Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0071 - Clamped Elliptic Plate Under Transversal Load

0071 - Clamped Elliptic Plate Under Transversal Load

Description

An elliptic plate with clamped boundary is subjected to a uniformly distributed transversal load p. Assuming small deformation theory and neglecting self-weight, determine the maximum out-of-plane deflection $u_{\max }$ of the plate.

Material	Linear Elastic	Modulus of Elasticity	E	50.000	GPa
		Poisson's Ratio	ν	0.200	-
Geometry	Ellipse	Thickness	t	0.200	m
		a	2.000	m	
		Semi-Minor Axis Length	b	1.000	m
Load	Pressure	p	10.000	MPa	

Figure 1: Problem sketch

Analytical Solution

The governing differential equation of a plate subjected to a distributed transversal load is related to the biharmonic operator $\nabla^{2} \nabla^{2} u$, more precisely

$$
\begin{equation*}
\nabla^{2} \nabla^{2} u=\frac{\partial^{4} u}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=\frac{p}{D} \tag{71-1}
\end{equation*}
$$

where u is the out-of-plane deformation of the plate and D the flexural rigidity of the plate

$$
\begin{equation*}
D=\frac{E t^{3}}{12\left(1-\nu^{2}\right)} \tag{71-2}
\end{equation*}
$$

Verification Example: 0071 - Clamped Elliptic Plate Under Transversal Load

The biharmonic equation ($\mathbf{7 1} \mathbf{- 1}$) is augmented with the clamped boundary condition

$$
\begin{align*}
u & =0 \\
\frac{\partial u}{\partial x} & =0 \\
\frac{\partial u}{\partial y} & =0
\end{align*}
$$

According to [1], the deflection surface of the elliptic plate is described by

$$
\begin{equation*}
u(x, y)=C\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)^{2} \tag{71-6}
\end{equation*}
$$

where a and b are the semi-major and semi-minor axes of the ellipse, respectively. The constant C can be obtained from substituting (71-6) into (71-1), which yields

$$
\begin{equation*}
\frac{\partial^{4} u}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=8 C\left[3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}-\frac{4}{a^{2} b^{2}}\right]=\frac{p}{D} \tag{71-7}
\end{equation*}
$$

hence

$$
\begin{equation*}
C=\frac{p}{8 D\left[3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}-\frac{4}{a^{2} b^{2}}\right]} \tag{71-8}
\end{equation*}
$$

It can be seen from the general solution (71-6) that the plate will be deflected the most at its centroid where $x=0$ and $y=0$, that is

$$
\begin{equation*}
u_{\max }=u(0,0)=C=\frac{3 p\left(1-\nu^{2}\right)}{2 E t^{3}\left[3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}-\frac{4}{a^{2} b^{2}}\right]} \approx 9.763 \mathrm{~mm} \tag{71-9}
\end{equation*}
$$

RFEM 5 Settings

- Modeled in version RFEM 5.06.3039
- The element size is $I_{\mathrm{FE}}=0.01 \mathrm{~m}$
- Geometrically linear analysis is considered
- Number of increments is 1
- Kirchhoff plate theory is used

Results

Structure File	Program
0071.01	RFEM 5

Figure 2: RFEM 5 Solution
As can be seen from the table below, excellent agreement of numerical output with the analytical result was achieved.

Analytical Solution	RFEM 5	
$u_{\max }$ $[\mathrm{mm}]$	$u_{\max }$ $[\mathrm{mm}]$	Ratio $[-]$
9.763	9.763	1.000

References

[1] SZILARD, R. Theories and Application of Plate Analysis: Classical Numerical and Engineering Method. Hoboken, New Jersey.

