Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Member, Dynamics

Verification Example: 0111 – Torsional Vibrations

0111 – Torsional Vibrations

Description

A double-mass system consists of two shafts of diameters d_1 , d_2 and two masses represented by the corresponding moments of inertia I_{x1} , I_{x2} , concentrated in given distance as nodal masses. The left shaft is fixed, and the right mass is free according to **Figure 1**. Neglecting the self-weight of the shafts, determine the torsional natural frequencies of the system (direction φ_x). The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Shear Modulus	G	81000.000	MPa
Geometry		Cross-section Diameter	d ₁	20.000	mm
		Cross-section Diameter	d ₂	40.000	mm
		Mass Moment of Inertia	<i>I</i> _{x1}	1.000	kgm ²
		Mass Moment of Inertia	l _{x2}	0.700	kgm ²
		Shaft Length	L	0.500	m

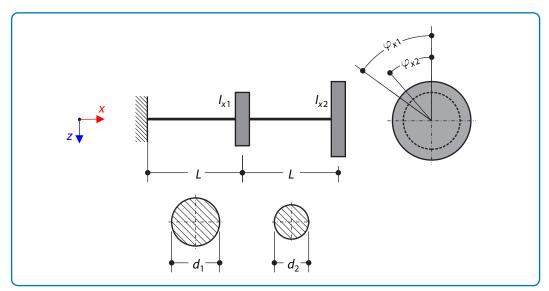


Figure 1: Problem Sketch

Analytical Solution

The system of equations for the torsional motion, assuming that $\varphi_{\rm x1}>\varphi_{\rm x2}$, is described as

$$\boldsymbol{M}\ddot{\varphi}_{\boldsymbol{x}} + \boldsymbol{K}\varphi_{\boldsymbol{x}} = 0 \tag{111-1}$$

$$\begin{bmatrix} I_{x1} & 0\\ 0 & I_{x2} \end{bmatrix} \begin{bmatrix} \ddot{\varphi}_{x1}\\ \ddot{\varphi}_{x2} \end{bmatrix} + \begin{bmatrix} k_1 & -k_1\\ -k_1 & k_1 + k_2 \end{bmatrix} \begin{bmatrix} \varphi_{x1}\\ \varphi_{x2} \end{bmatrix} = 0$$
(111-2)

where the torsional stiffnesses $\boldsymbol{k}_1, \boldsymbol{k}_2$ are determined as

$$=\frac{\pi Gd_{1}^{4}}{32L}$$
(111 - 3)

$$k_2 = \frac{\pi G d_2^4}{32L} \tag{111-4}$$

The eigenvalue problem

$$\det\left(\boldsymbol{K}-\boldsymbol{\varOmega}^{2}\boldsymbol{M}\right)=0 \tag{111-5}$$

yields the angular frequencies Ω_1 and Ω_2 , whence the natural frequencies f_1, f_2 are calculated as follows

 k_1

$$f_1 = \frac{\Omega_1}{2\pi} \approx 7.779 \,\mathrm{Hz}$$
 (111 – 6)

$$f_2 = \frac{\Omega_2}{2\pi} \approx 39.615 \,\mathrm{Hz}$$
 (111 - 7)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.09.01 and RSTAB 8.09.01
- The element size is $I_{\rm FE} = 0.050$ m
- The number of increments is 10
- Isotropic linear elastic model is used

Results

Structure Files	Program	Member Type	
0111.01	RFEM 5 - RF-DYNAM Pro	Beam	
0111.02	RSTAB 8 - DYNAM Pro	Beam	
0111.03	RFEM 5 - RF-DYNAM Pro	Definable Stiffness	
0111.04	RSTAB 8 - DYNAM Pro	Definable Stiffness	

Verification Example: 0111 – Torsional Vibrations

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	f ₁ [Hz]	f ₁ [Hz]	Ratio [-]
RFEM 5, Beam		7.779	1.000
RFEM 8, Beam		7.779	1.000
RFEM 5, Definable Stiffness	7.779	7.779	1.000
RFEM 8, Definable Stiffness		7.779	1.000

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	f ₂ [Hz]	f ₂ [Hz]	Ratio [-]
RFEM 5, Beam		39.615	1.000
RSTAB 8, Beam		39.615	1.000
RFEM 5, Definable Stiffness	39.615	39.615	1.000
RSTAB 8, Definable Stiffness		39.615	1.000