Verification Example

Program: RFEM 5, RF-GLASS

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Glass, Plate, Solid

Verification Example: 0030 – Glass-Foil-Glass Cantilever Plate

0030 – Glass-Foil-Glass Cantilever Plate

Description

A composite plate, consisting of two glass layers and one foil layer in between, is fully fixed at one end and subjected to the uniform pressure *p*. Neglecting plate's self weight and assuming only small deformation theory, determine the maximum deflection of the cantilever at the free end.

Material	Glass	Modulus of Elasticity	$E_1 = E_3$	70000.000	MPa
		Poisson's Ratio	$\nu_1 = \nu_3$	0.230	-
	Foil	Modulus of Elasticity	<i>E</i> ₂	3.000	MPa
		Poisson's Ratio	ν_2	0.499	_
Geometry	Plan	Length	L	1000.000	mm
		Depth	d	100.000	mm
	Layer 1	Thickness	t ₁	10.000	mm
		Minimum z-coordinate	z _{1,min}	—10.150	mm
		Maximum z-coordinate	Z _{1,max}	-0.150	mm
	Layer 2	Thickness	<i>t</i> ₂	0.300	mm
		Minimum z-coordinate	Z _{2,min}	-0.150	mm
		Maximum z-coordinate	Z _{2,max}	0.150	mm
	Layer 3	Thickness	t ₃	10.000	mm
		Minimum z-coordinate	Z _{3,min}	0.150	mm
		Maximum z-coordinate	Z _{3,max}	10.150	mm
Load		Pressure	p	5.000	kPa

Analytical Solution

Maximum deflection of the cantilever consists of the deflection due to the bending and shear:

$$u_{z,\max} = u_{z,\text{bending}} + u_{z,\text{shear}} \tag{30-1}$$

Verification Example: 0030 – Glass-Foil-Glass Cantilever Plate

Figure 1: Problem sketch

A maximum bending deflection of cantilever subjected to the constant pressure loading can be expressed by the following formula:

$$u_{z,\text{bending}} = \frac{1}{8} \frac{pdL^4}{El} \tag{30-2}$$

where *El* is the bending stiffness and in the case of composite beam consisting of three layers can be expressed as:

$$EI = \sum_{i=1}^{3} E_i I_i$$
 (30 - 3)

where E_i is each layer's Young's modulus and I_i its moment of inertia given by:

I

$$a_{i} = \frac{d(z_{i,\max}^{3} - z_{i,\min}^{3})}{3}$$
 (30 - 4)

A maximum shear deflection can be expressed as:

$$u_{z,\text{shear}} = \gamma_{xz} L \tag{30-5}$$

where $\gamma_{\rm xz}$ is a shear strain:

$$\gamma_{xz} = \frac{\tau_{xz}}{G_2} \tag{30-6}$$

where τ_{xz} is an equivalent stress acting on the cantilever's free end and can be approximately expressed by the following formula:

$$\tau_{xz} \approx \frac{p}{2} \tag{30-7}$$

Verification Example: 0030 – Glass-Foil-Glass Cantilever Plate

and G_2 is a foil shear modulus given by:

Figure 2: Shear deformation of the core

Using those formulae and input values tabulated above, outputs for deflections can be obtained:

$$u_{z,\text{bending}} = \frac{1}{8} \frac{pdL^4}{\sum_{i=1}^3 E_i \frac{d(z_{i,\text{max}}^3 - z_{i,\text{min}}^3)}{3}} = 12.808 \text{ mm}$$
$$u_{z,\text{shear}} = \frac{p(1 + \nu_2)}{E_2} L = 2.498 \text{ mm}$$
$$u_{z,\text{max}} = u_{z,\text{bending}} + u_{z,\text{shear}} = 15.306 \text{ mm}$$

RFEM 5 Settings

- Modeled in version RFEM 5.04.0108
- The element size is $l_{\rm FE} = 0.005$ m
- Geometrically linear analysis is considered
- The number of increments is 1
- The Mindlin plate theory is used
- Isotropic linear elastic material model is used
- Coupling of layers is considered

Results

Figure 3: RF-GLASS output

Figure 4: RFEM 5 output for solid

Figure 5: RFEM 5 output for plate

Structure File	Program	Entity	
0030.01	RFEM 5	Solid	
0030.02	RF-GLASS	Plate	
0030.03	RFEM 5	Plate	

Comparison of analytical solution with numerical result based on the laminate theory (RF-GLASS output) is tabulated below.

Analytical Solution	RF-GLASS			
u _{z,bending} [mm]	u _{z,bending} [mm]	Ratio [-]		
12.808	12.936	1.010		

Also good agreement of RFEM 5 output with analytical result was achieved.

Analytical	RFE	M 5	RFEM 5		
Solution	Sol	ids	Plates		
u _{z,max}	u _{z,max}	Ratio	u _{z,max}	Ratio	
[mm]	[mm]	[-]	[mm]	[-]	
15.306	15.638	1.022	15.740	1.028	

