Program: RFEM 5, RFEM 6, RSTAB 8, RSTAB 9

Category: Geometrically Linear Analysis, Second-Order Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0048 – Uniaxial Bending with Pressure

0048 – Uniaxial Bending with Pressure

Description

A structure made of I-profile is fully fixed on the left end (x = 0) and embedded into the sliding support on the right end. The structure consists of two segments according to the **Figure 1** [1]. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.300	_
Geometry	Structure	Segment 1 Length	L ₁	6.000	m
		Segment 2 Length	L ₂	1.200	m
	Cross-Section	Height	h	400.000	mm
		Width	b	180.000	mm
		Web Thickness	S	10.000	mm
		Flange Thickness	t	14.000	mm
Load		Axial Force	F _x	100.000	kN
		Transverse Force	$F_z = F_x/200$	0.500	kN

The self-weight is neglected in this example. Determine the maximum deflection of the structure $u_{z,\max}$, the bending moment M_y on the fixed end, the rotation $\varphi_{2,y}$ of the segment 2 and the reaction force R_{Bz} by means of the Geometrically linear analysis and the second-order analysis.

Figure 1: Problem sketch

Analytical Solution

Geometrically linear analysis is carried out at first. In this case, the axial force F_x is not taken into account. The problem can be then solved as well as a cantilever of the length L_1 loaded only by

the transverse force F_z . The maximum deflection $u_{z,max}$ can be calculated using Mohr's integral and results into well-known expression

$$u_{z,\max} = \frac{F_z L_1^3}{3El_v} = 0.743 \text{ mm}$$
 (48 - 1)

where I_y is the quadratic moment of the cross-section to the *y*-axis¹. The bending moment on the fixed end can be calculated according to the following formula

$$M_{\rm v}(0) = F_{\rm z} L_{\rm 1} = 3.000 \,\rm kNm \tag{48-2}$$

The rotation of the segment 2 $\varphi_{2,y}$ is calculated from the geometric condition as follows

$$\varphi_{2,y} = \arctan\left(\frac{u_{z,\max}}{L_2}\right) = 0.619 \,\mathrm{mrad}$$
 (48 - 3)

The reaction force in the sliding joint R_{Bz} can be obtained from the free body diagram shown in the **Figure 2** as

$$R_{\rm Bz} = -\frac{F_x u_{z,\rm max}}{L_2} = 0.000 \,\rm kN \tag{48-4}$$

considering the zero effect of the axial force F_x . Because of the nonnegligible effect of the axial force F_x the second-order analysis should be considered. Thus the axial force F_x is taken into account and produces another contribution to the bending moment. The problem can be described by the free body diagram of the segments according to the **Figure 2**.

Figure 2: Free body of the structure

The unknown reaction forces can be obtained from the equilibrium equations.

$$\alpha: \quad R_{Ax} = F_x \tag{48-5}$$

$$y: \quad R_{Az} + R_{Bz} - F_z = 0 \tag{48-6}$$

$$M_{\rm vA}: \quad F_{\rm x}u_{\rm z,max} + R_{\rm Bz}L_2 = 0 \tag{48-7}$$

The segment 1 is obviously loaded by the reaction forces R_{Ax} and R_{Az}

¹ $\overline{I_y = \frac{1}{12}t(h-2s)^3 + \frac{1}{6}bs^3 + \frac{5b}{2}(h-s)^2} = 2.307 \cdot 10^8 \text{ mm}^4$

$$R_{Ax} = F_x \tag{48-8}$$

$$R_{\rm Az} = F_z + \frac{F_x u_{z,\rm max}}{L_2} \tag{48-9}$$

which causes the total bending moment M_v

$$M_{y} = -R_{Az} \left(L_{1} - x \right) - R_{Ax} \left(u_{z, \max} - u_{z}(x) \right)$$
(48 - 10)

where $u_{z,max}$ is the deflection at the point $x = L_1$. The solution can be found by the Euler-Bernoulli differential equation

$$\frac{\mathrm{d}^2 u_z}{\mathrm{d}x^2} = -\frac{M_y}{E l_y} \tag{48-11}$$

It can be rewritten into the form

$$\frac{d^2 u_z}{dx^2} + \alpha^2 u_z = -\frac{1}{El_y} \left(F_z + \frac{F_x u_{z,max}}{L_2} \right) x + \frac{1}{El_y} \left(F_z L_1 + \frac{F_x u_{z,max} L_1}{L_2} + F_x u_{z,max} \right)$$
(48 - 12)

where α is defined as

$$\alpha = \sqrt{\frac{F_x}{El_y}} \tag{48-13}$$

The total solution consists of the homogeneous and the particular solution

$$u_z = C_1 \cos(\alpha x) + C_2 \sin(\alpha x) + u_{zP}$$
 (48 - 14)

where C_1 and C_2 are the unknown constants, which can be obtained from the boundary conditions. The particular solution u_{zP} can be found in the form of the linear function

$$u_{zP} = C_3 x + C_4 \tag{48-15}$$

where constants C_3 and C_4 can be calculated by substituting the particular solution and its derivatives into the differential equation (48 – 12). The constants then results

$$C_3 = -\frac{F_z}{F_x} - \frac{u_{z,\max}}{L_2}$$
(48 - 16)

$$C_4 = \frac{F_z L_1}{F_x} + \frac{u_{z,\max} L_1}{L_2} + u_{z,\max}$$
(48 - 17)

The boundary conditions are obvious from the Figure 2.

$$u_z(0) = 0 \tag{48-18}$$

- $u_z'(0) = 0$ (48 19)
- $u_z(L_1) = u_{z,\max}$ (48 20)

From conditions (48 – 18) and (48 – 19) results constants C_1 , C_2 .

$$C_1 = -C_4$$
 (48 - 21)

$$C_2 = -\frac{C_3}{\alpha} \tag{48-22}$$

The constant $u_{z,max}$, which is the desired solution, results from the condition (48 – 20)

$$u_{z,\max} = \frac{F_z L_2 \left[\alpha L_1 \cos(\alpha L_1) - \sin(\alpha L_1) \right]}{F_x \left[\alpha \cos(\alpha L_1) (L_1 + L_2) - \sin(\alpha L_1) \right]} = 0.878 \text{ mm}$$
(48 - 23)

The bending moment on the fixed end can be calculated according to the following formula

$$M_{\rm v}(0) = R_{\rm Az}L_1 + R_{\rm Ax}u_{\rm z,max} = 3.527 \,\rm kNm \tag{48-24}$$

The rotation of the segment 2 $\varphi_{\rm 2,y}$ is calculated from the geometric condition as follows

$$\varphi_{2,y} = \arctan\left(\frac{u_{z,\max}}{L_2}\right) = 0.732 \,\mathrm{mrad}$$
 (48 - 25)

The reaction force in the sliding joint R_{Bz} results

$$R_{\rm Bz} = -\frac{F_{\rm x}u_{\rm z,max}}{L_2} = -0.073 \,\rm kN \tag{48-26}$$

The general solution of the deflection $u_z(x)$ valid in the interval $x \in [0, L_1]$ can be written as follows

$$u_{z}(x) = \frac{F_{z}L_{2}\left[-\cos(\alpha L_{1})\alpha x + \cos(\alpha L_{1})\sin(\alpha x) - \sin(\alpha L_{1})\cos(\alpha x) + \sin(\alpha L_{1})\right]}{F_{x}\left[\alpha L_{1}\cos(\alpha L_{1}) + \alpha L_{2}\cos(\alpha L_{1}) - \sin(\alpha L_{1})\right]}$$
(48 - 27)

It is obvious that the influence of the axial force F_x is considerable. The total deflection of the structure under the prescribed loading in case of the second-order analysis is approximately 18 % greater than in case of geometrically linear analysis. The comparison of the Geometrically linear analysis and the second-order analysis is shown in the **Figure 3**, considering the ratio of the loading forces $F_z = F_x/200$. It is obvious that the difference between these analysis is more

considerable when the loading is grater. The second-order analysis solution is approaching the horizontal asymptote. The position of this asymptote can be calculated from the equation (48 – 23) for $u_{z,max}$ approaching the infinity, which means that the denominator equals zero.

$$\tan(\alpha L_1) - \alpha(L_1 + L_2) = 0 \tag{48-28}$$

From the numerical solution of the equation (48 – 28) results the value of the horizontal asymptote $F_{x,cr} = 650.873$ kN.

RFEM and RSTAB Settings

- Modeled in RFEM 5.05.0029 and RSTAB 8.05.0029 and RFEM 6.01, RSTAB 9.01
- The number of elements is 2 (one element per member)
- The number of increments is 5
- Isotropic linear elastic material model is used
- The structure is modeled using members
- Shear stiffness of the members is neglected

Results

Structure Files	Program	Method of Analysis
0048.01	RSTAB 8, RSTAB 9	Geometrically Linear Analysis
0048.02	RSTAB 8, RSTAB 9	Second-Order Analysis
0048.03	RFEM 5, RFEM 6	Geometrically Linear Analysis
0048.04	RFEM 5, RFEM 6	Second-Order Analysis

Figure 3: The comparison of the Geometrically linear analysis (dashed line) and the second-order analysis (solid line).

Method of Analysis	Analytical Solution	RSTAB 8		nalytical RSTAB 8 RFEM 5 Solution		M 5
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]	
Geometrically Linear Analy- sis	0.743	0.743	1.000	0.743	1.000	
Second-Order Analysis	0.878	0.878	1.000	0.878	1.000	

Method of Analysis	Analytical Solution	RSTAB 9		RFEM 6	
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]
Geometrically Linear Analy- sis	0.743	0.743	1.000	0.743	1.000
Second-Order Analysis	0.878	0.878	1.000	0.878	1.000

Method of Analysis	Analytical Solution	RSTAB 8		RFEM 5	
	<i>M</i> _y (0) [kNm]	<i>M</i> _y (0) [kNm]	Ratio [-]	<i>M</i> _y (0) [kNm]	Ratio [-]
Geometrically Linear Analy- sis	3.000	3.000	1.000	3.000	1.000
Second-Order Analysis	3.527	3.527	1.000	3.527	1.000

Method of Analysis	Analytical RSTAB 9 RFEM 6 Solution		RSTAB 9		M 6
	<i>M</i> _y (0) [kNm]	<i>M</i> _y (0) [kNm]	Ratio [-]	<i>M</i> _y (0) [kNm]	Ratio [-]
Geometrically Linear Analy- sis	3.000	3.000	1.000	3.000	1.000
Second-Order Analysis	3.527	3.527	1.000	3.527	1.000

Method of Analysis	Analytical Solution	RSTAB 8		RFE	M 5
	$arphi_{2,y}$ [mrad]	$arphi_{2,y}$ [mrad]	Ratio [-]	$arphi_{2,y}$ [mrad]	Ratio [-]
Geometrically Linear Analy- sis	0.619	0.619	1.000	0.619	1.000
Second-Order Analysis	0.732	0.732	1.000	0.732	1.000

Method of Analysis	Analytical Solution	RSTAB 9		AB 9 RFEM 6	
	$arphi_{2,y}$ [mrad]	$arphi_{2,y}$ [mrad]	Ratio [-]	$arphi_{2,y}$ [mrad]	Ratio [-]
Geometrically Linear Analy- sis	0.619	0.619	1.000	0.619	1.000
Second-Order Analysis	0.732	0.732	1.000	0.732	1.000

Method of Analysis	Analytical Solution	RSTAB 8		RFEM 5	
	R _{Bz} [kN]	R _{Bz} [kN]	Ratio [-]	R _{Bz} [kN]	Ratio [-]
Geometrically Linear Analy- sis	0.000	0.000	-	0.000	-
Second-Order Analysis	-0.073	-0.073	1.000	-0.073	1.000

Method of Analysis	Analytical Solution	RSTAB 9		Analytical RSTAB 9 RFEM 6 Solution		M 6
	R _{Bz} [kN]	R _{Bz} [kN]	Ratio [-]	R _{Bz} [kN]	Ratio [-]	
Geometrically Linear Analy- sis	0.000	0.000	-	0.000	-	
Second-Order Analysis	-0.073	-0.073	1.000	-0.073	1.000	

References

[1] LUMPE, G. and GENSICHEN, V. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software: Prüfbeispiele, Fehlerursachen, genaue Theorie. Ernst, 2014.