Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Shell

Verification Example: 0085 - Thin-Walled Conical Vessel with Hydrostatic Pressure

0085 - Thin-Walled Conical Vessel with Hydrostatic Pressure

Description

A thin-walled conical vessel of height h and peak angle 2φ is filled with water. Thus, it is loaded by the hydrostatic pressure according to Figure 1. While neglecting self-weight, determine the stresses σ_{1} and σ_{2} at the test point at height $h_{0}=1.000 \mathrm{~m}$.

Material	Modulus of Elasticity	E	210000.000	MPa
	Poisson's Ratio	ν	0.296	-
Geometry	Vessel Height	h	2.000	m
	Shell Thickness	t	1.000	mm
	Vessel Angle	φ	$\pi / 6$	rad
Load	Water Specific Weight	γ	9810.000	$\mathrm{~N} / \mathrm{mm}^{3}$

Figure 1: Problem Sketch

Analytical Solution

The analytical solution is based on the theory of thin-walled vessels. This theory was introduced in Verification Example 0084, see [1]. The stress state of the thin-walled vessel is described by the Laplace equation

$$
\begin{equation*}
\frac{\sigma_{1}}{R_{1}}+\frac{\sigma_{2}}{R_{2}}=\frac{p}{t} \tag{85-1}
\end{equation*}
$$

where σ_{1}, σ_{2} are stresses in surface line and circumferential direction respectively and R_{1}, R_{2} are the radii in the corresponding directions. The mentioned stresses correspond to the principal stresses. The pressure p is in this case equal to the hydrostatic pressure ${ }^{1}$

[^0]
Verification Example: 0085 - Thin-Walled Conical Vessel with Hydrostatic Pressure

$$
\begin{equation*}
p=h \rho g=\gamma h . \tag{85-2}
\end{equation*}
$$

The radius R_{1} for the conical vessel is equal to $R_{1} \approx \infty$. The radius R_{2} can be expressed, in accordance with the sketch in Figure 2, considering $r=z \tan \varphi$

$$
\begin{equation*}
R_{2}=\frac{r}{\cos \varphi}=z \frac{\sin \varphi}{\cos ^{2} \varphi} . \tag{85-3}
\end{equation*}
$$

Figure 2: Sketch of used dimensions of conical vessel
The pressure in the depth $h-z$ is equal to

$$
\begin{equation*}
p(z)=\gamma(h-z) \tag{85-4}
\end{equation*}
$$

Substituting into the the equation (85-1), circumferential stress σ_{2} can be obtained

$$
\begin{equation*}
\sigma_{2}=\frac{\gamma(h-z) z \sin \varphi}{t \cos ^{2} \varphi} . \tag{85-5}
\end{equation*}
$$

An additional equation has to be defined to obtain the remaining stress σ_{1}. The internal and external forces have to be equal. Furthermore, the external force Q due to the hydrostatic pressure is equal to the gravity force caused by the height of the water column

$$
\begin{align*}
& Q=\sigma_{1} 2 \pi r t \cos \varphi \tag{85-6}\\
& Q=\gamma\left[\pi r^{2}(h-z)+\frac{1}{3} \pi r^{2} z\right] . \tag{85-7}
\end{align*}
$$

The desired stress σ_{1} can then be determined using (85-6)-(85-7)

$$
\begin{equation*}
\sigma_{1}=\frac{\gamma z \sin \varphi}{2 t \cos ^{2} \varphi}\left(h-\frac{2}{3} z\right) . \tag{85-8}
\end{equation*}
$$

For the test point at height $z=1.000 \mathrm{~m}$, the above mentioned quantities can be calculated

Verification Example: 0085 - Thin-Walled Conical Vessel with Hydrostatic Pressure

$$
\begin{aligned}
& \sigma_{1} \approx 9.249 \mathrm{MPa}, \\
& \sigma_{2} \approx 13.873 \mathrm{MPa} .
\end{aligned}
$$

RFEM 5 Settings

- Modeled in RFEM 5.12.02
- Element size is $I_{\mathrm{FE}}=0.025 \mathrm{~m}$
- The number of increments is 10
- Isotropic linear elastic material is used
- Kirchhoff plate bending theory is used

Note that the hydrostatic pressure can be conveniently modeled by means of Free Rectangular Load in RFEM 5 according to Figure 3. The pressure at the top edge $(z=2.000 \mathrm{~m})$ is equal to $p_{1}=0.000 \mathrm{~N} / \mathrm{m}^{2}$ and the pressure at the bottom of the vessel $(z=0.000 \mathrm{~m})$ is defined by the equation for the hydrostatic pressure $(85-2)$ and $p_{2}=-19620.000 \mathrm{~N} / \mathrm{m}^{2}$.

Figure 3: Free Rectangular Load definition in RFEM 5

Results

Structure File	Program
0085.01	RFEM 5

Verification Example: 0085 - Thin-Walled Conical Vessel with Hydrostatic Pressure

Remark: The stresses σ_{1} and σ_{2} are evaluated at the middle surface of the conical vessel. The corresponding stresses in RFEM 5 are $\sigma_{2, m}$ and $\sigma_{1, m}$, respectively.

Quantity	Analytical Solution	RFEM 5	Ratio
$\sigma_{1}[\mathrm{MPa}]$	9.249	9.264	1.002
$\sigma_{2}[\mathrm{MPa}]$	13.873	13.982	1.008

Figure 4: Von Mises stress distribution, Free Rectangular Load for the hydrostatic pressure and the test point location in RFEM 5

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0084 - Thin-walled Spherical Vessel. 2017.

[^0]: ${ }^{1}$ The specific wheight γ is equal to $\gamma=\rho g$, where ρ is the fluid density and g is the gravitational acceleration.

