Program: RFEM 5

Category: Member, Plate, Solid

Verification Example: 0081 - Center of Gravity

0081 - Center of Gravity

Description

Determine the y-position of the center of gravity $Y_{C}{ }^{1}$ for the following bodies described in Figure 1, namely semicircle, half-disc, hemispherical shell and half-ball.

Figure 1: Problem Sketch

Analytical Solution

The calculation of the center of gravity position is based on the following equation, [1]

$$
\begin{equation*}
Y_{C}=\frac{1}{G} \int_{G} y \mathrm{~d} G \tag{81-1}
\end{equation*}
$$

The gravitational force G can be further defined for the gravitational acceleration g and constant density ρ

$$
\begin{equation*}
\mathrm{d} G=g \mathrm{~d} m=g \rho \mathrm{~d} V \tag{81-2}
\end{equation*}
$$

Considering these relations, the calculation of the center of gravity position for the volumetric, flat and wire body can be determined.

[^0]
Verification Example: 0081 - Center of Gravity

$$
\begin{align*}
& Y_{C}=\frac{1}{V} \int_{V} y \mathrm{~d} V \tag{81-3}\\
& Y_{C}=\frac{1}{A} \int_{A} y \mathrm{~d} A \tag{81-4}\\
& Y_{C}=\frac{1}{L} \int_{L} y \mathrm{~d} L \tag{81-5}
\end{align*}
$$

The center of gravity of the semicircle (wire) can be calculated from the arc length element $\mathrm{ds}=$ $r \mathrm{~d} \varphi$, the y-coordinate is defined as $y=r \sin \varphi$.

$$
\begin{equation*}
Y_{\mathrm{C}}=\frac{\int_{0}^{\pi} r \sin \varphi r \mathrm{~d} \varphi}{\int_{0}^{\pi} r \mathrm{~d} \varphi}=\frac{2 r}{\pi} \approx 0.637 \mathrm{~m} \tag{81-6}
\end{equation*}
$$

For the center of gravity of the semicircle (plate) the circular pattern area is used, $\mathrm{d} A=\frac{1}{2} r^{2} \mathrm{~d} \varphi$, $y=\frac{2}{3} r \sin \varphi$.

$$
\begin{equation*}
Y_{\mathrm{C}}=\frac{\int_{0}^{\pi} \frac{2}{3} r \sin \varphi \frac{1}{2} r^{2} \mathrm{~d} \varphi}{\int_{0}^{\pi} \frac{1}{2} r^{2} \mathrm{~d} \varphi}=\frac{4 r}{3 \pi} \approx 0.424 \mathrm{~m} \tag{81-7}
\end{equation*}
$$

For the hemisphere shell the area element is defined as $\mathrm{d} A=2 \pi x \mathrm{ds}, x=r \cos \varphi, y=r \sin \varphi$.

$$
\begin{equation*}
Y_{\mathrm{C}}=\frac{\int_{0}^{\pi / 2} 2 \pi r^{3} \sin \varphi \cos \varphi \mathrm{~d} \varphi}{\int_{0}^{\pi / 2} 2 \pi r^{2} \sin \varphi \mathrm{~d} \varphi}=\frac{r}{2}=0.500 \mathrm{~m} \tag{81-8}
\end{equation*}
$$

The volumetric element of the hemisphere is defined as $\mathrm{d} V=\pi x^{2} \mathrm{~d} y$, where $x^{2}=r^{2}-y^{2}$.

$$
\begin{equation*}
Y_{\mathrm{C}}=\frac{\int_{0}^{r} y \pi\left(r^{2}-y^{2}\right) \mathrm{d} y}{\int_{0}^{r} \pi\left(r^{2}-y^{2}\right) d y}=\frac{3 r}{8}=0.375 \mathrm{~m} \tag{81-9}
\end{equation*}
$$

RFEM 5 Settings

- Modeled in RFEM 5.09.01
- Element size is $I_{\mathrm{FE}}=0.050 \mathrm{~m}$

Results

Structure File	Program
0081.01	RFEM 5

Verification Example: 0081 - Center of Gravity

$Y_{C}[\mathrm{~m}]$	Analytical Solution	RFEM 5	Ratio
Semicircle (wire)	0.637	0.636	0.998
Semicircle (plate)	0.424	0.424	1.000
Hemisphere (shell)	0.500	0.500	1.000
Hemisphere (volume)	0.375	0.375	1.000

References

[1] STEJSKAL, V., BŘEZINA, J. and KNĚZŮ, A. Mechanika I. Vydavatelství ČVUT v Praze, 2008.

[^0]: ${ }^{1}$ The remaining coordinates of the center of gravity $X_{\mathrm{C}}, Z_{\mathrm{C}}$ coincide with the axis of symmetry for the corresponding body.

