Generator obciążeń Obciążenie ruchome umożliwia generowanie obciążeń ruchomych na powierzchniach. Do układu konstrukcyjnego można przykładać pojedyncze obciążenia lub modele obciążeń składające się z kilku obciążeń.
Odpowiednie przypadki obciążeń są tworzone automatycznie zgodnie z wprowadzonymi parametrami, takimi jak krok ruchu, odsunięcie początkowe i końcowe.
Generator obciążenia ruchomego jest bezpośrednio zintegrowany z programem RFEM i nie wymaga zakupu osobno.
W rozszerzeniu Połączenia stalowe można używać nie tylko zwykłych typów prętów 'Belka', 'Kratownica' itd., ale także typu pręta 'Belka wynikowa' oraz przekroje z elementów powierzchniowych. Należy wybrać odpowiedni przekrój dla belki wynikowej, a następnie zdefiniować otwory prętowe w modelu powierzchniowym za pomocą edytora prętów.
Komponent 'Kontakt powierzchniowy' w rozszerzeniu Połączenia stalowe umożliwia uwzględnienie kontaktu ciśnieniowego między dwiema równoległymi płytami/płytami prętowymi. W takim przypadku można opcjonalnie uwzględnić tarcie między powierzchniami
W przypadku sztywności powierzchni typu 'Przeniesienie obciążenia' oprócz geometrii dostępne są również zakrzywione geometrie, takie jak 'Czworobok', 'NURBS', 'Obrót', 'Płaszczyzna' i 'Rura'.
Za pomocą typu grubości "Panel belkowy" można modelować drewniane panele szkieletowe w przestrzeni 3D. Wystarczy określić geometrię powierzchni, a drewniane panele szkieletowe zostaną wygenerowane za pomocą wewnętrznej konstrukcji pręt-powierzchnia, wraz z symulacją elastyczności połączenia. Typ grubości płyty bel jest definiowany za pomocą rozszerzenia Powierzchnie wielowarstwowe.
„Panel belkowy” ma następujące zalety:
Możliwe jest jednostronne i dwustronne poszycie
Automatyczne obliczanie połączenia półsztywnego
Poszycie z deskowania
Poszycie spięte klamrami
Poszycie zdefiniowane przez użytkownika
Przedstawienie w postaci całego geometrycznego obiektu 3D (rama, przewiązanie poprzeczne, słup, poszycie, zszywki) wraz z mimośrodem
Uwzględnianie otworów za pomocą komórek powierzchni
Wymiarowanie elementów konstrukcyjnych z wykorzystaniem rozszerzenia Projektowanie konstrukcji drewnianych
Niezależnie od materiału (np. płyta gipsowo-kartonowa z profilami formowanymi na zimno i płyty gipsowo-włóknowe jako poszycie)
Istnieje możliwość wymiarowania powierzchni z uwagi na warunki pożarowe przy użyciu metody zredukowanego przekroju. Redukcja jest stosowana na grubości powierzchni. Kontrolę obliczeń można przeprowadzić dla wszystkich materiałów drewnianych, które są dopuszczone dla obliczeń.
W przypadku drewna klejonego krzyżowo, w zależności od rodzaju kleju, można wybrać, czy możliwe jest odpadanie poszczególnych zwęglonych części warstwy, a tym samym, czy można spodziewać się zwiększonego zwęglenia w niektórych obszarach warstwy.
W przypadku eksperymentalnie określonych wartości ciśnienia dla modelu na powierzchniach, można je uwzględnić w modelu konstrukcji w programie RFEM 6, przetworzyć w RWIND 2, a następnie wykorzystać jako obciążenia wiatrem w analizie konstrukcyjnej w RFEM 6.
Za pomocą komponentu "Cięcie płyty" można ciąć blachy (np. blachy węzłowe, blachy środnika itp.). Dostępne są różne metody cięcia:
Płaszczyzna: Cięcie jest wykonywane na powierzchni najbliższej płycie odniesienia.
Powierzchnia: Wycinane są tylko przecinające się części płyt.
Bryła ograniczająca: Najbardziej zewnętrzny wymiar, szerokość i wysokość, jest wycinany jako prostokąt.
Otoczka wypukła: Zewnętrzna otoczka przekroju służy do przycinania płyty. Jeżeli w węzłach narożnych przekroju występują zaokrąglenia, cięcie jest do nich dostosowywane.
W przypadku tworzenia siatki brył można utworzyć warstwową siatkę ES. Za pomocą tej opcji można zdefiniować podział bryły z elementami ES pomiędzy dwiema równoległymi powierzchniami.
Można ocenić przekroje wynikowe dla obliczeń powierzchni drewnianych w sposób graficzny. Z jednej strony w grafice programu RFEM, az drugiej strony w oknie historii wyników. Przekroje można umieszczać w dowolnym miejscu w celu szczegółowej oceny wyników obliczeń.
Rozszerzenie Projektowanie konstrukcji drewnianych dla RFEM umożliwia wymiarowanie prętów i powierzchni zgodnie z Eurokodem 5, SIA 265 (norma szwajcarska), CSA O86 (norma kanadyjska) lub ANSI/AWC NDS (norma amerykańska), np. drewno klejone krzyżowo, drewno klejone warstwowo, drewno iglaste, materiały drewnopochodne itp.
Istniejące zbrojenie powierzchniowe można automatycznie zaprojektować tak, aby pokryć wymagane zbrojenie. Można wybrać, czy automatycznie ma być definiowana średnica zbrojenia, czy też rozstaw prętów.
Elementy zakrzywione mamy tylko w programie RFEM. Tutaj można łatwo przecinać zakrzywione powierzchnie i bryły.
Program generuje przy tym nowe powierzchnie typu "Przycięta", którymi można manipulować. Dzięki tej technologii można jednym kliknięciem tworzyć bardzo złożone geometrie, takie jak przecięcia rur lub skręcone otwory.
Przecinanie brył odbywa się w sposób adaptacyjny przy użyciu nowych typów brył "Otwór" i "Przecięcie", podobnie jak w teorii mnogości. Za pomocą tej metody można tworzyć nowe, złożone geometrie brył, podobnie jak w procesie produkcyjnym w warsztacie (wiercenie, frezowanie, toczenie itp.). Dzięki temu można tworzyć skomplikowane kształty zagłębień lub kształty bryły perforowanej. To może być takie proste!
Program RWIND 2 Pro umożliwia zastosowanie przepuszczalności dla powierzchni. Potrzebujesz tylko definicji
współczynnika Darcy'ego D,
współczynnika bezwładności I i
długości porowatego medium w kierunku przepływu L,
w celu zdefiniowania warunków brzegowych ciśnienia między przednią i tylną stroną strefy porowatej. To ustawienie umożliwia przepływ przez tę strefę z dwuczęściowym wyświetleniem wyników po obu stronach obszaru strefy.
Ale to nie wszystko. Dodatkowo generowanie modelu uproszczonego uwzględnia strefy przepuszczalne i uwzględnia odpowiednie otwory w pokryciu modelu. Czy można uniknąć skomplikowanego modelowania geometrycznego elementu porowatego? Oczywiście - mamy dobrą wiadomość! Dzięki dokładnemu zdefiniowaniu parametrów przepuszczalności można uniknąć skomplikowanego geometrycznego modelowania elementu porowatego. Funkcji tej można użyć do symulacji rusztowań przepuszczalnych, kurtyn przeciwpyłowych, konstrukcji siatkowych itp.
W programie RFEM 6 możliwe jest definiowanie spoin liniowych między powierzchniami i obliczanie naprężeń w spoinie za pomocą rozszerzenia Analiza naprężeniowo-odkształceniowa.
Dostępne są następujące typy połączeń:
połączenie stykowe
Złącze narożne
Złącze zakładkowe
Złącze teowe
W zależności od typu połączenia dostępne są następujące typy spoin:
Czy znasz już model materiałowy Tsai-Wu? Łączy w sobie właściwości plastyczne i ortotropowe, co pozwala na specjalne modelowanie materiałów o charakterystyce anizotropowej, takich jak tworzywa sztuczne wzmocnione włóknami czy drewno.
Podczas uplastycznienia materiału naprężenia pozostają stałe. Zachodzi redystrybucja w zależności od sztywności występującej w poszczególnych kierunkach. Obszar sprężysty odpowiada powierzchni ortotropowej | Liniowy sprężysty model materiałowy (bryły). Dla strefy plastycznej ma zastosowanie następujące kryterium plastyczności według Tsai-Wu:
Wszystkie wytrzymałości są zdefiniowane jako dodatnie. Kryterium naprężeń można sobie wyobrazić jako powierzchnię eliptyczną w sześciowymiarowej przestrzeni naprężeń. Jeżeli jedna z trzech składowych naprężenia zostanie przyłożona jako stała wartość, powierzchnię tę można rzutować na trójwymiarową przestrzeń naprężeń.
Jeżeli wartość fy (σ), zgodnie z równaniem Tsai-Wu, płaski warunek naprężenia, jest mniejsza niż 1, naprężenia znajdują się w strefie sprężystej. Powierzchnia plastyczna zostaje osiągnięta, gdy fy (σ) = 1; wartości większe niż 1 nie są dozwolone. Zachowanie modelu jest idealnie plastyczne, co oznacza, że nie występuje usztywnienie.
Podczas wymiarowania przekroju można bezpośrednio określić, czy powierzchnia betonowa zostanie zastosowana za prętami zbrojeniowymi, czy też zostanie odjęta od przekroju betonowego. Istnieje możliwość obliczenia przekroju betonu netto, zwłaszcza w przypadku przekroju silnie zbrojonego.
Do pracy z powierzchniami dostępne są następujące nowe funkcje: Podczas tworzenia przecięć powierzchni zamiast komponentów powierzchni tworzone są teraz niezależne komponenty powierzchni.
Aby opisać grubości powierzchni, można teraz użyć nowego obiektu grubości. Może być stosowany na kilku powierzchniach równocześnie. W przypadku zmiany grubości tego obiektu wszystkie przydzielone grubości powierzchni zostaną odpowiednio dostosowane w jednym kroku.
Obliczanie stacjonarnego nieściśliwego turbulentnego przepływu wiatru przy użyciu solwera SimpleFOAM z pakietu oprogramowania OpenFOAM®
Schemat numeryczny według analizy pierwszego i drugiego rzędu
Modele turbulencji RAS k-ω i RAS k-ε
Uwzględnienie chropowatości powierzchni w zależności od stref modelu
Budowa modelu za pomocą plików VTP, STL, OBJ i IFC
Obsługa za pomocą dwukierunkowego interfejsu RFEM lub RSTAB w celu importowania geometrii modelu ze standardowymi obciążeniami wiatrem i eksportowania warunków obciążenia wiatrem za pomocą tabel protokołów opartych na sondach.
Intuicyjne zmiany modelu za pomocą funkcji „przeciągnij i upuść” oraz pomoc w dostosowaniu grafiki
Generowanie obwiedni siatki "shrink-wrapping" wokół geometrii modelu
Uwzględnienie otaczających obiektów (budynki, ukształtowanie terenu itp.)
Zależny od wysokości opis obciążenia wiatrem (prędkość wiatru i intensywność turbulencji)
Automatyczne generowanie siatki dostosowane do wybranej głębokości detalu
Uwzględnienie siatki warstw w pobliżu powierzchni modelu
Obliczenia równoległe z optymalnym wykorzystaniem wszystkich rdzeni procesora
Graficzne przedstawienie wyników powierzchni na powierzchniach modelu (nacisk powierzchniowy, współczynniki Cp)
Graficzne przedstawienie pola przepływu i wyników wektorowych (pole ciśnienia, pole prędkości, turbulencja - pole k-ω i turbulencja - pole k-ε, wektory prędkości) na poziomach Clipper/Slicer
Przedstawienie przepływu wiatru 3D za pomocą grafiki, którą można animować
Definicja sond punktowych i liniowych
Obsługa programu w wielu językach (niemiecki, angielski, czeski, hiszpański, francuski, włoski, polski, portugalski, rosyjski i chiński)
Obliczenia kilku modeli w procesie wsadowym
Generator do tworzenia modeli obróconych do symulacji różnych kierunków wiatru
Opcjonalne przerwanie i kontynuacja obliczeń
Indywidualny panel kolorów do wyświetlania wyników
Wyświetlanie wykresów z oddzielnym wyświetlaniem wyników po obu stronach powierzchni
Wyświetlanie bezwymiarowej odległości od ściany y+ w szczegółach kontrolera siatki modelu uproszczonego
Wyznaczanie naprężenia stycznego na powierzchni modelu na podstawie przepływu wokół modelu
Obliczenia z alternatywnym kryterium zbieżności (w parametrach symulacji można wybrać typ rezydualny: ciśnienie lub opór przepływu)
Rozwiązując problem numeryczny przepływu, można uzyskać następujące wyniki na modelu i wokół niego:
Ciśnienie na powierzchni konstrukcji
Rozkład współczynnika Cp na powierzchniach konstrukcji
Pole ciśnienia względem geometrii konstrukcji
Pole prędkości względem geometrii konstrukcji
Pole turbulencji k-ω względem geometrii konstrukcji
Pole turbulencji k-ε względem geometrii konstrukcji
Wektory prędkości względem geometrii konstrukcji
Linie przepływu względem geometrii konstrukcji
Obciążenia na konstrukcjach typu prętowego, które wygenerowano z elementów prętowych modelu
Wykres zbieżności
Kierunek i wartość oporu aerodynamicznego zdefiniowanych konstrukcji
Pomimo tak dużej ilości informacji, RWIND 3 jest przejrzyście zorganizowany, co jest typowe dla programów firmy Dlubal. Można zdefiniować dowolnie definiowane strefy do analizy graficznej. Wyświetlane w dużej ilości wyniki dotyczące geometrii konstrukcji są często mylące - na pewno znasz ten problem. Z tego powodu RWIND Basic oferuje dowolnie przesuwane płaszczyzny przekroju w celu osobnego przedstawienia "wyników bryłowych" w płaszczyźnie. W przypadku rozgałęzionych linii przepływu 3D można wybrać wyświetlanie statyczne lub animowane w postaci ruchomych odcinków linii lub cząstek. Opcja ta pomaga w odwzorowaniu przepływu wiatru jako efektu dynamicznego.
Wszystkie wyniki można wyeksportować jako obraz lub, zwłaszcza w przypadku animacji, jako plik wideo.
Ułatw sobie pracę. Kontakt powierzchniowy służy do zdefiniowania kontaktu między dwiema lub więcej powierzchniami oddalonymi od siebie Nie ma już potrzeby tworzenia bryły kontaktowej pomiędzy powierzchniami.
Miej oko na wszystkie powierzchnie. Powierzchnia o sztywności typu "Przenoszenie obciążenia" nie ma wpływu na zachowanie konstrukcji i wyniki. Można go wykorzystać do uwzględnienia obciążeń od powierzchni, które nie zostały zamodelowane, na przykład konstrukcji elewacji, powierzchni szklanych, trapezowych przekrojów dachowych itp.
W porównaniu z modułem dodatkowym RF-/STEEL (RFEM 5/RSTAB 8) do rozszerzenia Analiza naprężeniowo-odkształceniowa dla programu RFEM 6/RSTAB 9 dodano następujące nowe funkcje:
Możliwość analizy prętów, powierzchni, brył, spoin (połączenia spawane liniowo między dwiema i trzema powierzchniami z późniejszym obliczaniem naprężeń)
Wyświetlanie naprężeń, stopni naprężeń, zakresów naprężeń i odkształceń
Naprężenie graniczne w zależności od przydzielonego materiału lub danych wejściowych zdefiniowanych przez użytkownika
Indywidualne określenie wyników do obliczeń poprzez dowolnie przydzielane typów ustawień
Szczegóły dla wyników niemodalnych z wyświetlaniem przygotowanego wzoru i dodatkowym wyświetlaniem wyników na poziomie przekroju prętów
Możliwość wygenerowania zastosowanych wzorów do kontroli obliczeń
Automatyczne uwzględnianie masy własnej od ciężaru konstrukcji
Możliwy bezpośredni import mas z przypadków obciążeń lub kombinacji
Opcjonalne definiowanie mas dodatkowych (masy węzłowe, liniowe lub powierzchniowe oraz masy wynikające z bezwładności) bezpośrednio w przypadkach obciążeń
Opcjonalne pominięcie mas (na przykład masy fundamentów)
Kombinacje mas w różnych przypadkach i kombinacjach obciążeń
Predefiniowane współczynniki kombinacji wg różnych norm (EC 8, SIA 261, ASCE 7, ...)
Opcjonalny import stanów początkowych (np. w celu uwzględnienia naprężenia wstępnego i imperfekcji)
modyfikacja konstrukcji
Uwzględnianie uszkodzenia w podporach lub prętach/powierzchniach/bryłach
Możliwość zadania kilku analiz modalnych (np. w celu analizy różnych mas lub modyfikacji sztywności)
Wybór typu macierzy mas (macierz diagonalna, macierz spójna, macierz jednostkowa) oraz wskazanych przez użytkownika stopni swobody (translacyjne i rotacyjne)
Metody określania liczby postaci drgań własnych (liczba zdefiniowana przez użytkownika, liczba określana automatycznie - w celu osiągnięcia zadanych efektywnych współczynników masy modalnej, liczba określana automatycznie - w celu osiągnięcia maksymalnej częstotliwości drgań własnych - dostępne tylko w programie RSTAB)
Określanie postaci drgań i mas w węzłach siatki MES
Wyniki w postaci wartości własnych, częstości kątowych, częstotliwości drgań własnych i okresu drgań własnych
Wyniki w postaci mas modalnych, efektywnych mas modalnych, współczynników masy modalnej i współczynników udziału masy
Tabelaryczne i graficzne przedstawienie mas w punktach siatki MES
Wizualizacja i animacja postaci drgań własnych
Różne opcje skalowania postaci drgań własnych
Dokumentacja wyników numerycznych i graficznych w raporcie
W ustawieniach analizy modalnej należy wprowadzić wszystkie dane, które są niezbędne do określenia częstotliwości drgań własnych. Są to na przykład kształty mas i solwery wartości własnych.
Rozszerzenie Analiza modalna określa najniższe wartości częstości drgań własnych konstrukcji. Liczbę wartości własnych można dostosować lub określić automatycznie. Należy zatem osiągnąć efektywne współczynniki masy modalnej lub maksymalne częstotliwości drgań własnych. Masy są importowane bezpośrednio z przypadków obciążeń i kombinacji obciążeń. W takim przypadku istnieje możliwość uwzględnienia masy całkowitej, składowych obciążenia w globalnym kierunku Z lub tylko składowej obciążenia w kierunku siły ciężkości.
Dodatkowe masy w węzłach, liniach, prętach lub powierzchniach można zdefiniować ręcznie. Ponadto można wpływać na macierz sztywności poprzez import sił osiowych lub modyfikacji sztywności z przypadku obciążenia lub kombinacji obciążeń.
Program RWIND Simulation umożliwia uwzględnienie chropowatości powierzchni modelu poprzez zastosowanie zmodyfikowanego warunku brzegowego ściany. Model numeryczny opiera się na założeniu, że ziarna o określonej średnicy są rozmieszczone równomiernie na powierzchni modelu, podobnie jak w przypadku papieru ściernego. Średnicę ziaren opisuje parametr Ks, a rozkład parametr Cs. Biorąc pod uwagę chropowatość ścian, symulacja numeryczna przepływu wiatru może lepiej odwzorować rzeczywistość.