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0003 – Cantilever Beam on an Elastic Pasternak Foundation

Description

A cantilever beam of length L and rectangular cross-section with height ℎ and width b is lying on
a Pasternak foundation with stiffness C2,z and loaded by the distributed loading qz. The elastic
Winkler foundation stiffness C1,z is considered zero. Neglecting self-weight, determine the maxi-
mum deflection uz andmaximum bending momentMy of the beam. Calculate these properties
for a plate of the same heigth and width as the cantilever, as well.

Material Isotropic
Linear Elastic

Modulus of
Elasticity

E 210.000 GPa

Shear
Modulus

G 105.000 GPa

Geometry Cantilever Length L 4.000 m

Height ℎ 0.200 m

Width b 0.005 m

Member
Foundation

Pasternak Stiffness
C2,z 2000.000 kN

Plate
Foundation

Cv,xz = C2,z
b 400000.000 kN/m

Load Member Distributed qz 1.000 kN/m

Plate Distributed q = qz
b 200.000 kN/m2
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Figure 1: Problem sketch

Analytical Solution

Member Calculation

The governing differential equation of a beam on a Pasternak foundation is given by

EIy
d4uz
dx4

− C2,z
d2uz
dx2

= qz (3 – 1)
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where the moment of inertia Iy = 1
12bℎ3 = 3.33 × 10−6 m4, E is the Young's modulus of the

material and C2,z is the Pasternak foundation stiffness for the beam. Dividing by EIy, (3 – 1) can be
rewritten as

d4uz
dx4

− C2,z
EIy⏟
u�

d2uz
dx2

= qz
EIy⏟
A

(3 – 2)

where new constants𝛼 = C2,z
EIy

and A = qz
EIy

were defined. The characteristic equation 𝜆4 −𝛼𝜆2 = 0
yields the following fundamental set of solutions of the characteristic equation

1, x, e
√

u�x, e−
√

u�x (3 – 3)

A particular solution of (3 – 2) is a quadratic polynomial in the form

−
Ax2

2𝛼
(3 – 4)

The solution of (3 – 2) is then given by

uz(x) = C1 + C2x + C3e
√

u�x + C4e
−

√
u�x −

Ax2

2𝛼
(3 – 5)

Let us comptue the derivatives of (3 – 5)

u ′
z (x) = C2 + C3

√
𝛼e

√
u�x − C4

√
𝛼e−

√
u�x −

Ax
𝛼

(3 – 6)

uz″(x) = C3𝛼e
√

u�x + C4𝛼e−
√

u�x −
A
𝛼

(3 – 7)

uz‴(x) = C3𝛼
3
2 e

√
u�x − C4𝛼

3
2 e−

√
u�x (3 – 8)

The constants C1, C2, C3, C4 are determined by four boundary conditions which are required by
the differential equation of the fourth order. These boundary conditions are taken as follows

uz(0) = 0 (3 – 9)

uz′(0) = 0 (3 – 10)

uz″(L) = 0 (zero moment) (3 – 11)

uz‴(L) − 𝛼uz′(L) = 0 (zero shear force) (3 – 12)
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which yields the linear system of equations

C1 + C3 + C4 = 0 (3 – 13)

C2 + C3
√

𝛼 − C4
√

𝛼 = 0 (3 – 14)

C3e
√

u�L + C4e
−

√
u�L =

A
𝛼2 (3 – 15)

C2 =
AL
𝛼

(3 – 16)

having the solution

C1 = −
A
𝛼2 [

1 −
√

𝛼Le−
√

u�L

cosh(
√

𝛼L)
+

√
𝛼L] (3 – 17)

C2 =
AL
𝛼

(3 – 18)

C3 =
A
𝛼2 [

1 −
√

𝛼Le−
√

u�L

2 cosh(
√

𝛼L)
] (3 – 19)

C4 =
A
𝛼2 [

1 −
√

𝛼Le−
√

u�L

2 cosh(
√

𝛼L)
+

√
𝛼L] (3 – 20)

The final solution can then be written as

uz(x) =
A
𝛼

(Lx −
x2

2
) +

A
𝛼2 [

1 −
√

𝛼Le−
√

u�L

cosh
√

𝛼L
(cosh

√
𝛼x − 1) +

√
𝛼L (e−

√
u�x − 1)] (3 – 21)

where cosh(x) = ex+e−x

2 . Hence, from equation (3 – 21) the following maximum deflection can
be deduced

uz,max = uz(L) = 2.991mm (3 – 22)

while the maximum of the bending momentMy evaluates to

My,max = My(0) = −EIy
d2uz
dx2

(0) =
A
𝛼

[
1 −

√
𝛼Le−

√
u�L

cosh(
√

𝛼L)
+

√
𝛼L − 1] = −2.017 kNm

(3 – 23)

Plate Calculation

The theory is identical, the parameter describing the Pasternak foundation for plates C2,z equals to

Cv,xz =
C2,z

b
= 400000 kN/m (3 – 24)
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Note that the Poisson ratio is zero in order to approximate the member solution exactly.

RFEM 5 and RSTAB 8 Settings

• Modeled in version RFEM 5.16.01 and RSTAB 8.16.01
• The element size is lFE = 0.100 m
• Geometrically linear analysis is considered
• Isotropic linear elastic material model is used
• The Kirchhoff plate theory is used
• Shear stiffness of members is deactivated

Results

Structure File Entity Program

0003.01 Member RFEM 5

0003.02 Member RSTAB 8

0003.03 Plate RFEM 5

Figure 2: RFEM 5 Model

As can be seen from the following comparison, excellent agreement between the analytical solu-
tions and the numerical outputs was achieved.

Analytical
Solution

RFEM 5 (Member) RSTAB 8 (Member) RFEM 5 (Plate)

uz,max

[mm]
uz,max

[mm]
Ratio
[-]

uz,max

[mm]
Ratio
[-]

uz,max

[mm]
Ratio
[-]

2.991 2.991 1.000 2.991 1.000 3.005 1.005

Analytical
Solution

RFEM 5 (Member) RSTAB 8 (Member) RFEM 5 (Plate)

My,max

[kNm]
My,max

[kNm]
Ratio
[-]

My,max

[kNm]
Ratio
[-]

mx,max × b
[kNm]

Ratio
[-]

−2.017 −2.017 1.000 −2.013 0.998 −1.999 0.991


