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o1 What is API? What are Webservices? R

- What is API?

JSON / XML
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o1 What is AP1? What are Webservices? R

- What are Web Services?

HTTP / Internet
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o1 What is API? What are Webservices?

— The Dlubal github repository

= O Dlubal-Software Q Type (1] to search > +~- ] @n a

(@ Overview [] Repositories 24 3 Discussions [ Projects 3 @ Packages Ax Teams 3 A Pecple 39

Dlubal Software Follow
[ Structural Analysis and Design Software | RFEM | RSTAB

Dlubal A6l ers @ Prague @ httpyfciubalcom W @dlubalen [ api@dlubal.com
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README .md

7 You are viewing the README and pinned repositories 'g
a5 5 public user. ;

Dlubal Software GmbH
Top discussions this past month

Discussions are for sharing announcements,

https://qithub.com/Dlubal-Software
ps://github.com/Dly w

- answering questions, and more

Start a new discussion
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People
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Welcome
We are glad that you visited our Dlubal's company GitHub. We are publishing our open source libraries develaped in Python & C# for Top languages
- — WebService. We are also publishing open sourcs libraries which we have used for development of our commercial applications and we
did some modifications, @C++ @Python @C+ @C @HTML




01 What is AP1? What are Webservices? R

- A simple example using WebServices
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02 Background on Al, ML, DL R
- What is Artificial Intelligence (Al)
Expectation vs. Reality
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ps://www.uni-potsdam.de/de/pogs/weiterbilden/data-science-und-ki




02 Background on Al, ML, DL

7

- What is Artificial Intelligence (Al)

Artificial Intelligence

Machine Learning
Early Al stirs

excitement

Webinar

Machine Deep Learning
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flourish Deep Learning breakthroughs
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02 Background on Al, ML, DL

- Ingredients of Artificial Intelligence (Al)

Data

Computer Traditional Math &
available

ML / DL

Pattern exists Science Statistics

SciML

Webinar

Lack of Software Traditional

Dev. Research
models

Civil Engineering
Domain
Knowledge

Dlubal Necessary components for an Al
im p|emenl'q|'ion Kraus, M. A.: Lecture on Scientific Machine Learning 4 AEC 2023 n



02 Background on Al, ML, DL R

- Types of Machine Learning (ML)

Classical
MachineLearning

Unsorted / unmarked
Data

Sorted / marked
Data

Supevisad Unsupervised
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Classification Regression Clustering Association
Differentiation by cdours Statistical analysis Grouping Finding moreimportant
similar data reations betwean
o Variables
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M himension Reduction® * Il

Many random variables
-> Reduction of main variables

Kraus, M. A., and M. Drass. "Artificial intelligence for structural glass engineering applications—overview,
case studies and future potentials.” Glass Structures & Engineering 5.3 (2020): 247-285.
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02 Background on Al, ML, DL

- Machine Learning (ML)

3D Decision Tree Classifier Decision Boundaries

e Training data

[ MaChlne Learnlng ] x Validation data
[ Supervised Learning ] [ Unsupervised Learning ] [ Reinforcement Learning ]
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[ Classification ][ Regression ] [ Clustering ] [DecisionMaking
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=|inear Regression
=Neural Network

= Naive Bayes

Classifier =K-Means Clustering

= Mean-shift

= Decision Trees Regression Clusteri _
= Support Vector = Support Vector . DBSCAnNgclusteri =Q-lea rning

Machines Regression Stering =R Learning

= Random Forest =Decision Tree -,_C\gglom_eratwe =TD Learning
=K — Nearest Regression Hierarchical

Clustering

=LassoRegression = Gaussian Mixture

=Ridge Regression

Neighbors

https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-+to-know-
about-machinelearning/




02 Background on Al, ML, DL R

- Deep Learning (DL) and Neural Networks

h lterative process until
loss function is
“ minimized

oo

Loss Score Loss Function

https://medium.com/data-science-365/overview-of-a-neural-networks-learning-process-6 1690a502fa
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02 Background on Al, ML, DL g
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02 Background on Al, ML, DL R

— Deep Learning (DL) and Neural Networks

Input Layer Sigmoid Layer Linear Layer
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*  Output and hidden layer consist of linear or nonlinear neurons

*  Feedforward network with only linear neurons is a linear regression!

*  Training by minimizing the sum of squared errors in a training data set
*  Early stopping to avoid overfitting
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02 Background on Al, ML, DL

— Deep Learning (DL) and Neural Networks

1 hidden layer, 4 neurons 2 hidden layers, 4 neurons

Training and Validation Loss Curves
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*  Neural Networks are function approximators
* Interactions can be represented better with more hidden layers
*  Deep network architecture typically improve regression quality
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02 Background on Al, ML, DL

- Difference of Machine and Deep Learning

Machine Learning
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Input Feature extraction Classification Cutput
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Deep Learning

Gio — FEEEES —

Input Feature extraction + Classification Cutput

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2019/04/Deeplearning.png




02 Background on Al, ML, DL R

- Why should Civil Engineers dive into Al/ML/DL?

What DallE2 imagines a “sustainable concrete bridge over a river”
: |
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02 Background on Al, ML, DL

- When should Civil Engineers use ML/DL?

Al
- if you are going to use an empirical model anyway - — ezt

- when your “physics-based” model is “incomplete”

Webinar

- if you want to mine existing databases for structure

- if it saves time (i.e. surrogate modelling & optimization)

Dlubal
Balmer, Vera M., et al. "Design Space Exploration and Explanation via Conditional Variational Autoencoders in
Metamodelbased Conceptual Design of Pedestrian Bridges." arXiy preprint arXiv:2211.16406 {2022).
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03 Using Al for Optimization

- Optimization Tool - Background PSO

- an Al technique used to find approximate solutions Optimizing of Rosenbrock function by PSO, f_min(1,1)=0
off- . . . Rosenbrock Function|iter=1|Gbest=(-1.14335,-1.33832) Minima Value Plot|Population=30|MinVal=704.4997389981781
to extremely difficult or impossible numeric :

maximization and minimization problems. 251 \/
- proposed in 1995 by Kennedy and Eberhart [22]

15
1073 g
£
x . 3
. . . . 9 10 16°7
- based on the simulating of social behavior
0.5 1 10~9
- algorithm uses a swarm of particles to guide its search o e
-0.5 1 % 10713
- each particle has a position and velocity el N : :
-1.0 -0.5 0.0 0.5 10 20 30 40 50

Iteration

- each particle is influenced by locally and globally best-
found solutions.




03 Using Al for Optimization

- Optimization Tool
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03 Using Al for Optimization R
) ° °
- Optimization Tool - Future Development
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03  Using Al for Optimization R%S
- Optimization Tool - Future Development

Request Design Features and Performances

Infer possible Designs from Neural Network




04 Help ChatBot

- Help ChatBot

=8 @ B

Dlubal Database Neural Network Trained Model ChatBot
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RFEM 6 Help ChatBot

Hil

Hello therel How may | assist
you today?

How do | exciude specific
Ioad combinations (COs) in
the design add-on?

Stop gensrating.




04  Help ChatBot

- Help ChatBot

- generative Al based chat bot
- grounded in FAQ, knowledge base and manuals

- will be used on the website and within the programs

How do | use the RFEM6 interface?

Can you explain a feature in RSTAB9?

AN

Dlubal

Dlubal GPT
Dlubal's RFEM 6 expert

Where can | find more info about RFEM5?

Help with a specific problem in RFEM67?
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05 Text2Model

- Entity Recognition for Text2Model Interface

E& N I

User Description NLP Model Recognized Parameters RFEM Model via API

Start Point: [0,0,0] - —
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Model (True, "my el.rfé")

Model.clientModel.service.begin modification()

Material(l, 's275")

~ > EndPoint:(GJGNBD - —

Please generate a Iong—with $275as material \ section(l, 'IPE 220')
and as section from origin point. >
[ Node(1, 0.0, 0.0, 0.0

Node (2, [.51 5:ﬁ: €.0)
Material:(S275 b
Member(1, 1, 2, 0.0, 1, 1)

Model.clientModel.service.finish modification()

Section:- .




05 Text2Model

- Entity Recognition for Text2Model Interface

»
@ [ = DiubslTem2Mod ¢ +
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Dlubal Text2Model Interface - Member
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06 Our Future Plans

- Roadmap

TextZModel
Interface Model Optimizer
2023 Q4 2024 Q2 2024 Q4
® ® ® ® ®
2024 Q1 2024 Q3
InApp Help Audio2Model
ChatBot Member Optimizer Interface
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Dlubal Software

- Book your free Online Appointment!

Get valuable insights from one of our experts

4R/

Dipl.-Ing. (FH) Dipl.- Bastian Ackermann, M.Sc. Daniel Dlubal, M.Sc.
Wirtschaftsing. (FH) Sales COO of Dlubal Software GmbH
Christian Stautner

Head of Sales

=p Contact Our Sales Team

Dlubal n


https://www.dlubal.com/en/support-and-learning/sales/contact-our-sales-team

Dlubal Software

- Free Online Services

We offer free

Youtube Channel - Webshop with support via email
Webinars, Videos Prices Trial Licenses and chat

Videos and webinars about the structural Configure your individual program package and The best way how to learn using our programs
engineering software. get all prices online! is to simply test them for yourself. Download a
90-day free trial version of our structural

analysis & design software

90-DAY
FREE TRIAL

T WEBSHOP
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Webinar



- Get Further Details About Diubal
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bl

Visit website
www.dlubal.com

Dlubal Software GmbH
- — Am Zellweg 2,
Dlubal 93464 Tiefenbach, Germany

VA

Videos and
recorded webinars

Newsletters

Events and
conferences

Knowledge Base
articles

Phone: +49 9673 9203-0

E-mail: info@dlubal.com
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See Dlubal
Software in
actionin a
webinar

Download
free trial
license
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