# **Example**

Program: RFEM 5, RF-STABILITY

Category: Isotropic Linear Elasticity, Post-Critical Analysis, Stability, Member, Shell

Verification Example: 0094 – Buckling of a Circular Ring

# 0094 – Buckling of a Circular Ring

# Description

A thin circular ring of rectangular cross-section  $b \times h$  is exposed to an external pressure p according to **Figure 1**. Determine the critical load  $p_{cr}$  and corresponding load factor f for in-plane buckling. The problem is described by the following parameters.

| Material | Steel         | Modulus of<br>Elasticity | Ε | 210000.000 | MPa  |
|----------|---------------|--------------------------|---|------------|------|
|          |               | Poisson's<br>Ratio       | ν | 0.300      | -    |
| Geometry | Ring          | Radius                   | R | 0.500      | m    |
|          | Cross-section | Width                    | h | 3.000      | mm   |
|          |               | Height                   | b | 30.000     | mm   |
| Load     |               | Pressure                 | p | 1.000      | N/mm |





# **Analytical Solution**

The analytical solution is based on the theory introduced in [1]. The deflection curve of a thin bar with a circular center line is defined by means of the following differential equation

$$\frac{\mathrm{d}^2}{\mathrm{d}\varphi^2}w + w = -\frac{MR^2}{EI},\tag{94-1}$$

where *w* is the deflection,  $\varphi$  is the angular coordinate, *I* is the cross-section moment of inertia<sup>1</sup> and *M* is the bending moment magnitude. This can be derived from the **Figure 2**, where *S* is the compressive force in the ring and  $M_0$  is the bending moment at any cross-section.



<sup>&</sup>lt;sup>1</sup> For the rectangular cross-section the moment of inertia is  $I = \frac{1}{12}bh^3$ .

### Verification Example: 0094 – Buckling of a Circular Ring



Figure 2: Schema for the bending moment magnitude derivation

$$M = M_0 - pR(w_0 - w)$$
(94 - 2)

The differential equation (94 – 1) can be then modified into the following form

$$\frac{d^2}{d\varphi^2}w + \alpha^2 w = -\frac{pR^3 w_0 - M_0 R^2}{EI},$$
(94 - 3)

where the coefficient  $\alpha$  is equal to

$$\alpha^2 = 1 + \frac{pR^3}{El}.$$
 (94 - 4)

The general solution is then

$$w = C_1 \sin \alpha \varphi + C_2 \cos \alpha \varphi + \frac{pR^3 w_0 - M_0 R^2}{EI + pR^3}.$$
 (94 - 5)

Real constants  $C_1$  and  $C_2$  are obtained from the conditions of zero rotation at points corresponding to  $\varphi = 0$  and  $\varphi = \frac{\pi}{2}$ 

$$\left(\frac{d}{d\varphi}w\right)_{\varphi=0},$$
 (94-6)

$$\left(\frac{d}{d\varphi}w\right)_{\varphi=\frac{\pi}{2}}.$$
 (94 - 7)

From the first condition follows that  $C_1 = 0$  and the second gives



### Verification Example: 0094 – Buckling of a Circular Ring

$$\sin\alpha\frac{\pi}{2} = 0. \tag{94-8}$$

The smallest root of this equation is  $\alpha = 2$ , hence, from (94 – 4), the critical value of the pressure  $p_{cr}$  is determined

$$p_{cr} = \frac{3El}{R^3} \approx 0.340 \text{ N/mm.}$$
 (94 – 9)

The load factor f is then

$$f = \frac{p_{cr}}{p} \approx 0.340.$$
 (94 - 10)

# **RFEM 5 and RSTAB 8 Settings**

- Modeled in RFEM 5.16.01 and RSTAB 8.16.01
- Element size is *I*<sub>FE</sub> = 0.005 m
- The number of increments is 10
- Isotropic linear elastic material is used
- Lanczos method is used for eigenvalue analysis

## **Results**

| Structure File | Program               | Method                | Entity |
|----------------|-----------------------|-----------------------|--------|
| 0094.01        | RFEM 5 - RF-STABILITY | Nonlinear Analysis    | Member |
| 0094.02        | RFEM 5                | Postcritical Analysis | Member |
| 0094.03        | RFEM 5                | Postcritical Analysis | Shell  |

| Model                                     | Analytical Solution | RFEM 5 / RSTAB 8 |              |
|-------------------------------------------|---------------------|------------------|--------------|
|                                           | f<br>[-]            | f<br>[-]         | Ratio<br>[-] |
| RF-STABILITY, Nonlin-<br>ear Analysis     |                     | 0.348            | 1.024        |
| RFEM 5, Postcritical<br>Analysis*, Member | 0.340               | 0.337            | 0.991        |
| RFEM 5, Postcritical<br>Analysis*, Shell  |                     | 0.346            | 1.018        |

\* Remark: The postcritical analysis (modified Newton-Raphson method) is used as a variant to the solution in add-on modules for buckling. The critical force or the load factor can be approximately determined from the deflection behaviour. It is convenient to use the incrementally increasing



### Verification Example: 0094 – Buckling of a Circular Ring

loading with refinement of the last load increment. Small imperfections are added to the initial geometry to reach the instability.



Figure 3: Buckled shape in RFEM 5 - RF-STABILITY



Figure 4: Comparison of postcritical analysis results for member and shell entity

# References

[1] TIMOSHENKO, S. and GERE, J. Theory of Elastic Stability. McGraw-Hill Book Company, 1963.

