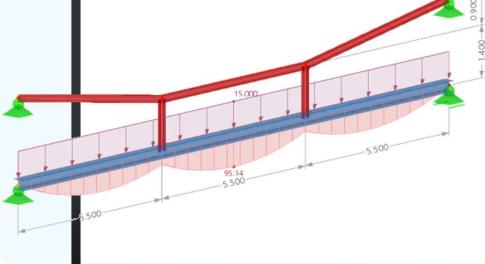


Structural Analysis & Design Software

Dipl.-Ing. (FH) Richard Haase


Product Engineering & Customer Support Dlubal Software GmbH

Dr. Ing. Jonas Bien Co-Organizer

Product Engineering & Customer Support Dlubal Software GmbH PART 1 | Introduction to Member Design

RFEM 6 for Students

怸

Questions during the presentation

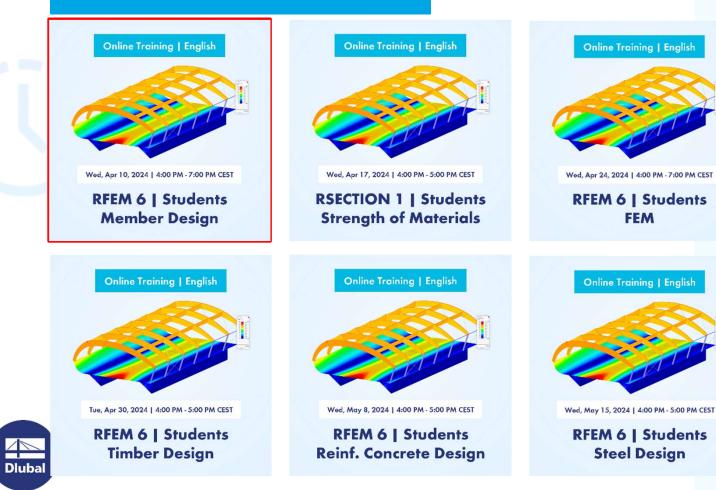
-	

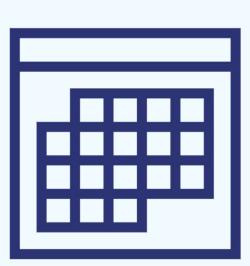
GoToWebinar Control Panel Desktop

E-Mail: info@dlubal.com

Shavy ay hida	File View Help			
Show or hide control panel	 ▼ Audio Sound Check	5 - • • • ?	-	Adjust aud settings
	Computer audio Phone call MUTED Mikrofon (2- Sennheiser USB h			
	()) Lautsprecher (2- Sennheiser U	~		
	▼ Questions	ប		
Ask questions	[Enter a question for staff]			
		Send		
	Webinar ID: 373-901-987			
	🛞 GoToWebinar			

File View Help

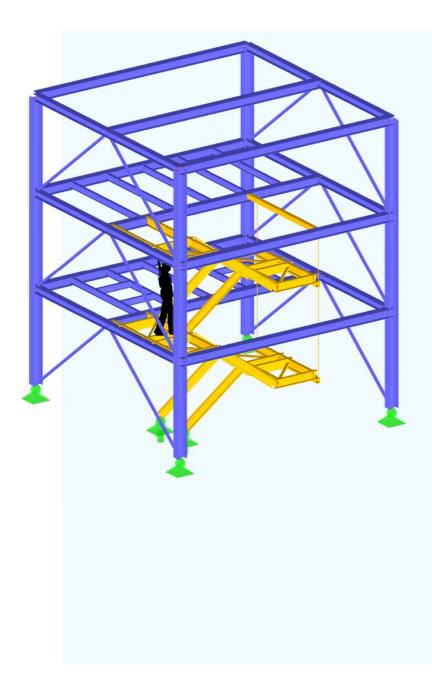

_02×



怸

audio

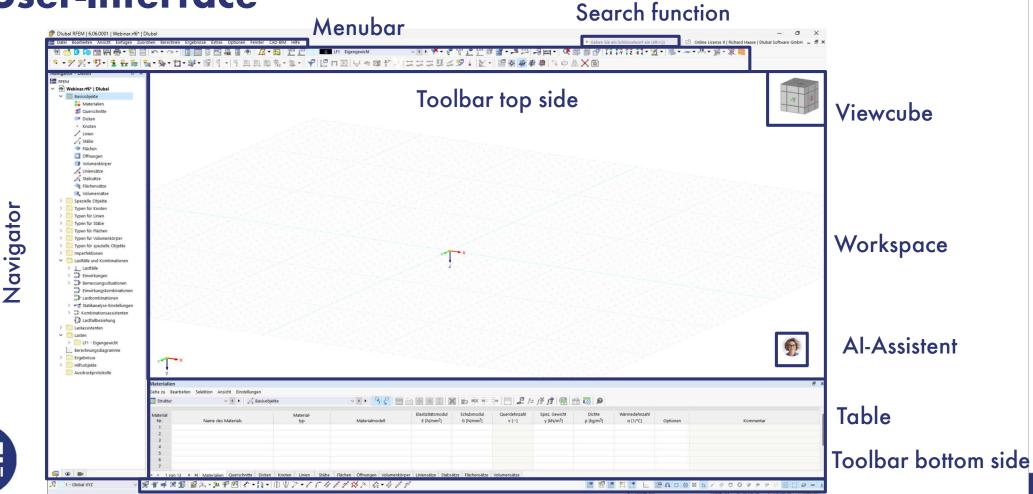
EVENT SCHEDULE

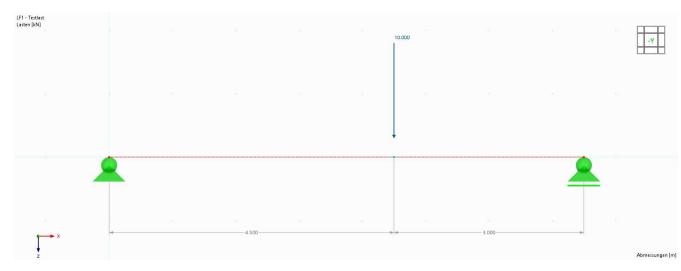


恣

4

CONTENT


- 01 Introduction to RFEM user-interface
- 02 Introductory example: Single-span beam
- **03** Advanced analysis examples
- 04 Influence of 2nd order theory
- 05 Linear bifurcation / Stability analysis

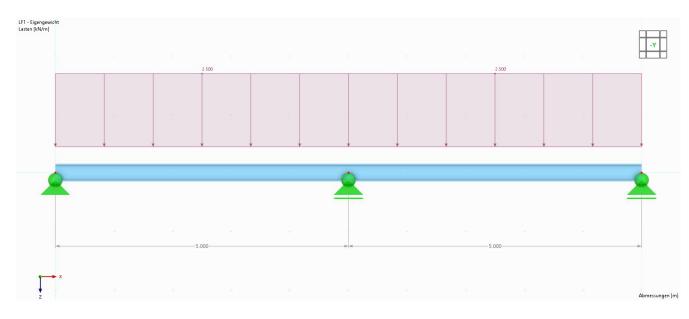


User-Interface

Dlubal

Single-span beam with concentrated load

Step by Step


- Modeling
- Loadcases and Loads
- Calculation
- Results

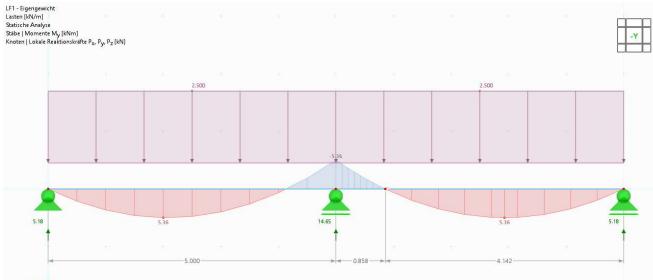
Result interpretation

- Support Reaction
- Internal Forces
- Deformation

Two-span beam with altering load position

Information

- HEB 300, S235
- LC 1: Self-weight | g = 2,5 kN/m
- LC 2: Imposed load left| q = 5,0 kN/m
- LC 3: Imposed load right | q = 5,0 kN/m


Tasks

- Determine the support forces, internal forces and deformations
- Determine the governing load combination that causes the largest internal forces

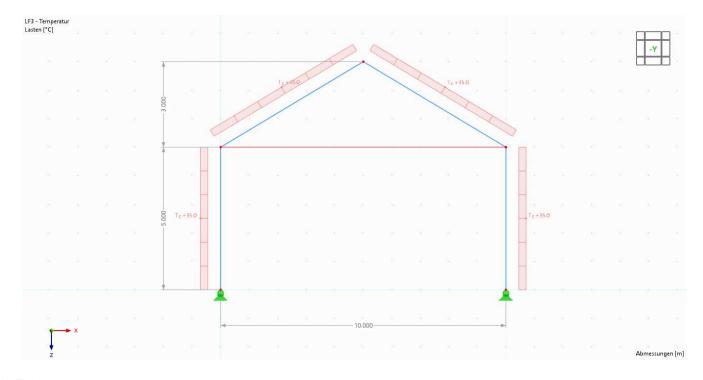
怸

Gerber beam / Hinged beam

Z Stabe | max M_y : 5.36 | min M_y : -5.36 kNm Knoten | max P₂ : 0.00 | min P_x : 0.00 kN Knoten | max P₂ : 0.10 km P₂ : 0.00 kN Knoten | max P₂ : 14.65 | min P₂ : 5.18 kN

Information

- Schneider Bautabellen (24. Edition): page 4.13
- Eccentricity e: 0,1716 x L


Tasks

Parametrize the structure

1.3 Gelenkträger (Gerberträger)¹⁾ mit Streckenlast q

$ \begin{array}{c} \stackrel{a}{\rightarrow} & \stackrel{b}{\rightarrow} & \stackrel{a}{\rightarrow} \\ \stackrel{a}{\rightarrow} & \stackrel{b}{\rightarrow} \\ \stackrel{a}{\rightarrow} & \stackrel{b}{\rightarrow} \\ \stackrel{a}{\rightarrow} & \stackrel{b}{\rightarrow} \\ \stackrel{a}{\rightarrow} & \stackrel{b}{\rightarrow} \\ \stackrel{a}{\rightarrow} \\ \stackrel{a}{\rightarrow} \\ \stackrel{b}{\rightarrow} $	<i>e</i> = 0,1716 <i>l</i>	A = 0,414 ql $B = 1,172 ql$	$M_1 = 0,0858 ql^2$ $M_2 = 0,0858 ql^2$ $M_b = -0,0858 ql^2$	$f_1 = \frac{ql^4}{130 \ EI}$
$ \begin{array}{c} \stackrel{a}{\rightarrow} \stackrel{b}{\rightarrow} \stackrel{c}{\rightarrow} \stackrel{a}{\rightarrow} \stackrel{a}{\rightarrow} $	e = 0,22 l	A = 0,414 ql $B = 1,086 ql$	$M_1 = 0,0858 ql^2$ $M_2 = 0,0392 ql^2$ $M_b = -0,0858 ql^2$	$f_1 = \frac{ql^4}{130 \ EI}$
$\begin{bmatrix} a & b & b \\ c & 1 + b & 2 & b + 1 & a \\ c & 1 + c & B & B & c & 1A \end{bmatrix}$	e = 0,1250 l	A = 0,438 ql $B = 1,063 ql$	$M_1 = 0,0957 ql^2$ $M_2 = 0,0625 ql^2$ $M_b = -0,0625 ql^2$	$f_1 = \frac{ql^4}{130 \ EI}$
$ \begin{array}{c} \overrightarrow{h} & \overrightarrow{e}, \overrightarrow{h} & \overrightarrow{b} & \overrightarrow{e}, & \overrightarrow{h} \\ \overrightarrow{h} & \overrightarrow{e} & \overrightarrow{h} & \overrightarrow{e} & \overrightarrow{h} \\ \overrightarrow{h} & \overrightarrow{e} & \overrightarrow{h} & \overrightarrow{e} & \overrightarrow{h} \end{array} $	<i>e</i> = 0,1716 <i>l</i>	A = 0,414 ql $B = 1,086 ql$	$M_1 = 0,0858 ql^2$ $M_2 = 0,0392 ql^2$ $M_b = -0,0858 ql^2$	$f_1 = \frac{ql^4}{130 \ EI}$

Two-hinged frame with tie rod

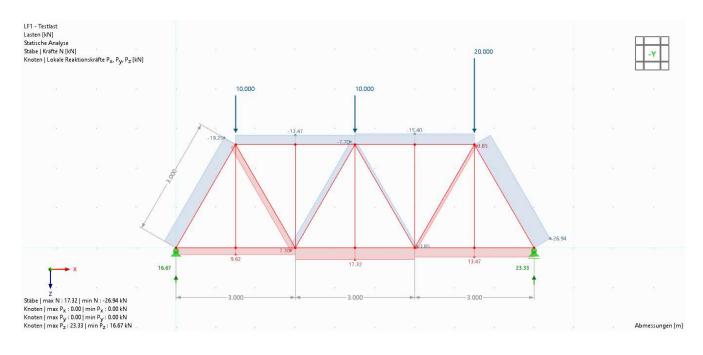
Information

- Frame: HEB 300, S235
- Tie rod: R30
- LC 1: Snow| s = 1,0 kN/m
- LC 2: Wind | w = 1,0 kN/m
- LC 3: Temperature increase of the frame Tc = 35 K

Tasks

 Determine the support forces, internal forces and deformations

恣

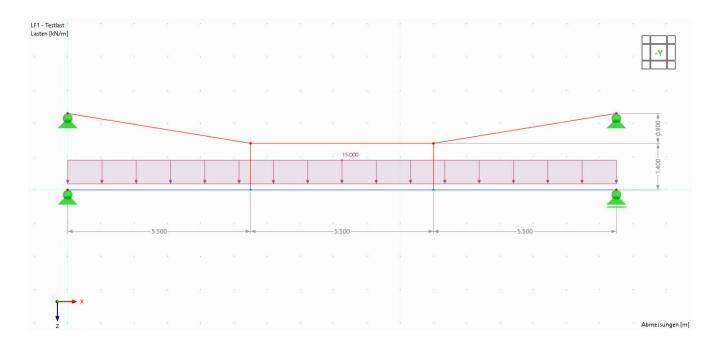


Dlubal Software

Coffee Break

11

Ideal truss structure


Information

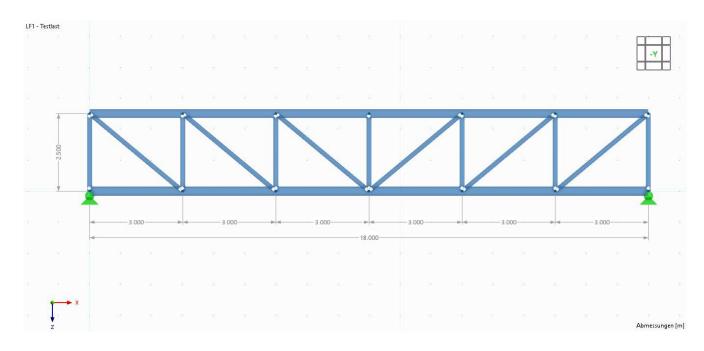
- Members: HEB 300, S235
- Nodal loads as indicated
- Member Type: Truss (only N)

Tasks

- Determine the support forces and internal forces
- Determine the null members
- Which members are loaded in tension / compression?

Suspended single-span beam

Information


- Truss members: IPE 200, S235
- Beam: HEB 300, S235
- Distributed load: q = 15 kN/m

Tasks

Determine the support forces and internal forces

Generated truss structure

Information

- Upper/lower Chord: HEA 300, S235
- Diagonals: IPE 160, S235
- Posts: HEA 160, S235

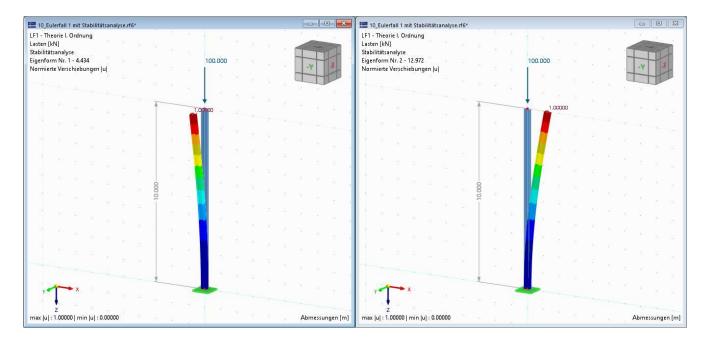
Tasks

- Get familiar with blocks
- Replace the beam members with regular truss members

Fixed column | 1st and 2nd order theory

09_	Eulei	rfall 1.i	f6*									23	0	9_Eule	erfall 1.	rf6*							-		23	0	_Euler	fall 1.rl	f6*						7			×
LF1 - T Lasten Statisc	[kN]	31	9							÷	1	Last	en [kN		Ordnur	ng .						с. Г	-i		Laste	n [kN]	ie II. O nalyse		g .					[Ť	Ť	1
Mome	nte l	My [kl	lm]				100	.000		П	-Y	1			My [k					10	0.000		-	Y				ngen u		n]			100	.000	- Î	-	Y	3
										t		1	35											Ħ		- 23									ł	t	t	
																										- 0												
					1	0.000							- 24				Ā	10	0.000	-						- 194					1)	0.000	-		68	.7		
				Ī									- 22				Ī									-a				Ī				a				
													- 22							E						- 8a									ł:			
													2																					1				
													- 35																					1				
				10.000									10				10.000													10.000								
													- 25													- 0								a.				
																										- 0												
													- (i),							-						13												
													- 32													- 3												
					-	-100.00							- 2				¥	-10	5.87•											*								
			×										8	1		×										3	•		×									
	4													10	a at											- 22	1											
max N	z ly:0	0.00 (n	in My	; -100	00 kN	lm ¹	- 22	10	20	Abm	essung	en [m]	max	My	z 0.00 r	nin M _J	/:-106	.87 kN	n	3	35	3* .)	Abme	ssunge	n (m)	max	Z uX : 68	3.7 mi	nux:	0.0 m	m [·]	3	1.0	2		Abimes	ssunge	:n [m]

Information


- Fixed column: HEB 300, S235
- Nodal load: Pz = 100 kN, Px = 10 kN

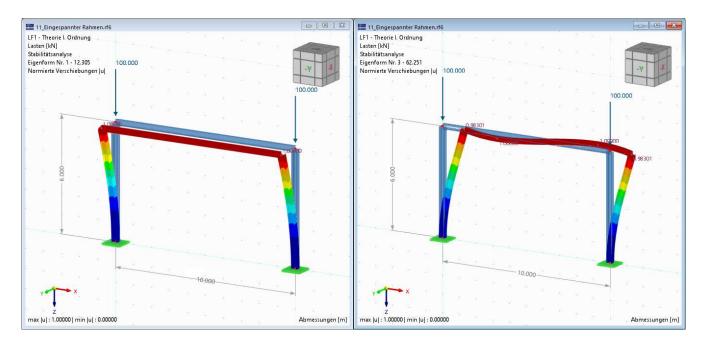
Tasks

 Study the influence of 2nd order theory on the resulting internal forces and deformations

Euler-Case 1 | Mode shapes

Dlubal

Information


- Fixed column: HEB 300, S235
- Load: Pz = 100 kN
- Add-on: Structure Stability

Tasks

- Calculate the critical load of a cantilever
- Determine the critical lengths for buckling about the minor and major axis of the cross-section

怸

Fixed frame | Mode shapes

Information

- Columns: HEB 300, S235
- Beam: IPE 300, S235
- Add-on: Structure Stability required

Aufgaben

- Compare the different mode shapes
- How to prevent the frame from buckling out-of-plane?

怸

18

恣

Open Discussion

Any Questions

Get further information about Dlubal Software

Visit our Website
www.dlubal.com

- Videos and Recorded Webinars
- Newsletter
- Events and Conferences
- Knowledge Base Articles

- See Dlubal Do Software in fr action in a webinar
- Download free trial license

Dlubal Software GmbH Am Zellweg 2 93464 Tiefenbach Germany

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

Free Online Services

Geo-Zone Tool

Dlubal Software offers an online tool for determining the characteristic load values of the relevant load zone.

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & Knowledge Base

Check out the frequently asked questions our customer support team is asked and get helpful tips and tricks with our technical articles to improve your work.

Models to Download

Download numerous example files that help you to get started and become familiar with the Dlubal programs.

恣

20

Free Online Services

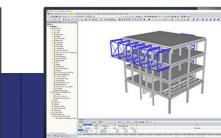
Youtube Channel -Webinars, Videos

Check out our videos and webinars about Dlubal's structural engineering software.

Online Shopping and Prices

WEBSHOP

Customize your program package and get all prices online!


Trial Versions

The best way how to learn our programs is to simply test them yourself. Download the free 90-day free trial version of our structural analysis & design software.

90 DAYS

Free Support via Email and

Live Chat

www.dlubal.com