Program: RFEM 5

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Shell

Verification Example: 0083 - Scordelis-Lo Roof

0083 - Scordelis-Lo Roof

Description

A shell roof structure under pressure load *p* is modeled, where the straight edges are free, while at the curved edges the *y*- and *z*-translations are constrained, cf. **Figure 1**.

Neglecting self-weight, compute the maximal (absolute) vertical deflection $u_{z,\max}$, and compare the results with °COMSOL Multiphysics 4.3, see [1]. The problem is described by the following set of parameters.

Material	Modulus of Elasticity	Е	432.000 N	
	Poisson's Ratio	ν	0.000	_
Geometry	Roof Radius	R	25.000	
	Roof Angle	θ	40.000	٥
	Length	L	50.000	m
	Thickness	t	0.250	m
Load	Pressure	р	90.000	Pa

Note that the given pressure p is equivalent to the self-weight of the roof, if its specific weight equals to $\gamma = 360.000 \, \text{N/m}^3$.

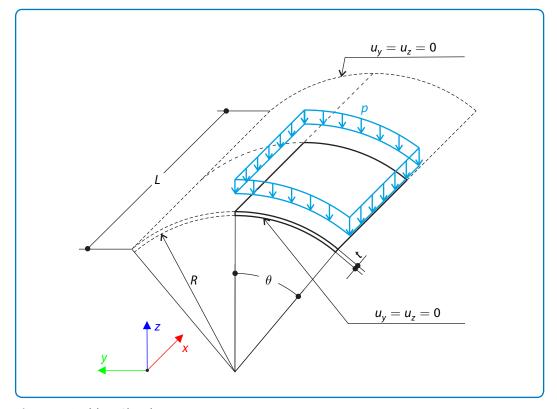


Figure 1: Problem Sketch

Verification Example: 0083 - Scordelis-Lo Roof

Analytical Solution

The theoretical value for the given problem is referenced to be¹

$$u_{\rm z,max} \approx -0.3086 \ {\rm m},$$
 (83 – 1)

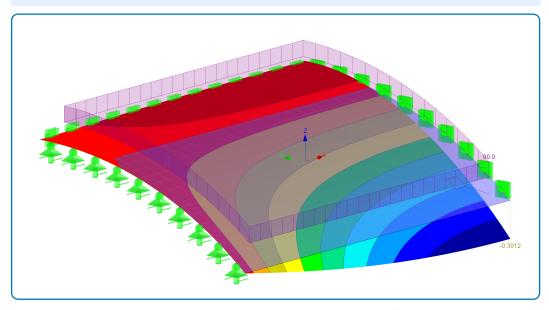
while, finite-element solutions tend to converge to a slightly lower value, reportedly to $-0.302 \, \text{m}$.

Due to symmetry, only one-quarter of the roof is considered, augmented with symmetry boundary conditions at the inner edges.

RFEM 5 Settings

- Modeled in RFEM 5.11.01
- Element size is $I_{FE} = 0.9 \text{ m}$
- The number of increments is 1
- Isotropic linear elastic material (to incorporate the Lynn-Dhillon plate bending element) and Isotropic nonlinear elastic 2D/3D with the option *Linear only* (for the MITC4 element) is used

Results


Structure File	Program	Entity		
0083.01	RFEM 5	Shell		

Analytical	RFEM 5		RFEM 5		COMSOL Multiphysics 4.3	
Solution	Lynn-Dhillon elements		MITC4 elements			
u _{z,max}	<i>u_{z,max}</i>	Ratio	<i>u_{z,max}</i>	Ratio	<i>u_{z,max}</i>	Ratio
[m]	[m]	[-]	[m]	[-]	[m]	[-]
-0.3086	-0.3012	0.9760	-0.3019	0.9783	-0.3015	0.9770

Note that there were 609 quadrilateral elements used in RFEM 5, while the comparable COMSOL results [1] have been obtained for 580.

 $^{^{1}\,}$ See [1] and the references therein, especially [2].

Verification Example: 0083 - Scordelis-Lo Roof

Figure 2: RFEM 5 shell results with Lynn-Dhillon elements - global deflection u_z [m]

References

- [1] COMSOL INC., Scordelis-Lo Roof Shell Benchmark. 2012.
- [2] MACNEAL, R. H. and HARDER, R. L.. Proposed standard set of problems to test finite element accuracy. *Finite Elements in Analysis and Design*, 1, 1985.