Kamp of the second seco

Program: RFEM 5

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0062 – Gravity Loading

0062 – Gravity Loading

Description

A rod with a square cross-section is fixed on the top end according to **Figure 1**. The rod is loaded by its self-weight. For comparison, the example is also modeled with the concentrated force load which value is equal to the gravity. The aim of this verification example is to show the difference between these types of loading although the total loading force is equal. The problem is described by the following set of parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.296	_
		Density	ρ	7850.000	kg/m ³
Geometry	Rod	Length	L	10.000	m
		Cross-Section Width	w	20.000	mm
Load		Gravitational Acceleration	g	10.000	m/s ²

The self-weight is neglected in the first case. Determine the maximum deformation of the rod $u_{z,max}$.

Figure 1: Problem Sketch

Analytical Solution

The equation of equilibrium in one-dimensional case can be written as:

$$\frac{\mathrm{d}\sigma_z}{\mathrm{d}z} + f_z = 0 \tag{62-1}$$

where f_z is the volume force in N/m³ and the axial stress σ_z is defined by the Hooke's law.

$$\sigma_z = E\varepsilon_z \tag{62-2}$$

Concentrated Force

At first, the loading by the concentrated force is considered. The concentrated force is equal to the gravity.

$$G = g\rho AL = 314.000 \text{ N}$$
 (62 - 3)

The volume force f_z is equal to zero in this case. Then the strain ε_z remains constant

$$\frac{\mathrm{d}\sigma_z}{\mathrm{d}z} = \frac{\mathrm{d}(E\varepsilon_z)}{\mathrm{d}z} = \frac{E\mathrm{d}\varepsilon_z}{\mathrm{d}z} = 0 \tag{62-4}$$

where the strain ε_z is defined as:

$$\varepsilon_z = \frac{\mathrm{d}u_z}{\mathrm{d}z} \tag{62-5}$$

Then the final differential equation is:

$$\frac{\mathrm{d}^2 u_z}{\mathrm{d}z^2} = 0 \tag{62-6}$$

The solution of this differential equation has the form of the following linear function.

$$u_{z}(z) = C_{1}z + C_{2}, \quad C_{1} \in \mathbb{R}, C_{2} \in \mathbb{R}$$
 (62 - 7)

The integration constants C_1, C_2 can be obtained from boundary conditions.

$$\frac{\mathrm{d}u_z}{\mathrm{d}z} = \varepsilon_z = \frac{G}{EA} \tag{62-8}$$

$$u_z(L) = 0 \tag{62-9}$$

Hence,

Verification Example: 0062 – Gravity Loading

$$C_1 = \frac{G}{EA} \tag{62-10}$$

$$C_2 = -\frac{E}{EA} \tag{62-11}$$

Finally, the formula for the displacement u_z can be completed and the maximum displacement $u_{z,max}$ calculated.

$$u_z(z) = \frac{G}{EA}(L-z) \tag{62-12}$$

$$u_{z,\max} = \frac{GL}{EA} = -0.037 \text{ mm}$$
 (62 - 13)

Self-weight

In case of self-weight the volume force is defined as:

$$f_z = \rho g \tag{62-14}$$

Using formula (62 – 1) again the differential equation of equilibrium can be rewritten as follows:

$$\frac{d^2 u_z}{dz^2} = -\frac{\rho g}{E} \tag{62-15}$$

Please note that the strain ε_z is not constant. The deformation u_z is then the following:

$$u_{z}(z) = -\frac{\rho g}{2E}z^{2} + C_{1}x + C_{2}, \quad C_{1} \in \mathbb{R}, C_{2} \in \mathbb{R}$$
 (62 - 16)

Boundary conditions in this case are the following:

$$\frac{du_z(0)}{dz} = 0$$
 (62 - 17)

$$u_z(L) = 0$$
 (62 – 18)

Hence,

$C_{1} = 0$	(62 – 19)
$C_2 = -\frac{\rho g}{2E}L^2$	(62 – 20)

Finally the formula for the displacement u_z can be completed and the maximum displacement $u_{z,max}$ calculated.

Verification Example: 0062 – Gravity Loading

$$u_z(z) = \frac{\rho g}{2E} (L^2 - z^2) \tag{62-21}$$

$$u_{z,\max} = \frac{\rho g L^2}{2E} = -0.019 \text{ mm}$$
 (62 - 22)

RFEM 5 Settings

- Modeled in RFEM 5.06.1176
- The element size is $I_{\rm FE} = 0.100$ m
- The number of increments is 5
- Isotropic linear elastic material model is used

Results

Structure Files	Program	Description	
0062.01	RFEM 5	Concentrated force	
0062.02	RFEM 5	Self-weight	

Type of Loading	Analytical Solution	RFEM 5	
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]
Concentrated force	-0.037	-0.037	1.000
Self-weight	-0.019	-0.019	1.000

