Category: Geometrically Linear Analysis, Second-Order Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0048 - Uniaxial Bending with Pressure

0048 - Uniaxial Bending with Pressure

Description

A structure made of I-profile is fully fixed on the left end ($x=0$) and embedded into the sliding support on the right end. The structure consists of two segments according to the Figure 1 [1]. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.300	-
Geometry	Structure	Segment 1 Length	L_{1}	6.000	m
		Segment 2 Length	L_{2}	1.200	m
	Cross-Section	Height	h	400.000	mm
		Width	b	180.000	mm
		Web Thickness	s	10.000	mm
		Flange Thickness	t	14.000	mm
Load		Axial Force	F_{x}	100.000	kN
		Transverse Force	$F_{z}=F_{x} / 200$	0.500	kN

The self-weight is neglected in this example. Determine the maximum deflection of the structure $u_{z, \text { max }}$, the bending moment M_{y} on the fixed end, the rotation $\varphi_{2, y}$ of the segment 2 and the reaction force R_{Bz} by means of the Geometrically linear analysis and the second-order analysis.

Figure 1: Problem sketch

Analytical Solution

Geometrically linear analysis is carried out at first. In this case, the axial force F_{x} is not taken into account. The problem can be then solved as well as a cantilever of the length L_{1} loaded only by

Verification Example: 0048 - Uniaxial Bending with Pressure

the transverse force F_{z}. The maximum deflection $u_{z, \max }$ can be calculated using Mohr's integral and results into well-known expression

$$
\begin{equation*}
u_{z, \max }=\frac{F_{z} L_{1}^{3}}{3 E I_{y}}=0.743 \mathrm{~mm} \tag{48-1}
\end{equation*}
$$

where I_{y} is the quadratic moment of the cross-section to the y-axis ${ }^{1}$. The bending moment on the fixed end can be calculated according to the following formula

$$
\begin{equation*}
M_{y}(0)=F_{z} L_{1}=3.000 \mathrm{kNm} \tag{48-2}
\end{equation*}
$$

The rotation of the segment $2 \varphi_{2, y}$ is calculated from the geometric condition as follows

$$
\begin{equation*}
\varphi_{2, y}=\arctan \left(\frac{u_{z, \max }}{L_{2}}\right)=0.619 \mathrm{mrad} \tag{48-3}
\end{equation*}
$$

The reaction force in the sliding joint R_{Bz} can be obtained from the free body diagram shown in the Figure 2 as

$$
\begin{equation*}
R_{B z}=-\frac{F_{x} u_{z, \max }}{L_{2}}=0.000 \mathrm{kN} \tag{48-4}
\end{equation*}
$$

considering the zero effect of the axial force F_{x}. Because of the nonnegligible effect of the axial force F_{x} the second-order analysis should be considered. Thus the axial force F_{x} is taken into account and produces another contribution to the bending moment. The problem can be described by the free body diagram of the segments according to the Figure 2.

Figure 2: Free body of the structure
The unknown reaction forces can be obtained from the equilibrium equations.

$$
\begin{align*}
x: & R_{\mathrm{Ax}}=F_{x} \\
y: & R_{\mathrm{Az}}+R_{\mathrm{Bz}}-F_{z}=0 \\
M_{y \mathrm{~A}}: & F_{x} u_{z, \max }+R_{\mathrm{Bz}} L_{2}=0
\end{align*}
$$

The segment 1 is obviously loaded by the reaction forces R_{Ax} and R_{Az}

$$
{ }^{1} l_{y}=\frac{1}{12} t(h-2 s)^{3}+\frac{1}{6} b s^{3}+\frac{s b}{2}(h-s)^{2}=2.307 \cdot 10^{8} \mathrm{~mm}^{4}
$$

Verification Example: 0048 - Uniaxial Bending with Pressure

$$
\begin{align*}
& R_{A x}=F_{x} \tag{48-8}\\
& R_{A z}=F_{z}+\frac{F_{x} u_{z, \max }}{L_{2}} \tag{48-9}
\end{align*}
$$

which causes the total bending moment M_{y}

$$
\begin{equation*}
M_{y}=-R_{A z}\left(L_{1}-x\right)-R_{A x}\left(u_{z, \max }-u_{z}(x)\right) \tag{48-10}
\end{equation*}
$$

where $u_{z, \max }$ is the deflection at the point $x=L_{1}$. The solution can be found by the Euler-Bernoulli differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u_{z}}{\mathrm{~d} x^{2}}=-\frac{M_{y}}{E I_{y}} \tag{48-11}
\end{equation*}
$$

It can be rewritten into the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u_{z}}{\mathrm{~d} x^{2}}+\alpha^{2} u_{z}=-\frac{1}{E l_{y}}\left(F_{z}+\frac{F_{x} u_{z, \max }}{L_{2}}\right) x+\frac{1}{E l_{y}}\left(F_{z} L_{1}+\frac{F_{x} u_{z, \max } L_{1}}{L_{2}}+F_{x} u_{z, \max }\right) \tag{48-12}
\end{equation*}
$$

where α is defined as

$$
\begin{equation*}
\alpha=\sqrt{\frac{F_{x}}{E I_{y}}} \tag{48-13}
\end{equation*}
$$

The total solution consists of the homogeneous and the particular solution

$$
\begin{equation*}
u_{z}=C_{1} \cos (\alpha x)+C_{2} \sin (\alpha x)+u_{z \mathrm{P}} \tag{48-14}
\end{equation*}
$$

where C_{1} and C_{2} are the unknown constants, which can be obtained from the boundary conditions. The particular solution $u_{z \mathrm{p}}$ can be found in the form of the linear function

$$
\begin{equation*}
u_{z P}=C_{3} x+C_{4} \tag{48-15}
\end{equation*}
$$

where constants C_{3} and C_{4} can be calculated by substituting the particular solution and its derivatives into the differential equation (48-12). The constants then results

$$
\begin{align*}
& C_{3}=-\frac{F_{z}}{F_{x}}-\frac{u_{z, \max }}{L_{2}} \tag{48-16}\\
& C_{4}=\frac{F_{z} L_{1}}{F_{x}}+\frac{u_{z, \max } L_{1}}{L_{2}}+u_{z, \max } \tag{48-17}
\end{align*}
$$

Verification Example: 0048 - Uniaxial Bending with Pressure

The boundary conditions are obvious from the Figure 2.

$$
\begin{align*}
u_{z}(0) & =0 \tag{48-18}\\
u_{z}^{\prime}(0) & =0 \tag{48-19}\\
u_{z}\left(L_{1}\right) & =u_{z, \max } \tag{48-20}
\end{align*}
$$

From conditions (48-18) and (48-19) results constants C_{1}, C_{2}.

$$
\begin{align*}
& C_{1}=-C_{4} \tag{48-21}\\
& C_{2}=-\frac{C_{3}}{\alpha} \tag{48-22}
\end{align*}
$$

The constant $u_{z, \text { max }}$, which is the desired solution, results from the condition (48-20)

$$
\begin{equation*}
u_{z, \max }=\frac{F_{z} L_{2}\left[\alpha L_{1} \cos \left(\alpha L_{1}\right)-\sin \left(\alpha L_{1}\right)\right]}{F_{x}\left[\alpha \cos \left(\alpha L_{1}\right)\left(L_{1}+L_{2}\right)-\sin \left(\alpha L_{1}\right)\right]}=0.878 \mathrm{~mm} \tag{48-23}
\end{equation*}
$$

The bending moment on the fixed end can be calculated according to the following formula

$$
\begin{equation*}
M_{y}(0)=R_{A z} L_{1}+R_{A x} u_{z, \max }=3.527 \mathrm{kNm} \tag{48-24}
\end{equation*}
$$

The rotation of the segment $2 \varphi_{2, y}$ is calculated from the geometric condition as follows

$$
\begin{equation*}
\varphi_{2, y}=\arctan \left(\frac{u_{z, \max }}{L_{2}}\right)=0.732 \mathrm{mrad} \tag{48-25}
\end{equation*}
$$

The reaction force in the sliding joint R_{Bz} results

$$
\begin{equation*}
R_{B z}=-\frac{F_{x} u_{z, \max }}{L_{2}}=-0.073 \mathrm{kN} \tag{48-26}
\end{equation*}
$$

The general solution of the deflection $u_{z}(x)$ valid in the interval $x \in\left[0, L_{1}\right]$ can be written as follows

$$
u_{z}(x)=\frac{F_{z} L_{2}\left[-\cos \left(\alpha L_{1}\right) \alpha x+\cos \left(\alpha L_{1}\right) \sin (\alpha x)-\sin \left(\alpha L_{1}\right) \cos (\alpha x)+\sin \left(\alpha L_{1}\right)\right]}{F_{x}\left[\alpha L_{1} \cos \left(\alpha L_{1}\right)+\alpha L_{2} \cos \left(\alpha L_{1}\right)-\sin \left(\alpha L_{1}\right)\right]}
$$

It is obvious that the influence of the axial force F_{x} is considerable. The total deflection of the structure under the prescribed loading in case of the second-order analysis is approximately 18 $\%$ greater than in case of geometrically linear analysis. The comparison of the Geometrically linear analysis and the second-order analysis is shown in the Figure 3, considering the ratio of the loading forces $F_{z}=F_{x} / 200$. It is obvious that the difference between these analysis is more

Verification Example: 0048 - Uniaxial Bending with Pressure

considerable when the loading is grater. The second-order analysis solution is approaching the horizontal asymptote. The position of this asymptote can be calculated from the equation (4823) for $u_{z, \max }$ approaching the infinity, which means that the denominator equals zero.

$$
\begin{equation*}
\tan \left(\alpha L_{1}\right)-\alpha\left(L_{1}+L_{2}\right)=0 \tag{48-28}
\end{equation*}
$$

From the numerical solution of the equation (48-28) results the value of the horizontal asymptote $F_{x, \mathrm{cr}}=650.873 \mathrm{kN}$.

RFEM and RSTAB Settings

- Modeled in RFEM 5.05.0029 and RSTAB 8.05.0029 and RFEM 6.01, RSTAB 9.01
- The number of elements is 2 (one element per member)
- The number of increments is 5
- Isotropic linear elastic material model is used
- The structure is modeled using members
- Shear stiffness of the members is neglected

Results

Structure Files	Program	Method of Analysis
0048.01	RSTAB 8, RSTAB 9	Geometrically Linear Analysis
0048.02	RSTAB 8, RSTAB 9	Second-Order Analysis
0048.03	RFEM 5, RFEM 6	Geometrically Linear Analysis
0048.04	RFEM 5, RFEM 6	Second-Order Analysis

Figure 3: The comparison of the Geometrically linear analysis (dashed line) and the second-order analysis (solid line).

Verification Example: 0048 - Uniaxial Bending with Pressure

Method of Analysis	Analytical Solution	RSTAB 8		RFEM 5	
	$u_{z, \max }$ $[\mathrm{~mm}]$	$u_{z, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$	$u_{z, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$
Geometrically Linear Analy- sis	0.743	0.743	1.000	0.743	1.000
Second-Order Analysis	0.878	0.878	1.000	0.878	1.000

Method of Analysis	Analytical Solution	RSTAB 9		RFEM 6	
	$u_{z, \max }$ $[\mathrm{~mm}]$	$u_{z, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$	$u_{z, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$
Geometrically Linear Analy- sis	0.743	0.743	1.000	0.743	1.000
Second-Order Analysis	0.878	0.878	1.000	0.878	1.000

Method of Analysis	Analytical Solution	RSTAB 8		RFEM 5	
	$M_{y}(0)$ $[\mathrm{kNm}]$	$M_{y}(0)$ $[\mathrm{kNm}]$	Ratio $[-]$	$M_{y}(0)$ $[\mathrm{kNm}]$	Ratio $[-]$
Geometrically Linear Analy- sis	3.000	3.000	1.000	3.000	1.000
Second-Order Analysis	3.527	3.527	1.000	3.527	1.000

Method of Analysis	Analytical Solution	RSTAB 9		RFEM 6	
	$M_{y}(0)$ $[\mathrm{kNm}]$	$M_{y}(0)$ $[\mathrm{kNm}]$	Ratio $[-]$	$M_{y}(0)$ $[\mathrm{kNm}]$	Ratio $[-]$
Geometrically Linear Analy- sis	3.000	3.000	1.000	3.000	1.000
Second-Order Analysis	3.527	3.527	1.000	3.527	1.000

Verification Example: 0048 - Uniaxial Bending with Pressure

Method of Analysis	Analytical Solution	RSTAB 8		RFEM 5	
	$\varphi_{2, y}$ $[\mathrm{mrad}]$	$\varphi_{2, y}$ $[\mathrm{mrad}]$	Ratio $[-]$	$\varphi_{2, y}$ $[\mathrm{mrad}]$	Ratio $[-]$
Geometrically Linear Analy- sis	0.619	0.619	1.000	0.619	1.000
Second-Order Analysis	0.732	0.732	1.000	0.732	1.000

Method of Analysis	Analytical Solution	RSTAB 9		RFEM 6	
	$\varphi_{2, y}$ $[\mathrm{mrad}]$	$\varphi_{2, y}$ $[\mathrm{mrad}]$	Ratio $[-]$	$\varphi_{2, y}$ $[\mathrm{mrad}]$	Ratio $[-]$
Geometrically Linear Analy- sis	0.619	0.619	1.000	0.619	1.000
Second-Order Analysis	0.732	0.732	1.000	0.732	1.000

Method of Analysis	Analytical Solution	RSTAB 8		RFEM 5	
	$R_{B z}$ $[\mathrm{kN}]$	$R_{B z}$ $[\mathrm{kN}]$	Ratio $[-]$	R_{Bz} $[\mathrm{kN}]$	Ratio $[-]$
Geometrically Linear Analy- sis	0.000	0.000	-	0.000	-
Second-Order Analysis	-0.073	-0.073	1.000	-0.073	1.000

Method of Analysis	Analytical Solution	RSTAB 9		RFEM 6	
	R_{Bz} $[\mathrm{kN}]$	R_{Bz} $[\mathrm{kN}]$	Ratio $[-]$	R_{Bz} $[\mathrm{kN}]$	Ratio $[-]$
Geometrically Linear Analy- sis	0.000	0.000	-	0.000	-
Second-Order Analysis	-0.073	-0.073	1.000	-0.073	1.000

Verification Example: 0048 - Uniaxial Bending with Pressure

References

[1] LUMPE, G. and GENSICHEN, V. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software: Prüfbeispiele, Fehlerursachen, genaue Theorie. Ernst, 2014.

