Kample (

Program: RFEM 5

Category: Member, Plate, Solid

Verification Example: 0081 – Center of Gravity

0081 - Center of Gravity

Description

Determine the y-position of the center of gravity Y_{C}^{1} for the following bodies described in **Figure 1**, namely semicircle, half-disc, hemispherical shell and half-ball.

Figure 1: Problem Sketch

Analytical Solution

The calculation of the center of gravity position is based on the following equation, [1]

$$Y_{\rm C} = \frac{1}{G} \int_{G} y \, \mathrm{d}G. \tag{81-1}$$

The gravitational force G can be further defined for the gravitational acceleration g and constant density ρ

$$\mathrm{d}G = g\,\mathrm{d}m = g\rho\,\mathrm{d}V. \tag{81-2}$$

Considering these relations, the calculation of the center of gravity position for the volumetric, flat and wire body can be determined.

¹ The remaining coordinates of the center of gravity $X_{\rm C}$, $Z_{\rm C}$ coincide with the axis of symmetry for the corresponding body.

Verification Example: 0081 – Center of Gravity

$$Y_{\rm C} = \frac{1}{V} \int_{V} y \, \mathrm{d}V \tag{81-3}$$

$$Y_{\rm C} = \frac{1}{A} \int_{A} y \, \mathrm{d}A \tag{81-4}$$

$$Y_{\rm C} = \frac{1}{L} \int_{L} y \, \mathrm{d}L \tag{81-5}$$

The center of gravity of the semicircle (wire) can be calculated from the arc length element $ds = r d\varphi$, the *y*-coordinate is defined as $y = r \sin \varphi$.

$$Y_{\rm C} = \frac{\int_{0}^{\pi} r \sin \varphi r \, \mathrm{d}\varphi}{\int_{0}^{\pi} r \, \mathrm{d}\varphi} = \frac{2r}{\pi} \approx 0.637 \, \mathrm{m} \tag{81-6}$$

For the center of gravity of the semicircle (plate) the circular pattern area is used, $dA = \frac{1}{2}r^2 d\varphi$, $y = \frac{2}{3}r \sin \varphi$.

$$Y_{\rm C} = \frac{\int_{0}^{\pi} \frac{2}{3} r \sin \varphi \frac{1}{2} r^2 \, \mathrm{d}\varphi}{\int_{0}^{\pi} \frac{1}{2} r^2 \, \mathrm{d}\varphi} = \frac{4r}{3\pi} \approx 0.424 \, \mathrm{m}$$
(81 - 7)

For the hemisphere shell the area element is defined as $dA = 2\pi x ds$, $x = r \cos \varphi$, $y = r \sin \varphi$.

$$Y_{\rm C} = \frac{\int\limits_{0}^{\pi/2} 2\pi r^3 \sin\varphi \cos\varphi \,\mathrm{d}\varphi}{\int\limits_{0}^{\pi/2} 2\pi r^2 \sin\varphi \,\mathrm{d}\varphi} = \frac{r}{2} = 0.500 \,\mathrm{m} \tag{81-8}$$

The volumetric element of the hemisphere is defined as $dV = \pi x^2 dy$, where $x^2 = r^2 - y^2$.

$$Y_{\rm C} = \frac{\int\limits_{0}^{r} y\pi(r^2 - y^2) \,\mathrm{d}y}{\int\limits_{0}^{r} \pi(r^2 - y^2) \,\mathrm{d}y} = \frac{3r}{8} = 0.375 \,\mathrm{m} \tag{81-9}$$

RFEM 5 Settings

- Modeled in RFEM 5.09.01
- Element size is $I_{\rm FE} = 0.050$ m

Results

Structure File	Program
0081.01	RFEM 5

Verification Example: 0081 – Center of Gravity					
<i>Y</i> _C [m]	Analytical Solution	RFEM 5	Ratio		
Semicircle (wire)	0.637	0.636	0.998		
Semicircle (plate)	0.424	0.424	1.000		
Hemisphere (shell)	0.500	0.500	1.000		
Hemisphere (volume)	0.375	0.375	1.000		

References

[1] STEJSKAL, V., BŘEZINA, J. and KNĚZŮ, A. Mechanika I. Vydavatelství ČVUT v Praze, 2008.

