

**Program: RFEM 5, RSTAB 8** 

Category: Second-Order Analysis, Large Deformation Analysis, Member

Verification Example: 0051 - Pinned Beam Subjected to Bending

# 0051 – Pinned Beam Subjected to Bending

#### **Description**

Beam pinned at the both ends is loaded with the force *F* at the middle. Neglecting its self-weight and shear stiffness, determine beam's maximum deflection, normal force and moment at the mid-span assuming the second and the third order theory.

| Material | Steel | Modulus of<br>Elasticity | Е       | 210.000 | GPa |
|----------|-------|--------------------------|---------|---------|-----|
|          |       | Shear<br>Modulus         | G       | 81.000  | GPa |
|          |       | Yield Stress             | $f_{y}$ | 0.355   | GPa |
| Geometry | Beam  | Length                   | L       | 8.000   | m   |
|          |       | Height                   | h       | 0.400   | m   |
|          |       | Width                    | Ь       | 0.180   | m   |
|          |       | Web<br>Thickness         | S       | 0.010   | m   |
|          |       | Flange<br>Thickness      | t       | 0.014   | m   |
| Load     |       | Force                    | F       | 215.000 | kN  |

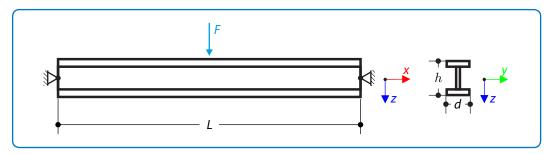



Figure 1: Problem sketch [1]

#### **Analytical Solution**

Analytical solution is not available for this example.

## **RFEM 5 and RSTAB 8 Settings**

- Modeled in version RFEM 5.03.1142 and RSTAB 8.03.1142
- The element size is  $I_{\rm FE}=0.800~{\rm m}$
- The number of increments is 1
- The element type is member
- Isotropic linear elastic material model is used
- Shear stiffness of members is deactivated

## **Verification Example:** 0051 – Pinned Beam Subjected to Bending

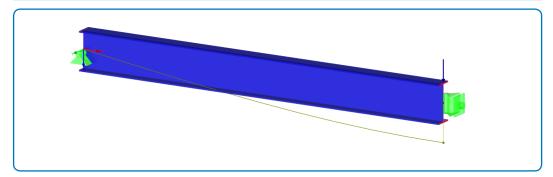



Figure 2: RFEM 5 model assuming the 2nd order theory

## **Results**

| Structure File | Program | Method of Analysis         |
|----------------|---------|----------------------------|
| 0051.01        | RFEM 5  | Second-Order Analysis      |
| 0051.02        | RFEM 5  | Large Deformation Analysis |
| 0051.03        | RSTAB 8 | Second-Order Analysis      |
| 0051.04        | RSTAB 8 | Large Deformation Analysis |

As can be seen from the following comparisons, excellent agreement of the numerical outputs with the results given in [1] was achieved.

| Analysis                           | S3D [2]                | RFEM 5                 |              | RSTAB 8                |              |
|------------------------------------|------------------------|------------------------|--------------|------------------------|--------------|
|                                    | $u_z(rac{L}{2})$ [mm] | $u_z(rac{L}{2})$ [mm] | Ratio<br>[-] | $u_z(rac{L}{2})$ [mm] | Ratio<br>[-] |
| Second-Order<br>Analysis           | 47.3                   | 47.3                   | 1.000        | 47.3                   | 1.000        |
| Large De-<br>formation<br>Analysis | 46.4                   | 46.4                   | 1.000        | 46.4                   | 1.000        |

| Analysis                           | S3D [2]                  | RFEM 5                   |              | RSTAB 8                  |              |
|------------------------------------|--------------------------|--------------------------|--------------|--------------------------|--------------|
|                                    | $M_y(\frac{L}{2})$ [kNm] | $M_y(\frac{L}{2})$ [kNm] | Ratio<br>[-] | $M_y(\frac{L}{2})$ [kNm] | Ratio<br>[-] |
| Second-Order<br>Analysis           | 430                      | 430                      | 1.000        | 430                      | 1.000        |
| Large De-<br>formation<br>Analysis | 423                      | 423                      | 1.000        | 423                      | 1.000        |

## **Verification Example:** 0051 – Pinned Beam Subjected to Bending

| Analysis                           | S3D [2]               | RFEM 5                |              | RSTAB 8               |              |
|------------------------------------|-----------------------|-----------------------|--------------|-----------------------|--------------|
|                                    | $N(\frac{L}{2})$ [kN] | $N(\frac{L}{2})$ [kN] | Ratio<br>[-] | $N(\frac{L}{2})$ [kN] | Ratio<br>[-] |
| Second-Order<br>Analysis           | 0                     | 0                     | -            | 0                     | -            |
| Large De-<br>formation<br>Analysis | 147                   | 147                   | 1.000        | 147                   | 1.000        |

## References

- [1] LUMPE, G. and GENSICHEN, V. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software: Prüfbeispiele, Fehlerursachen, genaue Theorie. Ernst.
- [2] LUMPE, G. S3D (Vers. 25.09.2011). Hochschule Biberach.