Program: RFEM 5, RF-LAMINATE

Category: Geometrically Linear Analysis, Orthotropic Linear Elasticity, Plate, Solid, Laminate

Verification Example: 0007 - Orthotropic Cantilever in Tension

0007 - Orthotropic Cantilever in Tension

Description

A vertical timber cantilever with fibers oriented at an angle β, with the square cross-section, is loaded at the top by the tensile pressure p. Base movement in the z-direction is restricted and always one edge of the base plane is fixed to move perpendicularly to its orientation. Assuming small deformation theory and neglecting cantilever's self-weight, determine its maximum deformation

Material	Modulus of Elasticity	$E_{x}=E_{y}$	3.000	GPa	
		11.000	GPa		
	Poisson's Ratio	$\nu_{x y}=\nu_{y z}=\nu_{x z}$	0.000	-	
	Shear Modulus	$G_{x y}=G_{y z}=G_{x z}$	5.500	GPa	
	Fiber Angle	β	-60.000	\circ	
Geometry	Cantilever	Height	h	1.000	m
	Width	b	0.050	m	
		Depth	d	0.050	m
Load	Pressure	p	0.008	GPa	

Figure 1: Problem sketch

Analytical Solution

The applied pressure p acts in a different direction than the timber fibres are oriented, therefore it is necessary to transform timber's stiffness matrix $\boldsymbol{D}_{x z}$ into the loading direction:

Verification Example: 0007 - Orthotropic Cantilever in Tension

$$
\begin{equation*}
\boldsymbol{D}_{x z}=\boldsymbol{T}^{\top} \boldsymbol{D}_{x z} \boldsymbol{T} \tag{7-1}
\end{equation*}
$$

where $\boldsymbol{D}_{x z}$ is the stiffness 2D matrix acting in the material coordinate system $x z, \boldsymbol{D}_{x z}$ is the corresponding stiffness 2D matrix in coordinate system $X Z$ and \boldsymbol{T} is the transformation matrix. The stiffness matrix in the material directions $\boldsymbol{D}_{x z}$ has the form

$$
\boldsymbol{D}_{x z}=b\left[\begin{array}{ccc}
E_{x} & 0 & 0 \tag{7-2}\\
0 & E_{z} & 0 \\
0 & 0 & G_{x z}
\end{array}\right]
$$

The transformation matrix \boldsymbol{T} has the form

$$
\boldsymbol{T}=\left[\begin{array}{ccc}
c^{2} & s^{2} & s c \tag{7-3}\\
s^{2} & c^{2} & -s c \\
-2 s c & 2 s c & c^{2}-s^{2}
\end{array}\right]
$$

where $s=\sin \beta$ and $c=\cos \beta$ respectively. The formula ($3-1$) yields

$$
\begin{aligned}
& \boldsymbol{D}_{x z}=b\left[\begin{array}{ccc}
c^{4} E_{x}+s^{4} E_{z}+4 s^{2} c^{2} G_{x z} & c^{2} s^{2}\left(E_{x}+E_{z}-4 G_{x z}\right) & c s\left[c^{2} E_{x}-s^{2} E_{z}-2\left(c^{2}-s^{2}\right) G_{x z}\right] \\
& s^{4} E_{x}+c^{4} E_{z}+4 s^{2} c^{2} G_{x z} & c s\left[s^{2} E_{x}-c^{2} E_{z}+2\left(c^{2}-s^{2}\right) G_{x z}\right] \\
\text { sym. } & c^{2} s^{2}\left(E_{x}+E_{z}\right)+\left(c^{2}-s^{2}\right)^{2} G_{x z}
\end{array}\right] \\
& \\
& \\
&
\end{aligned}
$$

After that the strain 2D vector ε can be easily evaluated:

$$
\boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{X} \tag{7-5}\\
\varepsilon_{Z} \\
\gamma_{X Z}
\end{array}\right]=\boldsymbol{D}_{X Z}^{-1} \boldsymbol{p}
$$

where \boldsymbol{p} is the loading 2D vector:

$$
\boldsymbol{p}=b\left[\begin{array}{l}
0 \tag{7-6}\\
p \\
0
\end{array}\right]
$$

The maximum deflection $u_{\max }$ can be obtained according to deflections u_{X} and u_{z} in the X and Z direction respectively.

$$
\begin{align*}
u_{X} & =h \gamma_{x Z}=-1.260 \mathrm{~mm} \\
u_{z} & =h \varepsilon_{Z}=1.818 \mathrm{~mm} \\
u_{\max } & =\sqrt{u_{X}^{2}+u_{z}^{2}}=h \sqrt{\gamma_{X Z}^{2}+\varepsilon_{Z}^{2}}=2.212 \mathrm{~mm} \tag{7-9}
\end{align*}
$$

Verification Example: 0007 - Orthotropic Cantilever in Tension

RFEM 5 Settings

- Modeled in version RFEM 5.03.0050
- The element size is $I_{\text {FE }}=0.025 \mathrm{~m}$
- Geometrically linear analysis is considered
- The number of increments is 1
- The Mindlin plate theory is used

Results

Structure File	Program	Entity	Material Model
0007.01	RFEM 5	Solid	Orthotropic Elastic 3D
0007.02	RFEM 5	Plate	Orthotropic Elastic 2D
0007.03	RF-LAMINATE	Plate	-

Figure 2: Deformation of a solid with the Orthotropic Elastic 3D material model
As can be seen from the following comparisons, an excellent agreement of analytical results with RFEM 5 outputs were achieved.

Quantity	Analytical Solution	RFEM 5 Solid		RFEM 5 Plate		RF-LAMINATE Plate	
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]
u_{X}	-1.260	-1.260	1.000	-1.260	1.000	-1.260	1.000
u_{Z}	1.818	1.819	1.000	1.818	1.000	1.818	1.000
$u_{\max }$	2.212	2.213	1.000	2.212	1.000	2.212	1.000

