Program: RFEM 5, RF-LAMINATE

Category: Geometrically Linear Analysis, Orthotropic Linear Elasticity, Plate, Solid, Laminate

Verification Example: 0007 – Orthotropic Cantilever in Tension

0007 - Orthotropic Cantilever in Tension

Description

A vertical timber cantilever with fibers oriented at an angle β , with the square cross-section, is loaded at the top by the tensile pressure p. Base movement in the z-direction is restricted and always one edge of the base plane is fixed to move perpendicularly to its orientation. Assuming small deformation theory and neglecting cantilever's self-weight, determine its maximum deformation.

Material	Timber	Modulus of Elasticity	$E_x = E_y$	3.000	GPa
			Ez	11.000	GPa
		Poisson's Ratio	$\nu_{\rm xy}=\nu_{\rm yz}=\nu_{\rm xz}$	0.000	_
		Shear Modulus	$G_{xy} = G_{yz} = G_{xz}$	5.500	GPa
		Fiber Angle	β	-60.000	0
Geometry	Cantilever	Height	h	1.000	m
		Width	b	0.050	m
		Depth	d	0.050	m
Load		Pressure	p	0.008	GPa

Figure 1: Problem sketch

Analytical Solution

The applied pressure p acts in a different direction than the timber fibres are oriented, therefore it is necessary to transform timber's stiffness matrix D_{xz} into the loading direction:

$$\boldsymbol{D}_{\boldsymbol{X}\boldsymbol{Z}} = \boldsymbol{T}^{\mathsf{T}} \boldsymbol{D}_{\boldsymbol{X}\boldsymbol{Z}} \boldsymbol{T} \tag{7-1}$$

where D_{xz} is the stiffness 2D matrix acting in the material coordinate system xz, D_{XZ} is the corresponding stiffness 2D matrix in coordinate system XZ and T is the transformation matrix. The stiffness matrix in the material directions D_{xz} has the form

$$\boldsymbol{D}_{xz} = b \begin{bmatrix} E_x & 0 & 0\\ 0 & E_z & 0\\ 0 & 0 & G_{xz} \end{bmatrix}$$
(7-2)

The transformation matrix **T** has the form

$$\mathbf{T} = \begin{bmatrix} c^2 & s^2 & sc \\ s^2 & c^2 & -sc \\ -2sc & 2sc & c^2 - s^2 \end{bmatrix}$$
(7-3)

where $s = \sin \beta$ and $c = \cos \beta$ respectively. The formula (3 – 1) yields

$$\mathbf{D}_{XZ} = b \begin{bmatrix} c^{4}E_{x} + s^{4}E_{z} + 4s^{2}c^{2}G_{xz} & c^{2}s^{2}(E_{x} + E_{z} - 4G_{xz}) & cs[c^{2}E_{x} - s^{2}E_{z} - 2(c^{2} - s^{2})G_{xz}] \\ s^{4}E_{x} + c^{4}E_{z} + 4s^{2}c^{2}G_{xz} & cs[s^{2}E_{x} - c^{2}E_{z} + 2(c^{2} - s^{2})G_{xz}] \\ sym. & c^{2}s^{2}(E_{x} + E_{z}) + (c^{2} - s^{2})^{2}G_{xz} \end{bmatrix}$$
(7 - 4)

After that the strain 2D vector ε can be easily evaluated:

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_X \\ \varepsilon_Z \\ \gamma_{XZ} \end{bmatrix} = \boldsymbol{D}_{XZ}^{-1} \boldsymbol{p}$$
(7 - 5)

where **p** is the loading 2D vector:

$$\boldsymbol{p} = b \begin{bmatrix} 0\\p\\0 \end{bmatrix} \tag{7-6}$$

The maximum deflection u_{max} can be obtained according to deflections u_X and u_Z in the X and Z direction respectively.

 $u_X = h\gamma_{XZ} = -1.260 \text{ mm}$ (7 - 7)

$$u_Z = h\varepsilon_Z = 1.818 \text{ mm} \tag{7-8}$$

$$u_{\max} = \sqrt{u_X^2 + u_Z^2} = h \sqrt{\gamma_{XZ}^2 + \varepsilon_Z^2} = 2.212 \text{ mm}$$
 (7 - 9)

RFEM 5 Settings

- Modeled in version RFEM 5.03.0050
- The element size is $I_{\rm FE} = 0.025$ m
- Geometrically linear analysis is considered
- The number of increments is 1
- The Mindlin plate theory is used

Results

Structure File	Program	Entity	Material Model
0007.01	RFEM 5	Solid	Orthotropic Elastic 3D
0007.02	RFEM 5	Plate	Orthotropic Elastic 2D
0007.03	RF-LAMINATE	Plate	-

Figure 2: Deformation of a solid with the Orthotropic Elastic 3D material model

As can be seen from the following comparisons, an excellent agreement of analytical results with RFEM 5 outputs were achieved.

Quantity	Analytical Solution	RFEM 5 Solid		RFEM 5 Plate		RF-LAMINATE Plate	
	[mm]	[mm]	Ratio [-]	[mm]	Ratio [-]	[mm]	Ratio [-]
u _X	-1.260	-1.260	1.000	-1.260	1.000	-1.260	1.000
u _z	1.818	1.819	1.000	1.818	1.000	1.818	1.000
u _{max}	2.212	2.213	1.000	2.212	1.000	2.212	1.000

