Program: RFEM 5, RSTAB 8

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Temperature Dependency, Member, Plate, Solid

Verification Example: 0076 – Truss Structure with Thermal Loading

0076 - Truss Structure with Thermal Loading

Description

A truss structure consists of three rods - one steel (no. 2) and two copper (no. 1, 3) joined by a rigid member. The structure is loaded by a concentrated force F and by a temperature difference T_c according to **Figure 1**, see also [1].

Material	Steel	Modulus of Elasticity	E _s	210000.000	MPa
		Poisson's Ratio	$ u_{s}$	0.300	—
		Coefficient of Thermal Expansion	$\alpha_{\rm s}$	1.200×10 ⁻⁵	°C ⁻¹
	Copper	Modulus of Elasticity	E _c	130000.000	MPa
		Poisson's Ratio	$ u_{c}$	0.354	_
		Coefficient of Thermal Expansion	α_{c}	2.000×10 ⁻⁵	°C ⁻¹
Geometry		Cross-section Width	а	10.000	mm
		Length	L	500.000	mm
Load		Concentrated Force	F	1000.000	N
		Thermal Loading	T _c	30.000	°C

Verification Example: 0076 – Truss Structure with Thermal Loading

While neglecting self-weight, determine the total deflection u_z of the structure.

Analytical Solution

The total deflection u_z of the structure consists of the deflection u_{zF} caused by the concentrated force and the deflection u_{zT} by the thermal loading. Due to small-deformation linear analysis, the total deflection can be written as the sum of these deflections

$$u_z = u_{zF} + u_{zT} \tag{76-1}$$

Concentrated-Force Loading

The extension ΔL of the rod with length L and cross-section area A due to the axial force N can generally be expressed by the following formula

$$\Delta L = \frac{NL}{EA} \tag{76-2}$$

This applies to both steel and copper rods

$$\Delta L_{s} = \frac{N_{s}L}{E_{s}A}$$
(76 - 3)

$$\Delta L_c = \frac{c}{E_c A} \tag{76-4}$$

Due to the rigid-beam coupling and symmetry, the extension of both steel and copper rods has to be identical

$$\Delta L_{\rm s} = \Delta L_{\rm c} \tag{76-5}$$

The force equilibrium can be derived from the free body diagram

$$F = N_{\rm s} + 2N_{\rm c} \tag{76-6}$$

Using equations (76 - 5) and (76 - 6), the inner forces in steel and cooper rod are determined

$$N_{s} = \frac{FE_{s}}{(2E_{c} + E_{s})} \tag{76-7}$$

$$N_c = \frac{FE_c}{(2E_c + E_s)} \tag{76-8}$$

The deflection of the truss structure due to the force loading is then

$$u_{zF} = \frac{N_s L}{E_s A} \approx 0.106 \text{ mm}$$
 (76 - 9)

Verification Example: 0076 – Truss Structure with Thermal Loading

Thermal Loading

The extension ΔL of the rod with length L due to the temperature difference T_c can generally be expressed by the following formula:

$$\Delta L = \alpha L T_c \tag{76-10}$$

Due to the different coefficient of the thermal expansion of steel and copper, the rods will be further pressed or tensioned by additional axial forces.

$$\Delta L_{s} = \alpha_{s} L T_{c} + \frac{N_{s} L}{E_{s} A}$$
(76 - 11)

$$\Delta L_c = \alpha_c L T_c - \frac{N_c L}{E_c A} \tag{76-12}$$

And as before, due to the rigid beam coupling and symmetry, the extensions of both steel and copper rods have to be identical

$$\Delta L_s = \Delta L_c \tag{76-13}$$

From the force equilibrium

$$2N_c - N_s = 0 (76 - 14)$$

the inner axial force in the copper rod can be determined

$$N_c = \frac{(\alpha_c - \alpha_s)T_cA}{\frac{1}{F_c} + \frac{2}{F_c}}$$
(76 - 15)

The deflection of the structure is then calculated according to (76 - 11) and (76 - 12)

$$u_{zT} \approx 0.246 \,\mathrm{mm}$$
 (76 – 16)

Finally, the total deflection of the structure is

$$u_z = u_{zF} + u_{zT} \approx 0.353 \,\mathrm{mm}$$
 (76 - 17)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.16.01 and RSTAB 8.16.01
- The element size is $I_{\rm FE}=0.050$ m, for Solid model $I_{\rm FE}=0.010$ m
- Isotropic linear elastic model is used

Results

Structure Files	Program	Entity
0076.01	RFEM 5	Member
0076.02	RSTAB 8	Member
0076.03	RFEM 5	Plate
0076.04	RFEM 5	Solid

Model	Analytical Solution	RFEM 5 / RSTAB 8 Solution	
	<i>u_z</i> [mm]	u _z [mm]	Ratio [-]
RFEM 5, Member		0.353	1.000
RSTAB 8, Member	STAB 8, Member		1.000
RFEM 5, Plate	0.555	0.354	1.003
RFEM 5, Solid		0.354	1.003

Figure 2: The truss structure modeled in RFEM 5

References

[1] TIMOSHENKO, S. Strength of Material, Part I, Elementary Theory and Problems, 3rd Edition. D. Van Nostrand Co., Inc., New York, NY, 1955.

