Category: Large Deformation Analysis, Isotropic Linear Elasticity, Shell

Verification Example: 0208 - Helicoid

0208 - Helicoid

Description

A membrane is stretched by means of isotropic prestress n in accord with Figure 1 between two radii in a height h of two concentric cylinders not lying in a plane parallel to the vertical axis. Find the final minimal shape of the membrane - the so-called helicoid, and determine the surface area S of the resulting membrane. The add-on module RF-FORM-FINDING is used for this purpose. Elastic deformations are neglected both in RF-FORM-FINDING and in analytical solution, also self-weight is neglected in this example. The problem is described by the following set of parameters.

Material	Polymer	Modulus of Elasticity	E	692.000	MPa
		Poisson's Ratio	ν	0.442	-
Geometry	Height	h	1.000	m	
	Inner Radius	r_{1}	0.500	m	
	Outer Radius	r_{2}	1.000	m	
	Thickness	t	1.000	mm	
Load	Prestress	n	1.000	kN / m	

Figure 1: Problem sketch

Verification Example: 0208 - Helicoid

Analytical Solution

The two radii define four points on two concentric cylinders, while the shortest path between two points not lying above each other on a cylinder is a fraction of a helix ${ }^{1}$, and the minimal surface the boundary of which is a helix, is the so-called helicoid.

The (right) helicoid is described by means of following set of parametric equations

$$
\begin{align*}
& x=u \cos (v) \tag{208-1}\\
& y=u \sin (v) \tag{208-2}\\
& z=\frac{h}{2 \pi} v \tag{208-3}
\end{align*}
$$

where $v \in[0,2 \pi]$ and $u \in[0, r]$, where r is the radius of bounding cylinder and h the height of a full coil of the helicoid.

Denoting $c=h / 2 \pi$, the coefficients of the first fundamental form ${ }^{2}$ of the helicoid are equal to

$$
\begin{equation*}
E=1, \quad F=0, \quad G=c^{2}+u^{2}, \tag{208-4}
\end{equation*}
$$

yielding the surface area element

$$
\begin{equation*}
\mathrm{d} S=\sqrt{E G-F^{2}} \mathrm{~d} u \mathrm{~d} v=\sqrt{c^{2}+u^{2}} \mathrm{~d} u \mathrm{~d} v . \tag{208-5}
\end{equation*}
$$

Due to symmetry reasons, it suffices to compute one-quarter of the full coil, namely, $v \in[0, \pi / 2]$, therefore, for the given parameters of the helicoid part, the surface area is

$$
\begin{align*}
S & =\int_{0}^{\pi / 2} \int_{r_{1}}^{r_{2}} \sqrt{c^{2}+u^{2}} \mathrm{~d} u d v \tag{208-6}\\
& =\frac{\pi}{4}\left[u \sqrt{c^{2}+u^{2}}+c^{2} \ln \left(\frac{u+\sqrt{c^{2}+u^{2}}}{c}\right)\right]_{r_{1}}^{r_{2}} \tag{208-7}\\
& \approx 0.603 \mathrm{~m}^{2}
\end{align*}
$$

RFEM 5 Settings

- Modeled in RFEM 5.17.01
- The element size is $I_{\mathrm{FE}}=0.010 \mathrm{~m}$
- Isotropic linear elastic material model is used

[^0]
Verification Example: 0208 - Helicoid

Results

Structure Files	Program	Modul
0208.01	RFEM 5	RF-FORM-FINDING

The initial surface in RFEM 5 consists of the inner boundary helix part and an arbitrary curve lying on the outer cylinder, here defined as a spline. These two lines are then constrained to deformation in their local $x-z$ plane.

Figure 2: Initial and resulting membrane shape (helicoid) in RFEM 5

Analytical Solution	RFEM 5 - RF-FORM-FINDING	
S $\left[\mathrm{~m}^{2}\right]$	S $\left[\mathrm{~m}^{2}\right]$	Ratio $[-]$
0.603	0.604	1.002

[^0]: ${ }^{1}$ A helix is a curve the tangent of which holds a constant angle with a fixed line, here the vertical axis.
 ${ }^{2}$ Coefficients E, F and G are obtained from parametrization $X(u, v)=[x(u, v) ; y(u, v) ; z(u, v)]^{\top}$ and its derivatives (appropriate tangent vectors) X_{u} and X_{v} with respect to u and v. The coefficients E, F and G are defined as $E=X_{u} \cdot X_{u}, F=X_{u} \cdot X_{v}$ and $G=X_{v} \cdot X_{v}$.

