Analisi di stabilità di una colonna sotto forza assiale e flessione

  • Knowledge Base

Articolo tecnico

Questo articolo è stato tradotto da Google Traduttore

Visualizza il testo originale

In questo articolo tecnico, una colonna incernierata con una forza assiale ad azione centrale e un carico di linea che agisce sull'asse forte sarà progettata mediante il modulo aggiuntivo RF-/STEEL EC3 secondo EN 1993-1-1.

I presupposti del sistema, i carichi, le forze interne e il progetto della sezione trasversale sono già stati spiegati in un precedente articolo e pertanto non saranno più discussi.

Figura 01 - Sistema

Progetto sotto forza assiale e momento flettente secondo EN 1993-1-1, 6.3.3 [1]

I componenti sottoposti a flessione e compressione di solito devono soddisfare i seguenti requisiti.

Design a flessione flessionale:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Progetto di instabilità laterale-torsionale:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{yy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Design della flessione flessionale Informazioni sull'asse minore

$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

La lunghezza effettiva della colonna incernierata è Lcr = 6.50 m.

Secondo EN 1993-1-1, 6.3.1.2:
$\mathrm\chi\;=\;\frac1{\mathrm\phi\;+\;\sqrt{\mathrm\phi^{2\;}-\;\overline{\mathrm\lambda}^2}}\;\leq\;1\\\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;\mathrm\alpha\;\cdot\;\left(\overline{\mathrm\lambda}\;-\;0,2\right)\;+\;\overline{\mathrm\lambda}^2\;\right]\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm N}_{\mathrm{cr},\mathrm z}}}\\{\mathrm N}_{\mathrm{cr},\mathrm z}\;=\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}{\mathrm l^2}\;=\;\frac{\mathrm\pi^2\;\cdot\;21.000\;\mathrm{kN}/\mathrm{cm}^2\;\cdot\;10.140\;\mathrm{cm}^4}{\left(650\;\mathrm{cm}\right)^2}\;=\;4.974,28\;\mathrm{kN}\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{180,6\;\mathrm{cm}^2\;\cdot23,5\;\mathrm{kN}/\mathrm{cm}^2}{4.974,28\;\mathrm{kN}}}\;=\;0,924$

Selezione della curva di instabilità secondo la Tabella 6.2:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1,2\;\leq\;1,2\\{\mathrm t}_{\mathrm f}\;=\;22,5\;\mathrm{mm}\;\leq\;100\;\mathrm{mm}$

Instabilità perpendicolare all'asse z: Curva della tensione di instabilità BSCz : C

La tabella 6.1 mostra il fattore di imperfezione α = 0,49.
$\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;0,49\;\cdot\;\left(0,924\;-\;0,2\right)\;+\;0,924^2\right]\;=\;1,104\\{\mathrm\chi}_{\mathrm z}\;=\;\frac1{1,104\;+\;\sqrt{1,104^2\;-\;0,924^2}}\;=\;0,585\;\leq\;1,0$

Per I, H e le sezioni trasversali cave rettangolari che sono solo soggette a compressione e flessione, si può ipotizzare il coefficiente kzy = 0.

Ciò si traduce nella progettazione come segue:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;\leq\;1\\{\mathrm N}_{\mathrm{Rk}\;}=\;\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}\;=\;180,60\;\mathrm{cm}^2\;\cdot\;23,5\;\frac{\mathrm{kN}}{\mathrm{cm}^2}\;=\;\;4.244,1\;\mathrm{kN}\\\frac{2.000\;\mathrm{kN}}{\displaystyle\frac{0,585\;\cdot\;4.244,1\;\mathrm{kN}}1}\;=\;0,81\;\leq\;1$

→ Il progetto è realizzato.

Progettazione di instabilità laterale-torsionale

La lunghezza effettiva della colonna incernierata è Lcr = 6.50 m.

Secondo EN 1993-1-1, 6.3.1.2:
$\mathrm\chi\;=\;\frac1{\mathrm\phi\;+\;\sqrt{\mathrm\phi^{2\;}-\;\overline{\mathrm\lambda}^2}}\;\leq\;1\\\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;\mathrm\alpha\;\cdot\;\left(\overline{\mathrm\lambda}\;-\;0,2\right)\;+\;\overline{\mathrm\lambda}^2\;\right]\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm N}_{\mathrm{cr},\mathrm y}}}\\{\mathrm N}_{\mathrm{cr},\mathrm y}\;=\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm y}}{\mathrm l^2}\;=\;\frac{\mathrm\pi^2\;\cdot\;21.000\;\mathrm{kN}/\mathrm{cm}^2\;\cdot\;43.190\;\mathrm{cm}^4}{\left(650\;\mathrm{cm}\right)^2}\;=\;21.187,3\;\mathrm{kN}\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{180,6\;\mathrm{cm}^2\;\cdot23,5\;\mathrm{kN}/\mathrm{cm}^2}{21.187,3\;\mathrm{kN}}}\;=\;0,924$

Lunghezza effettiva secondo la Tabella 6.2:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1,2\;\leq\;1,2\\{\mathrm t}_{\mathrm f}\;=\;22,5\;\mathrm{mm}\;\leq\;100\;\mathrm{mm}$

Instabilità perpendicolare all'asse y: Curva della tensione di instabilità BSCz : b
La tabella 6.1 mostra il fattore di imperfezione α = 0,34.
$\mathrm\phi\;=\;0,5\;\cdot\;\left[1\;+\;0,34\;\cdot\;\left(0,448\;-\;0,2\right)\;+\;0,448^2\right]\;=\;0,642\\{\mathrm\chi}_{\mathrm y}\;=\;\frac1{0,642\;+\;\sqrt{0,642^2\;-\;0,448^2}}\;=\;0,907\;\leq\;1,0$

Fattore di interazione secondo l'allegato B, tabella B1:
${\mathrm k}_{\mathrm{yy}}\;=\;{\mathrm C}_{\mathrm{my}}\;\cdot\;\left(1\;+\;\left({\overline{\mathrm\lambda}}_{\mathrm y}\;-\;0,2\right)\;\cdot\;\frac{{\mathrm N}_{\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\displaystyle\frac{{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\right)\;\leq\;{\mathrm C}_{\mathrm{my}}\;\cdot\;\left(1\;+\;0,8\;\cdot\;\frac{{\mathrm N}_{\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\displaystyle\frac{{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\right)$

Coefficiente di momento equivalente Cmy secondo la tabella B.3:
${\mathrm\alpha}_{\mathrm h}\;=\;\frac{{\mathrm M}_{\mathrm h}}{{\mathrm M}_{\mathrm s}}\;=\;\frac{0,00\;\mathrm{kNm}}{79,22\;\mathrm{kNm}}\;=\;0\\{\mathrm C}_{\mathrm{my}}\;=\;0,95\;+\;0,05\;\cdot\;{\mathrm\alpha}_{\mathrm h}\;=\;0,95\\{\overline{\mathrm\lambda}}_{\mathrm y}\;=\;0,448\\{\mathrm N}_{\mathrm{Rk}}\;=\;\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}\;=\;180,60\;\mathrm{cm}^2\;\cdot\;23,5\;\frac{\mathrm{kN}}{\mathrm{cm}^2\;\;}\;=\;4.244,1\;\mathrm{kN}\\{\mathrm k}_{\mathrm{yy}}\;=\;0,95\;\cdot\;\left(1\;+\;\left(0,448\;-\;0,2\right)\;\cdot\;\frac{2.000\;\mathrm{kN}}{0,907\;\cdot\;{\displaystyle\frac{4.244,10\;\mathrm{kN}}{1,0}}}\right)\;=\;1,07\\{\mathrm k}_{\mathrm{yy},\max}\;=\;0,95\;\cdot\;\left(1\;+\;0,8\;\cdot\;\frac{2.000\;\mathrm{kN}}{0,907\;\cdot\;{\displaystyle\frac{4.244,10\;\mathrm{kN}}{1,0}}}\right)\;=\;1,34\\1,07\;<\;1,34$

Secondo EN 1993-1-1, 6.3.2.3:
${\mathrm\chi}_{\mathrm{LT}}\;=\;\frac1{{\mathrm\phi}_{\mathrm{LT}}\;+\;\sqrt{{\mathrm\phi}_{\mathrm{LT}}^2\;-\;\mathrm\beta\;\cdot\;{\overline{\mathrm\lambda}}_{\mathrm{LT}}^2}}\\{\mathrm\phi}_{\mathrm{LT}}\;=\;0,5\;\cdot\;\left[1\;+\;{\mathrm\alpha}_{\mathrm{LT}}\;\cdot\;\left({\overline{\mathrm\lambda}}_{\mathrm{LT}}\;-\;{\overline{\mathrm\lambda}}_{\mathrm{LT}0}\right)\;+\;\mathrm\beta\;\cdot\;{\overline{\mathrm\lambda}}_{\mathrm{LT}}^2\right]$

Secondo EN 1993-1-1, Tab. 6.5:
$ \ frac {\ mathrm h} {\ mathrm b} \; = \; \ frac {360 \; \ mathrm {mm}} {300 \; \ mathrm {mm}} \; = \; 1.20 \; <\ ; 2 $ → Curva della tensione di instabilità BSCLT : b

Secondo EN 1993-1-1, Tab. 6.3:
${\mathrm\alpha}_{\mathrm{LT}}\;=\;0,34\\\mathrm\beta\;=\;0,75\\{\mathrm\lambda}_{\mathrm{LT}0}\;=\;0,40\\{\mathrm M}_{\mathrm{cr}}\;=\;{\mathrm C}_1\;\cdot\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}{\left(\mathrm k\;\cdot\;\mathrm L\right)^2}\;\cdot\;\left(\sqrt{\left(\frac{\mathrm k}{{\mathrm k}_{\mathrm W}}\right)\;\cdot\;\frac{{\mathrm I}_{\mathrm W}}{{\mathrm I}_{\mathrm z}}\;+\;\frac{\left(\mathrm k\;\cdot\;\mathrm L\right)^2\;\cdot\;\mathrm G\;\cdot\;{\mathrm I}_{\mathrm t}}{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}\;+\left({\mathrm C}_2\;\cdot\;{\mathrm z}_{\mathrm g}\right)^2\;}\;-\;{\mathrm C}_2\;\cdot\;{\mathrm z}_{\mathrm g}\;\right)\\\mathrm k\;=\;1,0\\{\mathrm k}_{\mathrm w}\;=\;1,0$

C1 e C2 dalla tabella 3.2 NCCI: Momento di instabilità torsionale critico elastico [5] (documenti supplementari compatibili con l'Eurocodice 3):
C1 = 1.127
C2 = 0,454

Distanza dal punto di applicazione del carico al centro di taglio zg = 18 cm.

${\mathrm M}_{\mathrm{cr}}\;=\;1,127\;\cdot\;\frac{\mathrm\pi^2\;\cdot\;21.000\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;10.140\;\mathrm{cm}^4}{\left(1\;\cdot\;650\;\mathrm{cm}\right)^2}\;\cdot\;\left(\sqrt{\left(\frac11\right)\;\cdot\;\frac{2.883.000\;\mathrm{cm}^6}{10.140\;\mathrm{cm}^4}\;+\;\frac{\left(1,0\;\cdot\;650\;\mathrm{cm}\right)^2\;\cdot\;8.076,92\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;292,5\;\mathrm{cm}^4}{\mathrm\pi^2\;\cdot\;21.000\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;10.140\;\mathrm{cm}^4}\;+\;\left(0,454\;\cdot\;18\;\mathrm{cm}\right)^2\;}\;-\;0,454\;\cdot\;18\;\mathrm{cm}\;\right)\\{\mathrm M}_{\mathrm{cr}}\;=\;115.310\;\mathrm{kNcm}\;=\;1.153,10\;\mathrm{kNm}\\{\overline{\mathrm\lambda}}_{\mathrm{LT}}\;=\;\sqrt{\frac{{\mathrm W}_{\mathrm{pl},\mathrm y}\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm M}_{\mathrm{cr}}}}\;=\;\sqrt{\frac{2.683\;\mathrm{cm}^3\;\cdot\;23,5\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}}{115.310\;\mathrm{kNcm}}}\;=\;0,739\\{\mathrm\phi}_{\mathrm{LT}}\;=\;0,5\;\cdot\;\left[1\;+\;0,34\;\cdot\;\left(0,739\;-\;0,4\right)\;+\;0,75\;\cdot\;0,739^2\right]\;=\;0,762\\{\mathrm\chi}_{\mathrm{LT}}\;=\;\frac1{0,762\;+\;\sqrt{0,762^2\;-\;0,75\;\cdot\;0,739^2}}\;=\;0,85\;<\;1$

Secondo EN 1993-1-1, Tab. 6.7:
${\mathrm M}_{\mathrm y,\mathrm{Rk}}\;=\;{\mathrm f}_{\mathrm y}\;\cdot\;{\mathrm W}_{\mathrm{pl},\mathrm y}\;=\;23,5\;\frac{\mathrm{kN}}{\mathrm{cm}^{2\;}}\;\cdot\;2.683\;\mathrm{cm}^3\;=\;63.050,5\;\mathrm{kNcm}\;=\;630,51\;\mathrm{kNm}$

Progetto di instabilità attorno all'asse maggiore:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{yy}\;}\cdot\;\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1\\\frac{2.000\;\mathrm{kN}}{\displaystyle\frac{0,907\;\cdot\;4.244.10\;\mathrm{kN}}{1,0}}\;+\;1,072\;\cdot\;\frac{79,22\;\mathrm{kNm}}{0,85\;\cdot\;{\displaystyle\frac{630,51\;\mathrm{kNm}}{1,0}}}\;=\;0,67\;\leq\;1$

Progetto di instabilità attorno all'asse minore:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\;\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1\\\frac{2.000\;\mathrm{kN}}{\displaystyle\frac{0,585\;\cdot\;4.244.10\;\mathrm{kN}}{1,0}}\;+\;0,894\;\cdot\;\frac{79,22\;\mathrm{kNm}}{0,85\;\cdot\;{\displaystyle\frac{630,51\;\mathrm{kNm}}{1,0}}}\;=\;0,93\;\leq\;1$

→ Controlli eseguiti.

Autore

Dipl.-Ing. (BA) Sandy Matula

Dipl.-Ing. (BA) Sandy Matula

Assistenza clienti

La signora Matula fornisce supporto tecnico ai nostri clienti.

Parole chiave

Investitore Instabilità Analisi di stabilità di una colonna colonna incernierata Forza assiale Flessione instabilità flessionale

Riferimento

[1]   Eurocode 3: Design of steel structures - Part 1‑1: General rules and rules for buildings; EN 1993‑1‑1:2010‑12
[2]   Manual RF-/STEEL EC3. (2020). Tiefenbach: Dlubal Software.
[3]   Albert, A. (2018). Schneider - Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen (23rd ed.). Cologne: Bundesanzeiger.
[4]   Kuhlmann, U.; Feldmann, M.; Lindner, J.; Müller, C.; Stroetmann, R.: Eurocode 3 Bemessung und Konstruktion von Stahlbauten - Band 1: Allgemeine Regeln und Hochbau - DIN EN 1993-1-1 mit Nationalem Anhang, Kommentar und Beispiele. Berlin: Beuth, 2014
[5]   Bureau, A.: NCCI: Elastisches kritisches Biegedrillknickmoment. Aachen: RWTH, 2010

Download

Link

Scrivi un commento...

Scrivi un commento...

  • Visualizzazioni 991x
  • Aggiornato 26. ottobre 2020

Contattaci

Hai domande o bisogno di consigli?
Contattaci gratuitamente tramite e-mail, chat o il nostro forum di supporto o trova varie soluzioni e consigli utili nella nostra pagina delle FAQ.

+39 051 9525 443

info@dlubal.it

RFEM Programma principale
RFEM 5.xx

Programma principale

Software di progettazione strutturale per l'analisi con elementi finiti (FEA) di sistemi strutturali piani e spaziali costituiti da piastre, pareti, gusci, aste (travi), elementi solidi e di contatto

Prezzo della prima licenza
3.540,00 USD
RFEM Strutture in acciaio e alluminio
RF-STEEL EC3 5.xx

Modulo aggiuntivo

Progettazione delle aste di acciaio secondo Eurocodice 3

Prezzo della prima licenza
1.480,00 USD
RSTAB Programma principale
RSTAB 8.xx

Programma principale

Software di progettazione strutturale per il calcolo lineare e non lineare di forze interne, spostamenti generalizzati e reazioni vincolari di telai e strutture costituite da aste e travature reticolari

Prezzo della prima licenza
2.550,00 USD
RSTAB Strutture in acciaio e alluminio
STEEL EC3 8.xx

Modulo aggiuntivo

Progettazione di aste di acciaio secondo Eurocodice 3

Prezzo della prima licenza
1.480,00 USD