Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Isotropic Plasticity, Orthotropic Plasticity, Member, Plate

Verification Example: 0019 – Plastic Bending - Moment Load

0019 - Plastic Bending - Moment Load

Description

A cantilever is fully fixed on the left end (x = 0) and subjected to a bending moment *M* according to the **Figure 1**. The problem is described by the following set of parameters.

Material	Elastic-Plastic	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.000	-
		Shear Modulus	G	105000.000	MPa
		Plastic Strength	f _y	240.000	MPa
Geometry	Cantilever	Length	L	2.000	m
		Width	W	0.005	m
		Thickness	t	0.005	m
Load		Bending Moment	М	6.000	Nm

Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z,max}$.

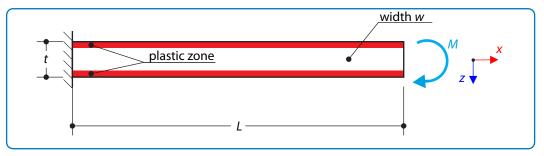


Figure 1: Problem sketch

Analytical Solution

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calculated as follows:

$$u_{z,\max} = \frac{ML^2}{2EI_v} = 1.097 \,\mathrm{m}$$
 (19 - 1)

Verification Example: 0019 – Plastic Bending - Moment Load

Nonlinear Analysis

The cantilever is loaded by the bending moment *M*. The quantities of this load are discussed at first. The moment $M_{\rm e}$ when the first yield occurs and the ultimate moment $M_{\rm p}$ when the structure becomes plastic hinge are calculated as follows

$$M_{\rm e} = 2 \int_{0}^{t/2} \sigma(z) z w \, \mathrm{d}z = 2 \int_{0}^{t/2} \frac{2f_{\rm y}}{t} z^2 w \, \mathrm{d}z = \frac{f_{\rm y} w t^2}{6} = 5.000 \, \mathrm{Nm}$$
(19 - 2)

$$M_{\rm p} = 2 \int_{0}^{t/2} \sigma(z) z w \, \mathrm{d}z = 2 \int_{0}^{t/2} f_{\rm y} z w \, \mathrm{d}z = \frac{f_{\rm y} w t^2}{4} = 7.500 \, \rm Nm \tag{19-3}$$

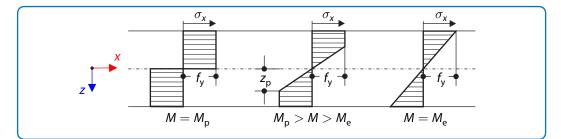


Figure 2: Bending stress distribution

It is obvious that the bending moment M causes the elastic-plastic state. The cross-section in the elastic-plastic state is divided into the elastic core and the plastic surface, which is described by the parameter z_p according to the **Figure 2**.

$$z_{\rm p} = \frac{f_{\rm y}}{\kappa(x)E} \tag{19-4}$$

where $\kappa(x)$ is the curvature defined as $\kappa(x) = d^2 u_z / dx^2$ [1]. The elastic-plastic moment M_{ep} in the cross-section (internal force) has to equal to the bending moment M (external force).

$$M_{\rm ep}(x) = 2 \int_{0}^{z_{\rm p}} -\kappa(x) Ez^2 w \, dz + 2 \int_{z_{\rm p}}^{t/2} -f_y z w \, dz = -M \tag{19-5}$$

The curvature κ results from this equality

$$\kappa = \frac{f_y}{E} \sqrt{\frac{1}{3\left(\frac{t^2}{4} - \frac{M}{f_y w}\right)}}$$
(19-6)

The total deflection of the structure $u_{z,max}$ is calculated using the Mohr's integral

$$u_{z,\max} = \int_{0}^{L} \kappa(x)(L-x) \, dx = 1.180 \, m \tag{19-7}$$

RFEM Settings

- Modeled in RFEM 5.26 abd RFEM 6.01
- The element size is $I_{\rm FE} = 0.020$ m
- Geometrically linear analysis is considered
- The number of increments is 5
- Shear stiffness of the members is neglected

Results

Structure File	Entity	Material mode	Hypothesis	
0019.01	Plate	Orthotropic Plastic 2D	Tsai-Wu	
0019.02	Plate	Isotropic Plastic 2D/3D	von Mises	
0019.03	Member	Isotropic Plastic 1D	-	
0019.04	Plate	Isotropic Nonlinear Elastic 2D/3D	von Mises	
0019.05	Plate	Isotropic Nonlinear Elastic 2D/3D	Tresca	
0019.06	Member	Isotropic Nonlinear Elastic 1D	-	

vernication Example. 0019 - Plastic Benuing - Moment Load								
Model	Analytical Solution	RFEM 5		RFEM 6				
	u _{z,max} [m]	u _{z,max} [m]	Ratio [-]	u _{z,max} [m]	Ratio [-]			
Orthotropic Plastic 2D	1.180	1.190	1.008	1.190	1.008			
Isotropic Plas- tic 2D/3D, Plate		1.173	0.994	1.173	0.994			
Isotropic Plas- tic 1D		1.180	1.000	1.180	1.000			
Isotropic Nonlinear Elastic 2D/3D, Plate, Mises		1.190	1.008	1.190	1.008			
lsotropic Nonlinear Elastic 2D/3D, Plate, Tresca		1.190	1.008	1.190	1.008			
lsotropic Nonlinear Elastic 1D		1.180	1.000	1.180	1.000			

Verification Example: 0019 – Plastic Bending - Moment Load

References

[1] LUBLINER, J. *Plasticity theory*. Berkeley: University of California, 1990.

