Program: RFEM 5

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Shell

Verification Example: 0085 – Thin-Walled Conical Vessel with Hydrostatic Pressure

0085 – Thin-Walled Conical Vessel with Hydrostatic Pressure

Description

A thin-walled conical vessel of height h and peak angle 2φ is filled with water. Thus, it is loaded by the hydrostatic pressure according to **Figure 1**. While neglecting self-weight, determine the stresses σ_1 and σ_2 at the test point at height $h_0 = 1.000$ m.

Material	Modulus of Elasticity	Ε	210000.000	MPa
	Poisson's Ratio	ν	0.296	_
Geometry	Vessel Height	h	2.000	m
	Shell Thickness	t	1.000	mm
	Vessel Angle	arphi	$\pi/6$	rad
Load	Water Specific Weight	γ	9810.000	N/mm ³

Figure 1: Problem Sketch

Analytical Solution

The analytical solution is based on the theory of thin-walled vessels. This theory was introduced in Verification Example 0084, see [1]. The stress state of the thin-walled vessel is described by the Laplace equation

$$\frac{\sigma_1}{R_1} + \frac{\sigma_2}{R_2} = \frac{p}{t},$$
(85 - 1)

where σ_1 , σ_2 are stresses in surface line and circumferential direction respectively and R_1 , R_2 are the radii in the corresponding directions. The mentioned stresses correspond to the principal stresses. The pressure p is in this case equal to the hydrostatic pressure¹

¹ The specific wheight γ is equal to $\gamma = \rho g$, where ρ is the fluid density and g is the gravitational acceleration.

Verification Example: 0085 – Thin-Walled Conical Vessel with Hydrostatic Pressure

$$\boldsymbol{p} = h\rho \boldsymbol{g} = \gamma h. \tag{85-2}$$

The radius R_1 for the conical vessel is equal to $R_1 \approx \infty$. The radius R_2 can be expressed, in accordance with the sketch in **Figure 2**, considering $r = z \tan \varphi$

$$R_2 = \frac{r}{\cos\varphi} = z \frac{\sin\varphi}{\cos^2\varphi}.$$
 (85 - 3)

Figure 2: Sketch of used dimensions of conical vessel

The pressure in the depth h - z is equal to

$$p(z) = \gamma(h-z). \tag{85-4}$$

Substituting into the the equation (85 – 1), circumferential stress σ_2 can be obtained

$$\sigma_2 = \frac{\gamma(h-z)z\sin\varphi}{t\cos^2\varphi}.$$
(85 - 5)

An additional equation has to be defined to obtain the remaining stress σ_1 . The internal and external forces have to be equal. Furthermore, the external force Q due to the hydrostatic pressure is equal to the gravity force caused by the height of the water column

$$Q = \sigma_1 2\pi r t \cos \varphi, \qquad (85-6)$$

$$Q = \gamma \left[\pi r^2 (h - z) + \frac{1}{3} \pi r^2 z \right].$$
(85 - 7)

The desired stress σ_1 can then be determined using (85 – 6) - (85 – 7)

$$\sigma_1 = \frac{\gamma z \sin \varphi}{2t \cos^2 \varphi} \left(h - \frac{2}{3} z \right). \tag{85-8}$$

For the test point at height z = 1.000 m, the above mentioned quantities can be calculated

Verification Example: 0085 – Thin-Walled Conical Vessel with Hydrostatic Pressure

$\sigma_{1} pprox$ 9.249 MPa,	(85 – 9)
$\sigma_{\rm 2} pprox$ 13.873 MPa.	(85 – 10)

RFEM 5 Settings

- Modeled in RFEM 5.12.02
- Element size is $I_{\rm FE} = 0.025$ m
- The number of increments is 10
- Isotropic linear elastic material is used
- Kirchhoff plate bending theory is used

Note that the hydrostatic pressure can be conveniently modeled by means of Free Rectangular Load in RFEM 5 according to **Figure 3**. The pressure at the top edge (z = 2.000 m) is equal to $p_1 = 0.000 \text{ N/m}^2$ and the pressure at the bottom of the vessel (z = 0.000 m) is defined by the equation for the hydrostatic pressure (**85 – 2**) and $p_2 = -19620.000 \text{ N/m}^2$.

1 IAI		\$	
Projection Plane of Load	Load Direction		
○ XY Plane ○ YZ Plane ◉ XZ Plane	Local related to true area:	○ x ○ y ● z	X 2P2
Load Distribution and Magnitude	Global related to true area:	O XL O YL O ZL	
Linear in Z 1 1 1 1 0.0 1 N/m ²] 1 19620.0 1 N/m ²]	Global related to projected area:	○ XP ○ YP ○ ZP	Dixyz)
Load Position			
X [m] Z [m] 1: -2.000 ♥ 2: 2.000 ♥	Y [m]		Load Direction 'z'
Comment		~ 🖻	H _z

Figure 3: Free Rectangular Load definition in RFEM 5

Results

Structure File	Program
0085.01	RFEM 5

Verification Example: 0085 – Thin-Walled Conical Vessel with Hydrostatic Pressure

Remark: The stresses σ_1 and σ_2 are evaluated at the middle surface of the conical vessel. The corresponding stresses in RFEM 5 are $\sigma_{2,m}$ and $\sigma_{1,m}$, respectively.

Quantity	Analytical Solution	RFEM 5	Ratio
σ_1 [MPa]	9.249	9.264	1.002
σ_{2} [MPa]	13.873	13.982	1.008

Figure 4: Von Mises stress distribution, Free Rectangular Load for the hydrostatic pressure and the test point location in RFEM 5

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0084 – Thin-walled Spherical Vessel. 2017.

