Program: RFEM 5

Category: Geometrically Linear Analysis, Orthotropic Plasticity, Plate, Solid

Verification Example: 0012 – Locally Loaded Timber Beam in Plasticity

0012 - Locally Loaded Timber Beam in Plasticity

Description

Ver

A timber beam, reinforced by two steel plates on its ends, is loaded by a pressure p and supported according to the **Figure 1**. Wood fibers (direction of E_x) are parallel to the global x-axis. The plastic surface is described according to the Tsai-Wu plasticity theory using strengths below. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.300	_
	Timber	Modulus of Elasticity	E _x	12000.000	MPa
			$E_y = E_z$	400	MPa
		Poisson's Ratio	$ u_{\rm yz}$	0.400	_
			$\nu_{\rm xz}$	0.050	_
			$ u_{xy}$	0.050	_
		Shear Modulus	G _{yz}	200.000	MPa
			$G_{xz} = G_{xy}$	700.000	MPa
		Tensile Plastic Strength	f _{t,x}	35.000	MPa
			f _{t,y}	3.404	MPa
			f _{t,z}	1.500	MPa
		Compressive Plastic Strength	f _{c,x}	20.000	MPa
			f _{c,y}	1.531	MPa
			f _{c,z}	3.500	MPa
		Shear Plastic Strength	$f_{v,xz} = f_{v,xy}$	2.700	MPa
			f _{v,yz}	1.000	MPa
Geometry	Timber	Length	L	9.000	m
		Thickness	t	0.120	m
		Height	h	0.600	m
		Loaded Surface Length	ΔL	0.200	m
	Steel plates	Width	W	0.010	m
Load		Pressure	p	3.250	MPa

Verification Example: 0012 – Locally Loaded Timber Beam in Plasticity

Small deformations are considered and the self-weight is neglected in this example. Determine following quantities:

- The maximum deflection *u*_{z,max}
- The strain ε_x^p , ε_z^p and γ_{xz} at the test point 1
- The stress $\sigma_{\rm x'}$, $\sigma_{\rm z}$ and $\tau_{\rm xz}$ at the test point 2

Figure 1: Problem sketch

Analytical Solution

Analytical solution is not available for this example.

RFEM 5 Settings

- Modeled in RFEM 5.06.1176
- The element size is $I_{\rm FE} = 0.060$ m
- Geometrically linear analysis is considered
- The number of increments is 10
- Considering symmetry, only one half of the construction is modeled in the direction of the *y*-axis

Results

Structure File	Entity	Material model
0012.01	Solid	Orthotropic Plastic 3D
0012.02	Plate	Orthotropic Plastic 2D

Linear Elasticity Results: $u_{z,max}$ [mm]				
RFEM 5 (Solid)	RFEM 5 (Plate)			
81.892	81.909			

ANSYS 15 (SOLID45, 3D)*	RFEM 5 (Orthotropic Plastic 3D)		RFEM 5 (Orthotropic Plastic 2D)		
u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]	
101.36	105.722	1.043	101.853	1.005	

Verification Example: 0012 – Locally Loaded Timber Beam in Plasticity

Test Point 1 $\begin{bmatrix} I_x \\ 2 \end{bmatrix}$, 0, 0					
	ANSYS 15 (SOLID45 with extra shape functions, 3D)*	RFEM 5 (Orthotropic Plastic 3D)	Ratio	RFEM 5 (Orthotropic Plastic 2D)	Ratio
ε <mark></mark> , [-]	-0.194·10 ⁻²	-0.199·10 ⁻²	1.026	-0.176·10 ⁻²	0.907
ε <mark>p</mark> [-]	0.938·10 ⁻²	0.938·10 ⁻²	1.000	0.000	_
γ <mark>p</mark> _{xz} [-]	0.000	0.000	—	0.000	—

Test Point 2 $\begin{bmatrix} I_x \\ 2 \end{bmatrix}$, 0, h					
	ANSYS 15 (SOLID45 with extra shape functions, 3D)*	RFEM 5 (Orthotropic Plastic 3D)	Ratio	RFEM 5 (Orthotropic Plastic 2D)	Ratio
$\sigma_{\rm x}[{ m MPa}]$	35.043	36.298	1.036	33.061	0.943
$\sigma_{\rm z}[{ m MPa}]$	0.005	-0.022	_	0.000	_
$ au_{\it xz}$ [MPa]	0.000	0.000	—	0.000	—

* Remark: Numerical solution in ANSYS 15 was carried out by the company Designtec s.r.o.

