Standard</u> (max 1000 x 1000 Pixels) | )            | © <u>G</u> rayscale             |                |          |
| Maximum (max 5000 x 5000 Pixels)         | )            | Texts and lines in <u>black</u> |                |          |
| Oser-defined                             |              | All colored                     |                |          |
| Ma <u>x</u> number of pixels:            | 1000 🚔       |                                 |                |          |
|                                          |              |                                 |                |          |
|                                          |              |                                 |                |          |
|                                          |              |                                 |                |          |
|                                          |              |                                 |                |          |
|                                          |              |                                 |                |          |
| D                                        |              |                                 | ОК             | Cancel   |

Figure 6.4: Dialog box Graphic Printout, tab Options

| Remove from Printout Repo | ort |
|---------------------------|-----|
| Start with New Page       |     |
| Selection                 |     |
| Properties                | 3   |
|                           | 2   |



# 7. General Functions

The final chapter describes useful menu functions as well as export options for the designs.

## 7.1 Design Cases

Design cases allow you to group members for the design: In this way, you can combine groups of structural components or analyze members with particular design specifications (for example changed materials, partial safety factors, optimization).

It is no problem to analyze the same member or set of members in different design cases.

To calculate a STEEL NTC-DF design case, you can also use the load case list in the RSTAB toolbar.

#### **Create New Design Case**

To create a new design case, use the STEEL NTC-DF menu and click

File ightarrow New Case.

The following dialog box appears:

| New STE | EL NTC-DF Case                              |
|---------|---------------------------------------------|
| No.     | Description                                 |
| 2       | Design of steel members according to NTC-DF |
| 1       | OK Cancel                                   |

In this dialog box, enter a *No*. (one that is still available) for the new design case. The corresponding *Description* will make the selection in the load case list easier.

Click [OK] to open the STEEL NTC-DF window 1.1 *General Data* where you can enter the design data.

### **Rename Design Case**

To change the description of a design case, use the STEEL NTC-DF menu and click

#### File $\rightarrow$ Rename Case.

The following dialog box appears:

| Rename S | TEEL NTC-DF Case               | ×         |
|----------|--------------------------------|-----------|
| No.<br>2 | Description<br>New description | •         |
| 2        |                                | OK Cancel |

Figure 7.2: Dialog box Rename STEEL NTC-DF Case

In this dialog box, you can define a different *Description* as well as a different *No*. for the design case.

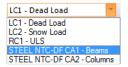



Figure 7.1: Dialog box New STEEL NTC-DF Case



## **Copy Design Case**

To copy the input data of the current design case, select from the STEEL NTC-DF menu

```
File \rightarrow Copy Case.
```

The following dialog box appears:

|                | EL NTC-DF Case                               |     |
|----------------|----------------------------------------------|-----|
| Copy fro       | m Case                                       |     |
| CA1 - D        | esign of steel members according to NTC-DF 🔹 |     |
| New Ca<br>No.: | se<br>Description:                           |     |
| 3              | Second order theory design                   |     |
|                |                                              |     |
|                | OK Can                                       | cel |

Figure 7.3: Dialog box Copy STEEL NTC-DF Case

Define the No. and, if necessary, a Description for the new case.

## **Delete Design Case**

To delete design cases, use the STEEL NTC-DF menu and click

```
\textbf{File} \rightarrow \textbf{Delete Case}.
```

The following dialog box appears:

| Availal | ble Cases                                 |
|---------|-------------------------------------------|
| No.     | Description                               |
| 1       | Design of steel members according to NTC- |
| 2       | New description                           |
|         | Second order theory design                |
|         |                                           |
|         |                                           |
|         |                                           |

Figure 7.4: Dialog box Delete Cases

The design case can be selected in the list *Available Cases*. To delete the selected case, click [OK].





## 7.2 Cross-Section Optimization

The design module offers you the option to optimize overloaded or little utilized cross-sections. To do this, select in column D or E of the relevant cross-sections in the 1.3 *Cross-Sections* window whether to determine the cross-section *From the current row* or the user-defined *Favorites* (see Figure 2.8, page 13). You can also start the cross-section optimization in the results windows by using the context menu.

|         | A        | B                               | С          | D                    | E     | F                                                                                                |
|---------|----------|---------------------------------|------------|----------------------|-------|--------------------------------------------------------------------------------------------------|
| Section | Member   | Location                        | Load       | Design               |       |                                                                                                  |
| No.     | No.      | x [m]                           | Case       | Ratio                |       | Design According to Formula                                                                      |
| 1       | IS 450/2 | 00/10/20/0                      |            |                      |       |                                                                                                  |
|         | P        | 1 000                           | LCE        | 0.00                 | <1    | 100) Megligible internal forces                                                                  |
|         |          | Go to Cross-Section Doubleclick |            |                      | uble  | click oss-section check - Tension acc. to 3.1                                                    |
|         | 9        | Info About Cross-Section        |            |                      |       | oss-section check - Compression acc. to 3.2                                                      |
|         |          |                                 |            |                      |       | oss-section check - Bending about y-axis acc. to 3.3.2.1                                         |
|         | 1        | Optimize C                      | ross-Secti | on                   |       | oss-section check - Bending about z-axis acc. to 3.3.2.1                                         |
|         | 9        | Cross-Secti                     | ion Optimi | zation <u>P</u> arar | neter | rs oss-section check - Shear force in z-axis acc. to 3.3.3                                       |
|         | 5        | 0.000                           | LÚT -      | 0.00                 | 21    | rzuy cross-section check - Shear buckling acc. to 3.3.3 - Shear force in z-axis                  |
|         | 93       | 3.000                           | CO5        | 0.05                 | ≤1    | 141) Cross-section check - Bending about y-axis and shear force acc. to 3.3.4                    |
|         | 93       | 3.000                           | CO1        | 0.56                 | ≤1    | 171) Cross-section check - Axial force, bending about y-axis and shear force acc, to 3.3.4 and 3 |

Figure 7.5: Context menu for cross-section optimization

During the optimization process, the module determines the cross-section that fulfills the analysis requirements in the most optimal way, that is, comes as close as possible to the maximum allowable design ratio specified in the *Details* dialog box (see Figure 3.4, page 31). The required cross-section properties are determined with the internal forces from RSTAB. If another crosssection proves to be more favorable, this cross-section is used for the design. Then, the graphic in window 1.3 shows two cross-sections: the original cross-section from RSTAB and the optimized one (see Figure 7.7).

For a parameterized cross-section, the following dialog box appears when you select 'Yes' from the drop-down list.

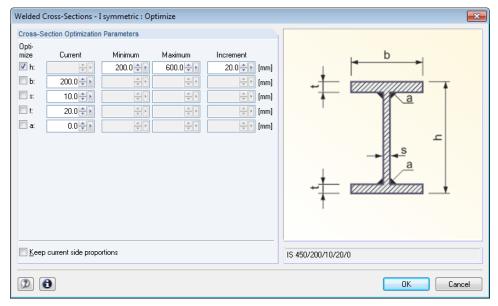



Figure 7.6: Dialog box Welded Cross-Sections - I symmetric : Optimize

By selecting the check boxes in the *Optimize* column, you decide which parameter(s) you want to modify. This enables the *Minimum* and *Maximum* columns, where you can specify the upper and lower limits of the parameter. The *Increment* column determines the interval in which the size of the parameter varies during the optimization process.

## **7** General Functions



If you want to *Keep current side proportions*, select the corresponding check box. In addition, you have to select at least two parameters for optimization.

Cross-sections based on combined rolled cross-sections cannot be optimized.

\_\_\_\_\_

Please note that the internal forces are not automatically recalculated with the changed crosssections during the optimization: It is up to you to decide which cross-sections should be transferred to RSTAB for recalculation. As a result of optimized cross-sections, internal forces may vary significantly because of the changed stiffnesses in the structural system. Therefore, it is recommended to recalculate the internal forces of the modified cross-section data after the first optimization, and then to optimize the cross-sections once again.

You can export the modified cross-sections to RSTAB: Go to the 1.3 *Cross-Sections* window, and then click

#### $\textbf{Edit} \rightarrow \textbf{Export All Cross-Sections to RSTAB}.$

Alternatively, you can use the context menu in window 1.3 to export optimized cross-sections to RSTAB.

|                                                                                                                                                 | A                                                                                                                                                                                               | В                                                                                              | С                          | D                                                                   |                                                                                                               | E                                                                                                                                                              | F        | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 - IS 400/200/10/15/0                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                 | Material                                                                                                                                                                                        | Cross-Section                                                                                  | Cross-Section Type         | Max. Desi                                                           | ign                                                                                                           | Opti-                                                                                                                                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STEEL NTC-DF                                                                                                                                                                                                                                                 |
| No.                                                                                                                                             | No.                                                                                                                                                                                             | Description                                                                                    | for Classification         | Ratio                                                               |                                                                                                               | mize                                                                                                                                                           | Remark   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |
| 1                                                                                                                                               | 1                                                                                                                                                                                               | T IS 400/200/10/20/0                                                                           | I-section welded IS        |                                                                     | ).90                                                                                                          | No                                                                                                                                                             | 1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| 2                                                                                                                                               | 1                                                                                                                                                                                               | IS 400/200/10/15/0                                                                             | Leasting molded IC         |                                                                     | 0.00                                                                                                          | M-                                                                                                                                                             | 1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | У                                                                                                                                                                                                                                                            |
| 6                                                                                                                                               | 1                                                                                                                                                                                               | IS 250/250/10/15/0                                                                             | Info About Cro             | s-Section                                                           |                                                                                                               |                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| 7                                                                                                                                               | 1                                                                                                                                                                                               | IS 250/250/10/15/0                                                                             | Cross-Section L            | ibrary                                                              |                                                                                                               |                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| 9                                                                                                                                               | 2                                                                                                                                                                                               | IS 450/200/10/20/0                                                                             | E PARTA DE LA              |                                                                     |                                                                                                               |                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                            |
| 10                                                                                                                                              | 1                                                                                                                                                                                               | IS 200/200/8/15/0                                                                              | E <u>d</u> it List 'Desigr | of Membe                                                            | rs' in Table                                                                                                  | 1.1 •                                                                                                                                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| 12                                                                                                                                              | 1                                                                                                                                                                                               | TO 60/60/5/5/5/5                                                                               | Optimize Cross             | -Section                                                            |                                                                                                               |                                                                                                                                                                | 1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 - IS 400/200/10/18/0                                                                                                                                                                                                                                       |
| 13                                                                                                                                              | 1                                                                                                                                                                                               | Circle 24                                                                                      | Cross-Section (            |                                                                     | . D                                                                                                           | _                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RSTAB                                                                                                                                                                                                                                                        |
| 15                                                                                                                                              | 1                                                                                                                                                                                               | IS 250/250/10/15/0                                                                             | Cross-section (            | ptimization                                                         | n <u>P</u> aramete                                                                                            | rs                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| 16                                                                                                                                              | 1                                                                                                                                                                                               | T IS 360/150/8/12/0                                                                            | Export Cross-Se            | ction to RS1                                                        | ТАВ                                                                                                           | _                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •v                                                                                                                                                                                                                                                           |
|                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                | Export <u>A</u> ll Cross   | -Sections to                                                        | RSTAB                                                                                                         |                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                | Import Cross-S             | ection from                                                         | RSTAB                                                                                                         |                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                 | 1) The cross-section in R                                                                      | Import All Cros            | s-Sections f                                                        | rom RSTA                                                                                                      | 2                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                 | - NITO DE                                                                                      | in poler in cros           | , according to                                                      |                                                                                                               | -                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                |                            |                                                                     |                                                                                                               |                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                 | NTC-DF.                                                                                        |                            |                                                                     |                                                                                                               |                                                                                                                                                                | 🛃 😼      | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ð 📑 à                                                                                                                                                                                                                                                        |
|                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                |                            |                                                                     |                                                                                                               |                                                                                                                                                                | 3        | <b>\$</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                 | ues - IS 400/200/10/15/0                                                                       |                            |                                                                     |                                                                                                               |                                                                                                                                                                | <b>R</b> | <b>\</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cross-section No. 2 used in                                                                                                                                                                                                                                  |
| Cross                                                                                                                                           | Section Ty                                                                                                                                                                                      | ues - IS 400/200/10/15/0                                                                       |                            |                                                                     | -section wel                                                                                                  |                                                                                                                                                                |          | <ul> <li>•</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                              |
| Cross-<br>Sectio                                                                                                                                | Section Ty<br>in Height                                                                                                                                                                         | ues - IS 400/200/10/15/0                                                                       |                            | h                                                                   | 400.0                                                                                                         | mm                                                                                                                                                             |          | <ul> <li>Image: A state of the state of</li></ul> | Cross-section No. 2 used in<br>Members No.:                                                                                                                                                                                                                  |
| Cross-<br>Section<br>Section                                                                                                                    | Section Ty<br>on Height<br>on Width                                                                                                                                                             | ues - IS 400/200/10/15/0                                                                       |                            | h<br>b                                                              | 400.0<br>200.0                                                                                                | mm<br>mm                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:                                                                                                                                                                                                                  |
| Cross-<br>Section<br>Section<br>Web                                                                                                             | Section Ty<br>in Height<br>in Width<br>Thickness                                                                                                                                                | es - IS 400/200/10/15/0                                                                        |                            | h<br>b<br>t <sub>w</sub>                                            | 400.0<br>200.0<br>10.0                                                                                        | mm<br>mm<br>mm                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:<br>15-18,24-27,40,42,45,46,59,61,64,65,70                                                                                                                                                                        |
| Cross-<br>Section<br>Section<br>Web<br>Flange                                                                                                   | Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness                                                                                                                                 | es - IS 400/200/10/15/0                                                                        |                            | h<br>b<br>tw<br>tf                                                  | 400.0<br>200.0<br>10.0<br>15.0                                                                                | mm<br>mm<br>mm                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:<br>15-18,24-27,40,42,45,46,59,61,64,65,74<br>Sets of members No.:                                                                                                                                                |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross                                                                                           | Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area                                                                                                                         | es - IS 400/200/10/15/0                                                                        |                            | h<br>b<br>t <sub>w</sub><br>tf<br>At                                | 400.0<br>200.0<br>10.0<br>15.0<br>9700.0                                                                      | mm<br>mm<br>mm<br>mm <sup>2</sup>                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:<br>15-18,24-27,40,42,45,46,59,61,64,65,70                                                                                                                                                                        |
| Cross-<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear                                                                                 | Section Ty<br>in Height<br>in Width<br>Thickness<br>a Thickness<br>Area<br>Area                                                                                                                 | es - IS 400/200/10/15/0                                                                        |                            | h b tw ff At Ay                                                     | 400.0<br>200.0<br>10.0<br>15.0<br>9700.0<br>6000.0                                                            | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup>                                                                                                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:<br>15-18,24-27,40,42,45,46,59,61,64,65,70<br>Sets of members No.:                                                                                                                                                |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear                                                                         | Section Ty<br>on Height<br>on Width<br>Thickness<br>e Thickness<br>Area<br>Area<br>Area                                                                                                         | es - IS 400/200/10/15/0                                                                        |                            | h<br>b<br>tw<br>tf<br>At<br>Ay<br>Az                                | 400.0<br>200.0<br>10.0<br>15.0<br>9700.0<br>6000.0<br>4000.0                                                  | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup>                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:<br>15-18.24-27.40.42.45.46.59.61.64.65.7<br>Sets of members No.:                                                                                                                                                 |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear                                                       | Section Ty<br>in Height<br>in Width<br>Thickness<br>e Thickness<br>Area<br>Area<br>Area<br>and Moment                                                                                           | Les - 15 400/200/10/15/0<br>ppe<br>is<br>of Area                                               |                            | h<br>b<br>tw<br>tf<br>At<br>Az<br>Iy<br>2                           | 400.0<br>200.0<br>10.0<br>15.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0                                    | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup>                                                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in           Members No.:           15-18,24-27,40,42,45,46,59,61,64,65,7           Sets of members No.:           1,2           Σ Lengths:         Σ Masses:                                                                       |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear<br>Secor<br>Secor                                     | Section Ty<br>in Height<br>in Width<br>Thickness<br>e Thickness<br>e Thickness<br>Area<br>Area<br>Area<br>ad Moment<br>ad Moment                                                                | Les - IS 400/200/10/15/0<br>Appe<br>is<br>of Area<br>of Area                                   |                            | h b b tw tf At Ay Az Iy 2 Iz 2                                      | 400.0<br>200.0<br>10.0<br>15.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0<br>20030800.0                      | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup><br>mm <sup>4</sup>                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in<br>Members No.:<br>15-18.24-27.40.42,45,46,59,61,64,65,7<br>Sets of members No.:<br>1,2                                                                                                                                          |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear<br>Shear | Section Ty<br>on Height<br>on Width<br>Thickness<br>a Thickness<br>a Thickness<br>Area<br>Area<br>Area<br>a Area<br>ad Moment<br>and Moment<br>and Consta                                       | es - IS 400/200/10/15/0<br>ppe<br>is<br>of Area<br>of Area<br>nt                               |                            | h b tw tf At Ay Az Iz Z J                                           | 400.0<br>200.0<br>10.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0<br>20030800.0<br>557072.0                  | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm <sup>4</sup>                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in           Members No.:           15-18.24-27.40.42.45.46.59.61.64.65.7           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           100.38 [m]         7.644 [t]                                |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear<br>Secor<br>Torsion<br>Radiu                          | Section Ty<br>in Height<br>in Width<br>Thickness<br>a Thickness<br>a Thickness<br>Area<br>Area<br>Area<br>d Moment<br>nal Consta<br>s of Gyratii                                                | Les - IS 400/200/10/15/0<br>ppe<br>is<br>of Area<br>of Area<br>of Area<br>int<br>on            |                            | h b tw tf At Ay Az Iz Z J Fy C Az C C C C C C C C C C C C C C C C C | 400.0<br>200.0<br>10.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0<br>20030800.0<br>557072.0<br>165.2         | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in           Members No.:           15-18.24-27.40.42.45.46.59.61.64.65.7           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           100.38 (m)         7.644 [t]           Material:         12 |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Shear<br>Secor<br>Torsion<br>Radiu<br>Radiu                 | Section Ty<br>in Height<br>in Width<br>Thickness<br>a Thickness<br>a Thickness<br>Area<br>Area<br>Area<br>Area<br>Moment<br>nal Consta<br>s of Gyratii<br>s of Gyratii                          | es - IS 400/200/10/15/0<br>ype<br>is<br>of Area<br>of Area<br>int<br>on<br>on                  |                            | h b tw tf At Ay Az Iz Z J ry rz V                                   | 400.0<br>200.0<br>10.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0<br>20030800.0<br>557072.0<br>165.2<br>45.4 | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in           Members No.:           15-18.24-27.40.42.45.46.59.61.64.65.7           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           100.38 [m]         7.644 [t]                                |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Secor<br>Torsion<br>Radiu<br>Radiu<br>Elastion              | Section Ty<br>in Height<br>in Width<br>Thickness<br>a Thickness<br>a Thickness<br>Area<br>Area<br>Area<br>Area<br>Area<br>d Moment<br>nal Consta<br>s of Gyratii<br>s of Gyratii<br>c Section I | es - IS 400/200/10/15/0<br>ppe<br>ss<br>of Area<br>of Area<br>of Area<br>nt<br>on<br>Modulus   |                            | h b tw tf At Ay Az Iz Zy Zy Zy                                      | 400.0<br>200.0<br>10.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0<br>20030800.0<br>557072.0<br>165.2<br>45.4 | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm<br>mm<br>mm<br>mm <sup>3</sup>                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in           Members No.:           15-18.24-27.40.42.45.46.59.61.64.65.7           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           100.38 (m)         7.644 (t)           Material:         12 |
| Cross<br>Section<br>Section<br>Web<br>Flange<br>Gross<br>Shear<br>Shear<br>Shear<br>Secor<br>Torsion<br>Radiu<br>Radiu<br>Elastion<br>Elastion  | Section Ty<br>in Height<br>in Width<br>Thickness<br>a Thickness<br>a Thickness<br>Area<br>Area<br>Area<br>Area<br>Moment<br>nal Consta<br>s of Gyratii<br>s of Gyratii                          | Les - IS 400/200/10/15/0<br>ppe<br>is<br>of Area<br>of Area<br>int<br>on<br>Aodulus<br>Modulus |                            | h b b b b b b b b b b b b b b b b b b b                             | 400.0<br>200.0<br>10.0<br>9700.0<br>6000.0<br>4000.0<br>2.64661E+0<br>20030800.0<br>557072.0<br>165.2<br>45.4 | mm<br>mm<br>mm<br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>2</sup><br>mm <sup>4</sup><br>mm <sup>4</sup><br>mm<br>mm<br>mm<br>mm<br>mm<br>mm <sup>3</sup> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-section No. 2 used in           Members No.:           15-18.24-27.40.42.45.46.59.61.64.65.7           Sets of members No.:           1.2           Σ Lengths:         Σ Masses:           100.38 (m)         7.644 [t]           Material:         12 |

Figure 7.7: Context menu in window 1.3 Cross-Sections

Before the modified cross-sections are transferred to RSTAB, a security query appears as to whether the results of RSTAB should be deleted.

| STEEL NTC-DF<br>Information No. 26852                         |
|---------------------------------------------------------------|
| Do you want to transfer the changed cross-sections to RSTAB?  |
| If so, the results of RSTAB and STEEL NTC-DF will be deleted. |
| Yes No                                                        |

Figure 7.8: Query before transfer of modified cross-sections to RSTAB

Calculation

By confirming the query and then starting the [Calculation] in the STEEL NTC-DF module, the RSTAB internal forces as well as the designs will be determined in one single calculation run.

## **7** General Functions



If the modified cross-sections have not been exported to RSTAB yet, you can reimport the original cross-sections in the design module by using the options shown in Figure 7.7. Please note that this option is only available in window 1.3 *Cross-sections*.

5

If you optimize a tapered member, the program modifies the member start and end. Then it linearly interpolates the second moments of area for the intermediate locations. As these moments are considered with the fourth power, the designs may be inaccurate if the depths of the start and end cross-section differ considerably. In such a case, it is recommended to divide the taper into several members, thus modeling the taper layout manually.

## 7.3 Units and Decimal Places

Units and decimal places for RSTAB and the add-on modules are managed in one dialog box. To define the units in STEEL NTC-DF, use the menu and click

#### Settings $\rightarrow$ Units and Decimal Places.

The program opens the dialog box that is familiar from RSTAB. STEEL NTC-DF is preset in the *Program / Module* list.

| Units and Decimal Places |                |                  |                    |         | <b>X</b>    |
|--------------------------|----------------|------------------|--------------------|---------|-------------|
| Program / Module         | STEEL NTC-DF   |                  |                    |         |             |
| RSTAB                    | Output Data    |                  | Parts List         |         |             |
| STEEL                    | Output Data    |                  | Parts List         | 11.0    |             |
| STEEL EC3                |                | Unit Dec. places |                    | Unit    | Dec. places |
| STEEL AISC               | Stresses:      | MPa 🔻 3 🜩        | Lengths:           | m 👻     | 2 🌲         |
| STEEL IS                 | Design ratios: | 2 🖨              | Total lengths:     | m 🔻     | 2 🌲         |
| STEEL SIA                | -              |                  | -                  |         |             |
| STEEL BS                 | Dimensionless: | - 👻 3 🚔          | Surface areas:     | m^2 👻   | 2 🌲         |
| - STEEL GB               |                |                  | Volumes:           | [m^3 ▼] | 2 🌲         |
| STEEL CS<br>STEEL AS     |                |                  |                    |         |             |
| STEEL NTC-DF             |                |                  | Weight per length: | kg/m 🔻  | 2 ≑         |
| ALUMINIUM                |                |                  | Weight:            | kg 🔻    | 2 🖨         |
| KAPPA                    |                |                  | -                  |         |             |
| LTB                      |                |                  | Total weight:      | t 👻     | 3 🜩         |
| FE-LTB                   |                |                  |                    |         |             |
| EL-PL                    |                |                  |                    |         |             |
| С-ТО-Т                   |                |                  |                    |         |             |
| PLATE-BUCKLING           |                |                  |                    |         |             |
| CONCRETE                 |                |                  |                    |         |             |
| CONCRETE Columns         |                |                  |                    |         |             |
| ···· TIMBER Pro          |                |                  |                    |         |             |
| TIMBER                   |                |                  |                    |         |             |
| ···· DYNAM               |                |                  |                    |         |             |
| JOINTS                   |                |                  |                    |         |             |
| ···· END-PLATE           |                |                  |                    |         |             |
| CONNECT                  |                |                  |                    |         |             |
| FRAME-JOINT Pro          |                |                  |                    |         |             |
| DSTV                     |                |                  |                    |         |             |
| DOWEL                    |                |                  |                    |         |             |
|                          | 2              |                  |                    |         |             |
|                          |                |                  |                    | ОК      | Cancel      |

Figure 7.9: Dialog box Units and Decimal Places

You can save the settings as user profile to reuse them in other models. These functions are described in the RSTAB manual, chapter 11.1.3.





## 7.4 Data Transfer

## 7.4.1 Export Material to RSTAB

If you have adjusted the materials in STEEL NTC-DF for design, you can export the modified materials to RSTAB in a similar manner as you can export cross-sections: Open the 1.2 *Materials* window, and then click

Edit  $\rightarrow$  Export All Materials to RSTAB.

You can also export the modified materials to RSTAB using the context menu of window 1.2.

| Material Library                      |
|---------------------------------------|
| Export Material to RSTAB              |
| Export <u>A</u> ll Materials to RSTAB |
| Import Material from RSTAB            |
| Import All Materials from RSTAB       |

Figure 7.10: Context menu of window 1.2 Materials

#### Calculation

Before the modified materials are transferred to RSTAB, a security query appears as to whether the results of RSTAB should be deleted. When you have confirmed the query and then start the [Calculation] in STEEL NTC-DF, the RSTAB internal forces and designs are determined in one single calculation run.

If the modified materials have not been exported to RSTAB yet, you can transfer the original materials to the design module, using the options shown in Figure 7.10. Please note, however, that this option is only available in the 1.2 *Materials* window.

## 7.4.2 Export Effective Lengths to RSTAB

If you have adjusted the materials in STEEL NTC-DF for design, you can export the modified materials to RSTAB in a similar manner as you can export cross-sections: Open the window 1.5 *Effective Lengths - Members*, and then click

```
Edit \rightarrow Export All Effective Lengths to RSTAB.
```

or use the corresponding option on the context menu of window 1.5.

| Export Effective Length to RSTAB                |
|-------------------------------------------------|
| Export All Effective Lengths to RSTAB           |
| Import Effective Length from RSTAB              |
| Import <u>A</u> ll Effective Lengths from RSTAB |
|                                                 |

Figure 7.11: Context menu of window 1.5 Effective Lengths - Members

Before the modified materials are transferred to RSTAB, a security query appears as to whether the results of RSTAB should be deleted.

If the modified effective lengths have not been exported to RSTAB yet, you can reimport the original effective lengths to the design module, using the options shown in Figure 7.11. Please note, however, that this option is only available in the windows 1.5 *Effective Lengths - Members* and 1.6 *Effective Lengths - Sets of Members*.

## 7.4.3 Export Results

The STEEL NTC-DF results can also be used by other programs.

## Clipboard

To copy cells selected in the results windows to the Clipboard, press the keys [Ctrl]+[C]. To insert the cells, for example in a word-processing program, press [Ctrl]+[V]. The headers of the table columns will not be transferred.



### **Printout report**

You can print the data of the STEEL NTC-DF add-on module into the global printout report (see chapter 6.1, page 49) for export. Then, in the printout report, click

File  $\rightarrow$  Export to RTF.

The function is described in the RSTAB manual, chapter 10.1.11.

#### **Excel / OpenOffice**

STEEL NTC-DF provides a function for the direct data export to MS Excel, OpenOffice.org Calc or the file format CSV. To open the corresponding dialog box, click

```
\textbf{File} \rightarrow \textbf{Export Tables}.
```

The following export dialog box appears.

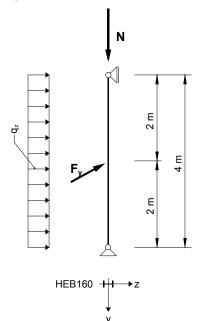
| Export table to active workbook     Export table to active worksheet     Rewrite existing worksheet Selected Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table Parameters                                                                                                | Application         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|
| CSV file format  Transfer Parameters  Export table to active workbook  Export table to active worksheet  Rewrite existing worksheet  Selected Tables  Active table  All tables  Input tables  Input tables  Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 📝 With table header                                                                                             | Microsoft Excel     |
| Transfer Parameters  Export table to active workbook  Export table to active worksheet  Rewrite existing worksheet  Selected Tables  Active table  All tables  Input tabl | 🔲 Only marked rows                                                                                              | OpenOffice.org Calc |
| Export table to active worksheet  Rewrite existing worksheet  Selected Tables  Active table  All tables  Input tables  Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | CSV file format     |
| Export table to active worksheet  Rewrite existing worksheet  Selected Tables  Active table  All tables  Input tables  Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Transfer Parameters                                                                                             |                     |
| Rewrite existing worksheet      Selected Tables      Active table     All tables      Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Export table to active workbook                                                                                 |                     |
| Rewrite existing worksheet  Selected Tables  Active table All tables  Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                     |
| Active table     Active tables     All tables     Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Export table to active worksheet                                                                                |                     |
| Active table     Active table     Active tables     Active tables     Input tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                     |
| All tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rewrite existing worksheet                                                                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rewrite existing worksheet                                                                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rewrite existing worksheet Selected Tables     Active table                                                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rewrite existing worksheet         Selected Tables         Active table         All tables                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rewrite existing worksheet         Selected Tables         Active table         All tables         Input tables |                     |
| OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rewrite existing worksheet         Selected Tables         Active table         All tables         Input tables |                     |

Figure 7.12: Dialog box Export - MS Excel

When you have selected the relevant parameters, you can start the export by clicking [OK]. Excel or OpenOffice will be started automatically, that is, the programs do not have to be opened first.

|                                  | ile l   | Home                    | Insert       | Page Layo         | ut Formu                             | ılas                 | Data Review                                                          | / Vie                                                 | w Add-Ins                                                                             | Acrobat 🗠 🕜 🗆                                                                                                     | ۍ ت     |
|----------------------------------|---------|-------------------------|--------------|-------------------|--------------------------------------|----------------------|----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------|
| Pas<br>Clip                      | ite 🛷   | Arial<br>B              |              | A A               | ≡ ≡ ≡<br>≣ ≣ ⊒<br>≇ ≇ ⊗<br>Alignment |                      | 00. 0.<br>00 →.0                                                     | A<br>Styles                                           | Insert ▼<br>Delete ▼<br>Format ▼<br>Cells                                             | ∑ •                                                                                                               |         |
|                                  | B3      | 3                       | <b>+</b> (e) | f;                | IS 450/2                             | 00/1                 | 0/20/0                                                               |                                                       |                                                                                       |                                                                                                                   | [       |
| 1                                | Α       | В                       | С            | D                 | E                                    | F                    |                                                                      |                                                       |                                                                                       | G                                                                                                                 | ĺ       |
| 1                                | Section | Member                  | Location     | Load              | Design                               |                      |                                                                      |                                                       |                                                                                       |                                                                                                                   |         |
| 2                                | No.     | No.                     | x [m]        | Case              | Ratio                                |                      |                                                                      |                                                       | D                                                                                     | esign According to Formula                                                                                        |         |
| 3                                | 1       | IS 450/20               | 0/10/20/0    |                   |                                      |                      |                                                                      |                                                       |                                                                                       |                                                                                                                   |         |
| 4                                | Ĩ       | 8                       | 1,000        | LC5               | 0,00                                 | ≤1                   | 100) Negligible inter                                                | nal force                                             | s                                                                                     |                                                                                                                   |         |
| 5                                |         | 5                       | 0,900        | LC6               | 0,00                                 | ≤1                   | 101) Cross-section                                                   | check - 1                                             | Fension acc. to 3                                                                     | .1                                                                                                                |         |
| 6                                |         | 94                      | 0,000        | CO1               | 0,03                                 | ≤1                   | 102) Cross-section                                                   | check - (                                             | Compression acc                                                                       | . to 3.2                                                                                                          |         |
| 7                                |         | 8                       | 5,700        | LC3               | 0,03                                 | ≤1                   | 105) Cross-section                                                   | check - I                                             | Bending about y-a                                                                     | axis acc. to 3.3.2.1                                                                                              |         |
| 8                                |         | 14                      | 3,000        | LC4               | 0,02                                 | ≤1                   | 106) Cross-section                                                   | check - E                                             | Bending about z-a                                                                     | axis acc. to 3.3.2.1                                                                                              |         |
|                                  |         | 93                      | 0,750        | CO1               | 0,15                                 | ≤1                   | 115) Cross-section                                                   | check - S                                             | Shear force in z-a                                                                    | axis acc. to 3.3.3                                                                                                |         |
| 9                                |         | 5                       | 0,000        | LC1               | 0,00                                 | ≤1                   | 126) Cross-section                                                   | check - S                                             | Shear buckling ac                                                                     | cc. to 3.3.3 - Shear force in                                                                                     | z-axis  |
| 10                               |         | 93                      | 3,000        | CO5               | 0,05                                 | ≤1                   | 141) Cross-section                                                   | check - I                                             | Bending about y-                                                                      | axis and shear force acc. to                                                                                      | 3.3.4   |
| 10<br>11                         |         | 33                      |              |                   |                                      |                      |                                                                      |                                                       |                                                                                       |                                                                                                                   | force   |
| 10<br>11<br>12                   |         | 93                      | 3,000        | CO1               | 0,56                                 |                      | 171) Cross-section                                                   |                                                       |                                                                                       |                                                                                                                   |         |
| 10<br>11<br>12<br>13             |         |                         | 5,700        | CO9               | 0,23                                 | ≤1                   |                                                                      |                                                       |                                                                                       | ing about y-axis and shear<br>al bending and shear force                                                          |         |
| 10<br>11<br>12<br>13<br>14       |         | 93                      | -,           | CO9<br>CO9        |                                      | ≤1                   | 191) Cross-section                                                   | check - /                                             | Axial force, biaxia                                                                   |                                                                                                                   |         |
| 10<br>11<br>12<br>13<br>14<br>15 |         | 93<br>102<br>100<br>100 | 5,700        | CO9<br>CO9<br>CO9 | 0,23                                 | ≤1<br>≤1<br>≤1       | 191) Cross-section<br>302) Stability analys<br>306) Stability analys | check - /<br>sis - Flexu<br>sis - Flexu               | Axial force, biaxia<br>Iral buckling abou<br>Iral buckling abou                       | al bending and shear force<br>ut y-axis acc. to 3.2.2<br>ut z-axis acc. to 3.2.2                                  | acc. to |
| 10<br>11<br>12<br>13<br>14       |         | 93<br>102<br>100        | 5,700        | CO9<br>CO9        | 0,23<br>0,18<br>0,10<br>0,05         | ≤1<br>≤1<br>≤1<br>≤1 | 191) Cross-section<br>302) Stability analys<br>306) Stability analys | check - /<br>sis - Flexu<br>sis - Flexu<br>sis - Tors | Axial force, biaxia<br>ural buckling abou<br>ural buckling abou<br>ional buckling acc | al bending and shear force<br>ut y-axis acc. to 3.2.2<br>ut z-axis acc. to 3.2.2<br>c. to 3.2.2.2(a) - Doubly syn | acc. to |

Figure 7.13: Result in Excel




# 8. Example

In our example, we perform the stability analyses of flexural buckling and lateral-torsional buckling for a column with double-bending, taking into account the interaction conditions.

## Design values

### System and loads



Design values of the static loads

 $\begin{array}{ll} N_{d} & = 300 \; kN \\ q_{z,d} & = 5.0 \; kN/m \\ F_{y,d} & = 7.5 \; kN \end{array}$ 

Figure 8.1: System and design loads (γ times)

### Internal forces according to linear static analysis

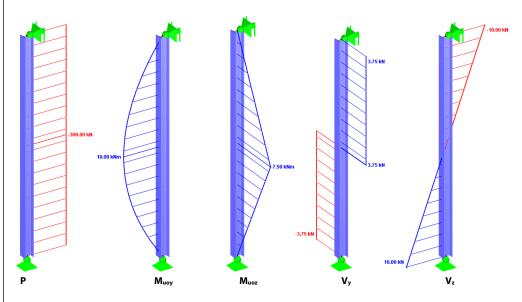



Figure 8.2: Internal forces



#### **Design location (decisive x-location)**

The design is performed for all x-locations (see chapter 4.5) of the equivalent member. The decisive location is x = 2.00 m. RSTAB determines the following internal forces:

 $P = -300.00 \ kN \qquad M_{uoy} = 10.00 \ kNm \qquad M_{uoz} = 7.50 \ kNm \qquad V_y = 3.75 \ kN \qquad V_z = 0.00 \ kN$ 

## Cross-Section Properties HE-B 160, Steel B-254 (A36)

| Property                     | Symbol           | Value       | Unit            |
|------------------------------|------------------|-------------|-----------------|
| Cross-section area           | At               | 5425.00     | mm <sup>2</sup> |
| Moment of inertia            | l <sub>y</sub>   | 24920000.00 | mm⁴             |
| Moment of inertia            | lz               | 8892000.00  | mm⁴             |
| Governing radius of gyration | r <sub>y</sub>   | 67.80       | mm              |
| Governing radius of gyration | rz               | 40.50       | mm              |
| Polar radius of gyration     | r₀               | 78.97       | mm              |
| Polar radius of gyration     | r <sub>o,M</sub> | 419.00      | mm              |
| Cross-section mass           | м                | 42.63       | kg/m            |
| Torsional constant           | J                | 312400.00   | mm⁴             |
| Warping constant             | Ca               | 4.794E+10   | mm⁵             |
| Elastic section modulus      | Sy               | 311500.00   | mm³             |
| Elastic section modulus      | Sz               | 111200.00   | mm³             |
| Plastic section modulus      | Zy               | 354000.00   | mm³             |
| Plastic section modulus      | Zz               | 169960.00   | mm³             |

## Flexural buckling about minor axis ( $\perp$ to z-z axis)

Flexural buckling critical stress

2

$$F_{E,z} = \frac{\pi^2 \cdot E}{(K_z \cdot L/r_z)^2} = \frac{\pi^2 \cdot 200000}{(1 \cdot 4000 / 40.50)^2} = 202.358 \text{MPa}$$

Flexural buckling critical load

$$P_{E,z} = A_t \frac{\pi^2 \cdot E}{(K_z \cdot L/r_z)^2} = 5425 \frac{\pi^2 \cdot 200000}{(1 \cdot 4000 / 40.50)^2} = 1097.79 \text{ kN}$$

Cross-section type acc. to [1] Table 2.1

"2 - compact": 
$$A_e = A_t$$

Slenderness parameter

$$\lambda_{z} = \frac{K_{z} \cdot L}{r_{z}} \sqrt{\left(\frac{F_{y}}{\pi^{2} \cdot E}\right)} = \frac{1 \cdot 4000}{40.50} \sqrt{\left(\frac{250}{\pi^{2} \cdot 200000}\right)} = 1.112$$

Constant *n* acc. to [1] clause 3.2.2.1(1)

n = 2.00 for hot-rolled I-sections (F\_y  $\leq$  414 MPa, t\_f  $\leq$  50 mm)

. Dlubal

Design resistance in compression

$$R_{c,z} = \frac{F_y}{\left(1 + \lambda_z^{2n} - 0.15^{2n}\right)^{1/n}} A_t \cdot F_R = \frac{250}{\left(1 + 1.112^4 - 0.15^4\right)^{1/2}} 5425 \cdot 0.9 = 767.71 \text{ kN}$$

Design ratio

## **Result values from STEEL NTC-DF calculation**

| Pu                             | 300.00                                                                                                                    | kN                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                        |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Rs                             | 1220.63                                                                                                                   | kN                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 3.2                                                    |
| A <sub>e</sub> /A <sub>t</sub> | 1.000                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 2.1.3                                                  |
| Fy                             | 250.000                                                                                                                   | MPa                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 2.1                                                    |
| E                              | 200000                                                                                                                    | MPa                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| At                             | 5425                                                                                                                      | mm²                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| lz                             | 8892000                                                                                                                   | mm⁴                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| rz                             | 40.486                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                        |
| Lz                             | 4000                                                                                                                      | mm                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                        |
| λz                             | 1.112                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 3.2.2                                                  |
| F <sub>e,z</sub>               | 202.213                                                                                                                   | MPa                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Eq. (3.12)                                             |
| n                              | 2.000                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 3.2.2                                                  |
| F <sub>n,z</sub>               | 157.236                                                                                                                   | MPa                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                        |
| F <sub>R</sub>                 | 0.900                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                        |
| R <sub>c,z</sub>               | 767.71                                                                                                                    | kN                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Eq. (3.3)                                              |
| η                              | 0.390                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   | < 1                                                    | 3.2.2                                                  |
|                                | $R_{s}$ $A_{e}/A_{t}$ $F_{y}$ $E$ $A_{t}$ $I_{z}$ $r_{z}$ $L_{z}$ $\lambda_{z}$ $F_{e,z}$ $n$ $F_{n,z}$ $F_{R}$ $R_{c,z}$ | Rs         1220.63           Ae/At         1.000           Fy         250.000           E         200000           At         5425           Iz         8892000           rz         40.486           Lz         4000           λz         1.112           Fe,z         202.213           n         2.000           Fn,z         157.236           FR         0.900           Rc,z         767.71 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

## Flexural buckling about major axis ( $\perp$ to y-y axis)

Flexural buckling critical stress

$$F_{E,y} = \frac{\pi^2 \cdot E}{\left(K_y \cdot L/r_y\right)^2} = \frac{\pi^2 \cdot 200000}{\left(1 \cdot 4000/67.80\right)^2} = 567.112 \text{MPa}$$

Flexural buckling critical load

$$P_{E,y} = A_t \frac{\pi^2 \cdot E}{(K_y \cdot L/r_y)^2} = 5425 \frac{\pi^2 \cdot 200000}{(1 \cdot 4000/67.80)^2} = 3076.585 \text{ kN}$$

Cross-section type acc. to Table 2.1

"2 - compact":  $A_e = A_t$ 

Slenderness parameter

$$\lambda_{y} = \frac{K_{y} \cdot L}{r_{y}} \sqrt{\left(\frac{F_{y}}{\pi^{2} \cdot E}\right)} = \frac{1 \cdot 4000}{67.80} \sqrt{\left(\frac{250}{\pi^{2} \cdot 200000}\right)} = 0.664$$

Constant *n* acc. to clause 3.2.2.1(1)

n=2.00 for hot-rolled I-section (F\_y  $\leq 414$  MPa,  $t_f \leq 50$  mm)

Design resistance in compression

$$R_{c,y} = \frac{F_y}{\left(1 + \lambda_y^{2n} - 0.15^{2n}\right)^{1/n}} A_t \cdot F_R = \frac{250}{\left(1 + 0.664^4 - 0.15^4\right)^{1/2}} 5425 \cdot 0.9 = 1117.02 \text{ kN}$$

Design ratio

$$\frac{P}{R_{c,y}} = \frac{300}{1117.02} = \underbrace{0.27 \le 1}_{m_{c,y}}$$

#### **Result values from STEEL NTC-DF calculation**

| Compression Axial Force          | $P_{u}$          | 300.00   | kN  |     |            |
|----------------------------------|------------------|----------|-----|-----|------------|
| Section Resistance               | Rs               | 1220.63  | kN  |     | 3.2        |
| Form Factor                      | $A_e/A_t$        | 1.000    |     |     | 2.1.3      |
| Yield Strength                   | Fy               | 250.000  | MPa |     | 2.1        |
| Modulus of Elasticity            | E                | 200000   | MPa |     |            |
| Gross Area                       | At               | 5425.000 | mm² |     |            |
| Second Moment of Area            | ly               | 24920000 | mm⁴ |     |            |
| Radius of Gyration               | Ry               | 67.776   | mm  |     |            |
| Effective Length                 | Ly               | 4000.000 | mm  |     |            |
| Slenderness                      | λ <sub>y</sub>   | 0.664    |     |     | 3.2.2      |
| Elastic Flexural Buckling Stress | $F_{e,y}$        | 566.706  | MPa |     | Eq. (3.12) |
| Factor                           | n                | 2.000    |     |     | 3.2.2      |
| Nominal Critical Stress          | F <sub>n,y</sub> | 228.781  | MPa |     |            |
| Resistance Factor                | F <sub>R</sub>   | 0.900    |     |     |            |
| Member Resistance                | R <sub>c,y</sub> | 1117.02  | kN  |     | Eq. (3.3)  |
| Design Ratio                     | η                | 0.27     |     | < 1 | 3.2.2      |



## Lateral-torsional buckling

## Nominal and design buckling moment resistance according to [1] clause 3.3.2.2

The **nominal buckling moment resistance** for lateral torsional buckling will be determined for this example according to Eq. (3.24), taking into account pinned supports free to warp.

$$M_{u} = \frac{\pi}{CL} \sqrt{E \cdot I_{z} \cdot G \cdot J + \left(\frac{\pi \cdot E}{L}\right)^{2} \cdot I_{z} \cdot C_{a}}$$

$$M_{u} = \frac{\pi}{4000} \sqrt{2.0e5 \cdot 8.892e6 \cdot 77200 \cdot 312400 + \left(\frac{\pi \cdot 2.0e5}{4000}\right)^{2} \cdot 8.892e6 \cdot 4.794e10} = 181.507 \text{ kNm}$$

Limits of unsupported length

$$X_{u} = 4.293C \frac{Z_{y}F_{y}}{GJ} \sqrt{\frac{C_{a}}{I_{z}}} = 4.293 \cdot 1 \frac{354000 \cdot 250}{77200 \cdot 312400} \sqrt{\frac{4.794e10}{8.892e6}} = 1.157$$

$$X_{r} = \frac{4}{3}C \frac{Z_{y}F_{y}}{GJ} \sqrt{\frac{C_{a}}{I_{z}}} = \frac{4}{3}1 \frac{354000 \cdot 250}{77200 \cdot 312400} \sqrt{\frac{4.794e10}{8.892e6}} = 0.359$$

$$L_{u} = \frac{\sqrt{2}\pi}{X_{u}} \sqrt{\frac{EC_{a}}{GJ}} \sqrt{1 + \sqrt{1 + X_{u}^{2}}} = \frac{\sqrt{2}\pi}{1.157} \sqrt{\frac{2.e5 \cdot 4.794e10}{77200 \cdot 312400}} \sqrt{1 + \sqrt{1 + 1.157^{2}}} = 3851 \text{ mm}$$

$$L_{r} = \frac{\sqrt{2}\pi}{X_{r}} \sqrt{\frac{EC_{a}}{GJ}} \sqrt{1 + \sqrt{1 + X_{r}^{2}}} = \frac{\sqrt{2}\pi}{0.359} \sqrt{\frac{2.e5 \cdot 4.794e10}{77200 \cdot 312400}} \sqrt{1 + \sqrt{1 + 0.359^{2}}} = 11198 \text{ mm}$$

The **nominal member moment plastic resistance** is determined according to clause 3.3.2.1. HEB-160: The cross-section type acc. to Table 2.1 is "2 - compact".

 $M_{p,y} = Z_y \cdot F_y = 354000 \cdot 250 = 88.50 \text{kNm}$ 

 $M_{p,z} = Z_z \cdot F_y = 170000 \cdot 250 = 42.50 \text{kNm}$ 

Design resistance acc. to 3.3.2.2(a) (L > L<sub>u</sub>)

lf

$$M_{u} > \frac{2}{3}M_{py} \qquad \qquad M_{Ry} = 1.15 F_{R}M_{py} \left(1 - \frac{0.28M_{py}}{M_{u}}\right) \le F_{R}M_{py}$$

$$181.507 > \frac{2}{3} \cdot 88.5 = 59 \qquad \qquad M_{Ry} = \min\left\{1.15 \cdot 0.9 \cdot 88.50 \left(1 - \frac{0.2888.50}{181.507}\right), 0.9 \cdot 88.50\right\}$$

 $M_{Ry} = 79.092 \text{ kNm}$ 



## Interaction of biaxial bending and compression

The design ratio is determined according to [1] clause 3.4.3.2(a). To calculate the final design ratio resistance acc. to Eq. (3.56), we need to determinate the value of  $M_m$ . This value can be calculated according to clause 3.3.2 or approximately according to Eq. (3.57) for I-sections. We use Eq. (3.57) in this example.

$$M_{m} = \min\left(F_{R}\left(1.07 - \frac{(L/r_{z})\sqrt{F_{y}/E}}{18.55}\right)M_{py};F_{R} \cdot M_{py}\right)$$
$$M_{m} = \min\left(0.9\left(1.07 - \frac{(4000/40.50)\sqrt{250/200000}}{18.55}\right)88.50;0.9 \cdot 88.50\right) = 70.232 \text{ kNm}$$

## Interaction design ratio acc. to 3.4.3.2(a), Eq. (3.56)

The value of  $R_c$  is the minimum design resistance in compression.

$$\frac{P_{u}}{R_{c}} \! + \! \frac{M_{uoy}^{*}}{M_{m}} \! + \! \frac{M_{uoz}^{*}}{F_{R}M_{pz}} \! \leq \! 1$$

#### **Result values from STEEL NTC-DF calculation**

| Yield Strength             | Fy                     | 250         | MPa |     | 1.3.1      |
|----------------------------|------------------------|-------------|-----|-----|------------|
| Compression Axial Force    | Pu                     | 300.00      | kN  |     |            |
| Section Resistance         | Rs                     | 1220.63     | kN  |     | 3.2        |
| Elastic Buckling Stress    | F <sub>e</sub>         | 202.213     | MPa |     |            |
| Nominal Critical Stress    | Fn                     | 157.236     | MPa |     |            |
| Member Resistance          | R <sub>c</sub>         | 767.71      | kN  |     | Eq. (3.3)  |
| Design Component for N     | η <sub>N</sub>         | 0.39        |     | < 1 | 3.4.3.2(a) |
| Bending Moment             | M <sub>uoy</sub>       | 3.60        | kNm |     |            |
| Maximum Bending Moment     | M* <sub>uoy,segm</sub> | 10.00       | kNm |     |            |
| Nominal Section Resistance | M <sub>py</sub>        | 88.50       | kNm |     |            |
| Design Bending Resistance  | M <sub>Ry</sub>        | 79.65       | kNm |     |            |
| Modulus of Elasticity      | E                      | 200000.000  | MPa |     |            |
| Shear Modulus              | G                      | 77200.000   | MPa |     |            |
| Second Moment of Area      | lz                     | 8892000.000 | mm⁴ |     |            |
| Torsional Constant         | J                      | 312400.000  | mm⁴ |     |            |
| Warping Constant           | Ca                     | 4.79400E+10 | mm⁵ |     |            |
| Effective Length           | L <sub>w</sub>         | 4000        | mm  |     | 3.3.2      |
| Auxiliary Factor           | X <sub>r</sub>         | 0.359       |     |     | Eq. (3.28) |
| Auxiliary Factor           | Xu                     | 1.157       |     |     | Eq. (3.27) |
| Limit Unsupported Length   | Lr                     | 11198.700   | mm  |     | Eq. (3.26) |
| Limit Unsupported Length   | Lu                     | 3851.390    | mm  |     | Eq. (3.25) |



|                            |                        |        |     | 1   |            |
|----------------------------|------------------------|--------|-----|-----|------------|
| Modification Factor        | C <sub>b</sub>         | 1.000  |     |     |            |
| Equivalent Moment Factor   | С                      | 1.000  |     |     | 3.3.2.2    |
| Elastic Critical Moment    | Mu                     | 181.51 | kNm |     | 3.3.2.2    |
| Design Bending Resistance  | M <sub>my</sub>        | 70.23  | kNm |     | Eq. (3.57) |
| Design Component for My    | $\eta_{\text{My}}$     | 0.142  |     | < 1 | 3.4.3.2(a) |
| Bending Moment             | M <sub>uoz</sub>       | 1.50   | kNm |     |            |
| Maximum Bending Moment     | M* <sub>uoz,segm</sub> | 7.50   | kNm |     |            |
| Nominal Section Resistance | M <sub>pz</sub>        | 42.50  | kNm |     |            |
| Design Bending Resistance  | M <sub>Rz</sub>        | 37.53  | kNm |     |            |
| Design Component for Mz    | η <sub>Mz</sub>        | 0.196  |     | < 1 | 3.4.3.2(a) |
| Resistance Factor          | F <sub>R</sub>         | 0.900  |     |     |            |
| Design Ratio               | η                      | 0.73   |     | < 1 | 3.4.3.2(a) |

# **A** Literature

- [1] Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas, Gaceta Oficial del Distrito Federal, Gobierno del Distrito Federal, México, La Ciudad de la Esperanza, 2004
- [2] Specification for Structural Steel Buildings ANSI/AISC 360-10, U.S. Standard, June 22, 2010



# **B** Index

| Α                                           |
|---------------------------------------------|
| Axis19                                      |
| В                                           |
| Background graphic44                        |
| Beam type25                                 |
| Bending design resistance M <sub>m</sub> 29 |
| Buckling19                                  |
| Buckling length18                           |
| Buckling length coefficient20               |
| Button43                                    |
| c                                           |
| Calculation27                               |
| Cantilever17, 25                            |
| Clipboard56                                 |
| Color spectrum47                            |
| Colored design47                            |
| Control panel47                             |
| Cross-section                               |
| Cross-section design                        |
| Cross-section library13                     |
| Cross-section optimization                  |
| Cross-section type14                        |
| D                                           |
| Decimal places 11, 55                       |
| Deflection10                                |
| Deflections                                 |
| Deformation analysis25                      |
| Design9, 14, 33, 34, 35                     |

| Design9, 14, 33, 34, 35         |
|---------------------------------|
| Design case                     |
| Detail settings27               |
| Display navigator45, 47         |
| E                               |
| Effective length 18, 19, 21, 56 |
| Eigenvalue21                    |
| Elastic buckling moment20       |
| Equivalent member length18      |
| Excel57                         |
| Exit STEEL NTC-DF 8             |
| Export56                        |
| Export cross-section54          |
| Export effective length56       |
| Export Material56               |

#### F

| Favorites                       |
|---------------------------------|
| Filter 47                       |
| Filtering members 48            |
| Flexural buckling 17, 19        |
| G                               |
| General data8                   |
| Graphic                         |
| Graphic printout                |
| н                               |
| Hidden result diagram           |
| I                               |
| I- and H-section fabrication    |
| Info about cross-section        |
| Installation                    |
| Interaction                     |
| Intermediate Lateral Restraints |
| Internal forces                 |
| L                               |
| Lateral restraint               |
| Lateral-torsional buckling      |
| Length 18, 41                   |
| Limit deformation               |
| Limit internal forces           |
| Limit load                      |
| Limit values                    |
| List of members                 |
| Load application                |
| Load case                       |
| Load combination9               |
| Location x                      |
| М                               |
| Material 11, 56                 |
| Material library12              |
| Material properties11           |
| Member end releases             |
| Member slendernesses            |
| Member-like input 29            |
| Members9                        |
| M <sub>u</sub>                  |
|                                 |



### Ν

| Navigator                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Net area                                                                                                                                                                                                                                                                                                                                                 |
| Nodal support22                                                                                                                                                                                                                                                                                                                                          |
| Non-linear method (second order theory)                                                                                                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                        |
| OpenOffice                                                                                                                                                                                                                                                                                                                                               |
| Optimization                                                                                                                                                                                                                                                                                                                                             |
| Options                                                                                                                                                                                                                                                                                                                                                  |
| P                                                                                                                                                                                                                                                                                                                                                        |
| -<br>Panel7, 45, 47                                                                                                                                                                                                                                                                                                                                      |
| Parameterized cross-section                                                                                                                                                                                                                                                                                                                              |
| Parameters                                                                                                                                                                                                                                                                                                                                               |
| Part41                                                                                                                                                                                                                                                                                                                                                   |
| Parts list                                                                                                                                                                                                                                                                                                                                               |
| Plastic design                                                                                                                                                                                                                                                                                                                                           |
| Precamber                                                                                                                                                                                                                                                                                                                                                |
| Print                                                                                                                                                                                                                                                                                                                                                    |
| Printout report                                                                                                                                                                                                                                                                                                                                          |
| В                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                          |
| Ratio                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                          |
| Ratio                                                                                                                                                                                                                                                                                                                                                    |
| Ratio    34      Reference length    10      Reference scales    43      Relatively    17      Remark    15      Rendering    47      Result combination    9, 10      Result diagram    46, 49                                                                                                                                                          |
| Ratio34Reference length10Reference scales43Relatively17Remark15Rendering47Result combination9, 10Result diagram46, 49Results evaluation43                                                                                                                                                                                                                |
| Ratio34Reference length10Reference scales43Relatively17Remark15Rendering47Result combination9, 10Result diagram46, 49Results evaluation43Results representation45                                                                                                                                                                                        |
| Ratio       34         Reference length       10         Reference scales       43         Relatively       17         Remark       15         Rendering       47         Result combination       9, 10         Result diagram       46, 49         Results evaluation       43         Results representation       45         Results values       44 |
| Ratio34Reference length10Reference scales43Relatively17Remark15Rendering47Result combination9, 10Result diagram46, 49Results evaluation43Results representation45Results values44Results window33                                                                                                                                                        |
| Ratio34Reference length10Reference scales43Relatively17Remark15Rendering47Result combination9, 10Result diagram46, 49Results evaluation43Results representation45Results values44Results window33RSBUCK19                                                                                                                                                |
| Ratio34Reference length10Reference scales43Relatively17Remark15Rendering47Result combination9, 10Result diagram46, 49Results evaluation43Results representation45Results values44Results window33RSBUCK19RSTAB graphic49                                                                                                                                 |
| Ratio34Reference length10Reference scales43Relatively17Remark15Rendering47Result combination9, 10Result diagram46, 49Results evaluation43Results representation43Results values44Results window33RSBUCK19RSTAB graphic49                                                                                                                                 |

| Selecting windows8                              |
|-------------------------------------------------|
| Serviceability10, 25, 30                        |
| Serviceability limit state 25, 43               |
| Set of members9, 21, 22, 24, 25, 29, 36, 39, 42 |
| Shear design                                    |
| Shear lag factor26                              |
| Shifted ends of members                         |
| Slenderness 31, 40                              |
| Special cases                                   |
| Stability analysis                              |
| Stability factor                                |
| Start calculation                               |
| Start program6                                  |
| Start STEEL NTC-DF6                             |
| Stress point                                    |
| Sum                                             |
| Surface area41                                  |
| т                                               |
| Tapered member15, 35, 55                        |
| Tension design 26                               |
| Torsion                                         |
| Torsional length 20                             |
|                                                 |
| Torsional support17                             |
| Torsional support                               |
|                                                 |
| Torsional-flexural buckling                     |