Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Temperature Dependency, Plate

Verification Example: 0022 – Circle Surface with Thermal Loading

0022 - Circle Surface with Thermal Loading

Description

A simply supported circle plate is subjected to the uniform pressure p, uniform temperature T_c and differential temperature ΔT . The reference temperature t_0 is 20°C. Assuming only small deformations and neglecting plate's self-weight, determine it's maximum deflection $u_{z,max}$ and maximum radial moment m_{rmax} .

Material	Steel	Modulus of Elasticity	E _{20°C}	210.000	GPa
			E _{40°C}	190.000	GPa
		Poisson's Ratio	ν	0.300	-
		Coefficient of Thermal Expansion	α	1.2×10 ⁻⁵	1/К
Geometry	Plate	Radius	r	1.000	m
		Thickness	t	0.040	m
Loading	Pressure	Uniform	p	0.100	MPa
	Temperature	Uniform	T _c	10.000	°C
		Difference	ΔT	-50.000	°C

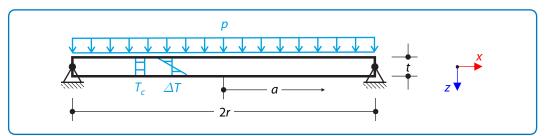


Figure 1: Problem sketch

Verification Example: 0022 – Circle Surface with Thermal Loading

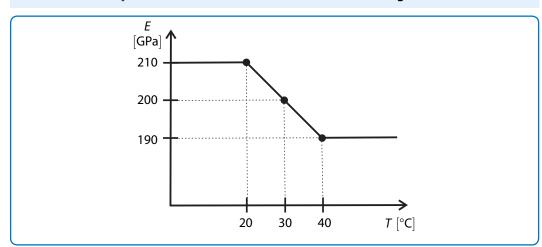


Figure 2: Temperature chart

Analytical Solution

The problem can be analytically solved by the integration of the bending equation for circle plates [1] and the final expressions for the deflection $u_{z,max}$ and moment m_r are can be derived from the Kirchhoff's equations for plates.

The maximum deflection of the plate consists of deflection due to the temperature and pressure:

$$u_{z,\max} = u_{z,\text{temp}} + u_{z,\text{press}} \tag{22-1}$$

The deflection due to the temperature can be derived from the equation for the plate's curvature:

$$\kappa = \frac{\varphi}{a} = \frac{12}{Eh^3}m_{\rm T} \tag{22-2}$$

where *a* is the distance from the center, φ is the plate's rotation:

$$\varphi = \frac{\mathrm{d}u_{z,\mathrm{temperature}}}{\mathrm{d}a} \tag{22-3}$$

and m_T is the moment in the plate caused by the temperature difference and can be evaluated by the following formula:

$$m_{\rm T} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \alpha ET(z)z \, \mathrm{d}z \tag{22-4}$$

where T(z) is the function of the temperature change through the plate thickness:

$$T(z) = \frac{z}{t} \Delta T \tag{22-5}$$

Combining the equation (22 - 3) with the equation (22 - 2), formula for the deflection $u_{z,temp}$ can be obtained:

Verification Example: 0022 – Circle Surface with Thermal Loading

$$u_{z,\text{temp}} = \int \frac{12}{Eh^3} m_{\text{T}} a \, \text{d}a \qquad (22-6)$$

Integrating the equation (22 – 6), while assuming that the deflection at the plate's edge is equal to zero ($u_{z,\text{temp}}(r) = 0$), the final expression for the deflection due to the temperature can be obtained:

$$u_{z,\text{temp}} = \frac{\alpha \Delta T}{2t} \left(a^2 - r^2 \right) \tag{22-7}$$

The deflection due to the pressure can be expressed as:

$$u_{z, \text{press}} = \frac{p_0 a^4}{64D} - \frac{p_0 r^4}{64D} + \frac{p_0 r^4 (3+\nu)}{32(D+\nu D)} - \frac{p_0 a^2 r^2 (3+\nu)}{32(D+\nu D)}$$
(22-8)

where D is plate rigidity:

$$D = \frac{E_{\text{final}}t^3}{12(1-\nu^2)}$$
(22 - 9)

where E_{final} is modulus of elasticity for the final temperature defined as a sum of the reference temperature and uniform temperature load and can be deducted from the **Figure 2**:

$$T_{\text{final}} = t_0 + T_c = 20 + 10 = 30^{\circ}\text{C}$$
 (22 - 10)

The maximum radial moment in the center of the plate (a = 0 m) can be obtained from the deflection due to the pressure:

$$m_{\rm r,max} = D\left(\frac{{\rm d}^2 u_{z,{\rm press}}}{{\rm d}a^2} + \frac{\nu}{a}\frac{{\rm d}u_{z,{\rm press}}}{{\rm d}a}\right) = \frac{p_0 r^2 (3+\nu)}{16} \tag{22-11}$$

RFEM Settings

- Modeled in version RFEM 5.26 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.025$ m
- Geometrically linear analysis is considered
- The Mindlin plate theory is used
- Isotropic thermal-elastic material model is used

Results

Structure File	Program	Entity	
0022.01	RFEM 5, RFEM 6	Plate	

Verification Example: 0022 – Circle Surface with Thermal Loading

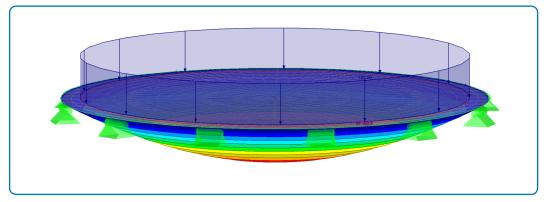


Figure 3: RFEM 5 Results

As can be seen in the tables below, an excellent consensus of analytical solutions for deflection $u_{z,max}$ and radial moment $m_{r,max}$ with RFEM 5 outputs was achieved.

Analytical Solution	RFE	M 5	RFEM 6		
u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	u _{z,max} [mm]	Ratio [-]	
12.935	12.943	1.001	12.946	1.001	
Analytical Solution	RFEM 5		RFEM 6		
m _{r,max} [kNm/m]	m _{r,max} [kNm/m]	Ratio [-]	m _{r,max} [kNm/m]	Ratio [-]	

References

20.625

20.681

[1] SZILARD, R. Theories and Application of Plate Analysis: Classical Numerical and Engineering Method. Hoboken, New Jersey, 2004.

1.003

20.715

1.004