Katification

Program: RFEM 5, RF-FORM-FINDING

Category: Large Deformation Analysis, Isotropic Linear Elasticity, Shell

Verification Example: 0208 – Helicoid

0208 – Helicoid

Description

A membrane is stretched by means of isotropic prestress *n* in accord with **Figure 1** between two radii in a height *h* of two concentric cylinders not lying in a plane parallel to the vertical axis. Find the final minimal shape of the membrane – the so-called helicoid, and determine the surface area *S* of the resulting membrane. The add-on module RF-FORM-FINDING is used for this purpose. Elastic deformations are neglected both in RF-FORM-FINDING and in analytical solution, also self-weight is neglected in this example. The problem is described by the following set of parameters.

Material	Polymer	Modulus of Elasticity	E	692.000	MPa
		Poisson's Ratio	ν	0.442	-
Geometry		Height	h	1.000	m
		Inner Radius	<i>r</i> ₁	0.500	m
		Outer Radius	<i>r</i> ₂	1.000	m
		Thickness	t	1.000	mm
Load		Prestress	n	1.000	kN/m

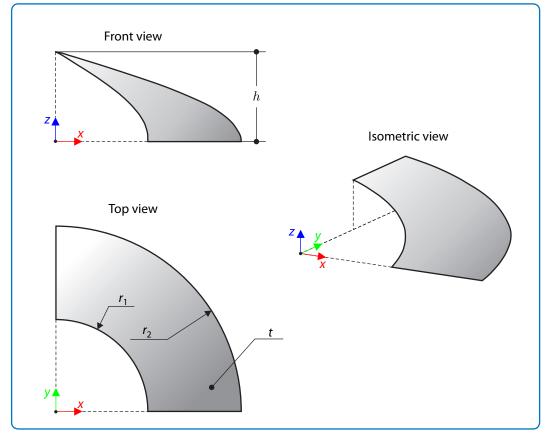


Figure 1: Problem sketch

Verification Example: 0208 – Helicoid

Analytical Solution

The two radii define four points on two concentric cylinders, while the shortest path between two points not lying above each other on a cylinder is a fraction of a helix¹, and the minimal surface the boundary of which is a helix, is the so-called helicoid.

The (right) helicoid is described by means of following set of parametric equations

$$x = u\cos(v), \tag{208-1}$$

$$y = u\sin(v), \qquad (208 - 2)$$

$$z = \frac{h}{2\pi}v, \qquad (208-3)$$

where $v \in [0, 2\pi]$ and $u \in [0, r]$, where r is the radius of bounding cylinder and h the height of a full coil of the helicoid.

Denoting $c = h/2\pi$, the coefficients of the first fundamental form² of the helicoid are equal to

$$E = 1, \quad F = 0, \quad G = c^2 + u^2,$$
 (208 - 4)

yielding the surface area element

$$dS = \sqrt{EG - F^2} \, du \, dv = \sqrt{c^2 + u^2} \, du \, dv.$$
 (208 - 5)

Due to symmetry reasons, it suffices to compute one-quarter of the full coil, namely, $v \in [0, \pi/2]$, therefore, for the given parameters of the helicoid part, the surface area is

$$S = \int_{0}^{\pi/2} \int_{r_{1}}^{r_{2}} \sqrt{c^{2} + u^{2}} \, \mathrm{d}u \, \mathrm{d}v$$
 (208 - 6)

$$= \frac{\pi}{4} \left[u\sqrt{c^2 + u^2} + c^2 \ln\left(\frac{u + \sqrt{c^2 + u^2}}{c}\right) \right]_{r_1}^{r_2}$$
(208 - 7)

 \approx 0.603 m².

RFEM 5 Settings

- Modeled in RFEM 5.17.01
- The element size is $I_{\rm FE} = 0.010$ m
- Isotropic linear elastic material model is used

¹ A helix is a curve the tangent of which holds a constant angle with a fixed line, here the vertical axis.

² Coefficients *E*, *F* and *G* are obtained from parametrization $X(u, v) = [x(u, v); y(u, v); z(u, v)]^T$ and its derivatives (appropriate tangent vectors) X_u and X_v with respect to *u* and *v*. The coefficients *E*, *F* and *G* are defined as $E = X_u \cdot X_u$, $F = X_u \cdot X_v$ and $G = X_v \cdot X_v$.

Verification Example: 0208 – Helicoid

Results

Structure Files	Program	Modul
0208.01	RFEM 5	RF-FORM-FINDING

The initial surface in RFEM 5 consists of the inner boundary helix part and an arbitrary curve lying on the outer cylinder, here defined as a spline. These two lines are then constrained to deformation in their local x-z plane.

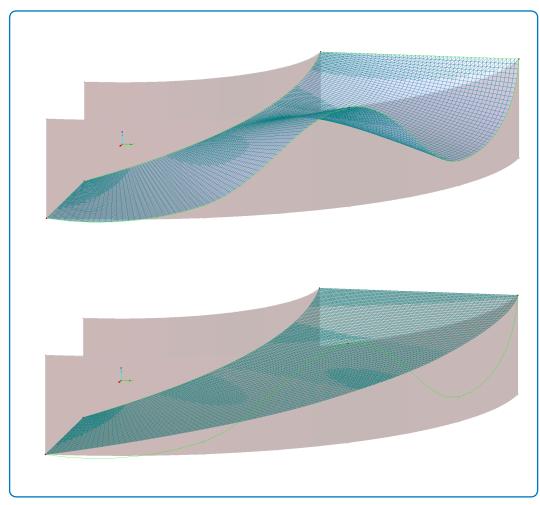


Figure 2: Initial and resulting membrane shape (helicoid) in RFEM 5

Analytical Solution	RFEM 5 – RF-FORM-FINDING		
S [m²]	S [m²]	Ratio [-]	
0.603	0.604	1.002	

