Program: RFEM 5, RSTAB 8, RF-FE-LTB, FE-LTB

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Post-Critical Analysis, Stability, Member

Verification Example: 0095 – Lateral Buckling of a Beam in Pure Bending

0095 – Lateral Buckling of a Beam in Pure Bending

Description

A simply supported beam is loaded by means of pure bending – moment M_y according to **Figure 1**. Determine the critical load $M_{y,cr}$ and corresponding load factor f due to lateral buckling. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.300	_
Geometry	Beam	Length	L	10.000	m
	Cross-section	Height	h	500.000	mm
		Width	b	100.000	mm
		Web Thickness	S	5.000	mm
		Flange Thickness	t	5.000	mm
Load		Bending Moment	M _y	8.000	kNm

Figure 1: Problem Sketch

Analytical Solution

The analytical solution is based on the theory introduced in [1]. Deformation of a beam is defined by means of the following differential equations, which describe bending in two parpendicular planes and warping

Verification Example: 0095 – Lateral Buckling of a Beam in Pure Bending

$$EI_{y}\frac{d^{2}u_{z}}{dx^{2}}-M_{y}=0,$$
(95 - 1)

$$EI_z \frac{\mathrm{d}^2 u_y}{\mathrm{d}x^2} - \varphi_x M_y = 0, \qquad (95-2)$$

$$GJ\frac{\mathrm{d}\varphi_x}{\mathrm{d}x} - EC_\omega \frac{\mathrm{d}^3\varphi_x}{\mathrm{d}x^3} + \frac{\mathrm{d}u_y}{\mathrm{d}x}M_y = 0, \qquad (95-3)$$

where I_y , I_z and C_{ω} are moments of inertia in appropriate directions and warping constant respectively. These constants are taken from cross-section properties in RFEM 5. Differentiating (95 – 3) and substituting $\frac{d^2u_y}{dx^2}$ from (95 – 2) the following differential equation is obtained

$$EC_{\omega}\frac{d^{4}\varphi_{x}}{dx^{4}} - GJ\frac{d^{2}\varphi_{x}}{dx^{2}} - \frac{M_{y}^{2}}{EI_{z}}\varphi_{x} = 0.$$
(95 - 4)

Considering substituting constants α and β ,

$$\alpha = \frac{GJ}{2EC_{\omega}},\tag{95-5}$$

$$B = \frac{M_y^2}{E^2 I_z C_{\omega}},$$
 (95 - 6)

(95 - 4) can be rewritten into more suitable form as

$$\frac{d^4\varphi_x}{dx^4} - 2\alpha \frac{d^2\varphi_x}{dx^2} - \beta\varphi_x = 0.$$
(95 - 7)

The general solution of (95 - 4) is

$$\varphi_x = C_1 \sin mx + C_2 \cos mx + C_3 e^{nx} + C_4 e^{-nx}, \qquad (95-8)$$

where C_1, C_2, C_3, C_4 are integration constants and m, n are following substituting constants

$$m = \sqrt{-\alpha + \sqrt{\alpha^2 + \beta}},\tag{95-9}$$

$$n = \sqrt{\alpha + \sqrt{\alpha^2 + \beta}}.$$
 (95 - 10)

Although beam supports restrain axial rotation φ_x the beam is free to warp at both ends, so that the following boundary conditions can be written

$$\varphi_{\mathbf{x}}(\mathbf{0}) = \mathbf{0},$$
 (95 - 11)

$$\varphi_{-}(I) = 0. \tag{95-12}$$

$$\frac{d^2\varphi_x(0)}{dx^2} = 0,$$
 (95 - 13)

$$\frac{d^2\varphi_x(L)}{dx^2} = 0.$$
 (95 - 14)

Verification Example: 0095 – Lateral Buckling of a Beam in Pure Bending

Using these boundary conditions, $C_2 = C_3 = C_4$ a

$$\sin mL = 0.$$
 (95 – 15)

The smallest non-negative value of *m* is

$$m = \frac{\pi}{L}.$$
 (95 – 16)

The shape of buckling is given by the equation

$$\varphi_x = C_1 \sin mx \tag{95-17}$$

Taking above mentioned substitutions into account, the critical value of the bending moment $M_{y,cr}$ can be expressed as follows

$$M_{y,cr} = \frac{\pi}{L} \sqrt{E I_z \left(\frac{\pi^2 E C_\omega}{L^2} + G J\right)} \approx 7.681 \text{ kNm}, \qquad (95 - 18)$$

and the corresponding load factor f is

$$f = \frac{M_{y,cr}}{M_y} \approx 0.960.$$
 (95 - 19)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.18.01 and RSTAB 8.18.01
- Element size is $I_{\rm FE} = 0.100 \, {\rm m}$
- The number of increments is 100
- Isotropic linear elastic material is used

Results

Structure File	Program	Description	
0095.01	RFEM 5 - RF-FE-LTB	Geometrically Linear Analysis	
0095.02	RSTAB 8 - FE-LTB	Geometrically Linear Analysis	
0095.03	RFEM 5	Postcritical Analysis	
0095.04	RSTAB 8	Postcritical Analysis	

Verification Example: 0095 – Lateral Buckling of a Beam in Pure Bending

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	f [-]	f [-]	Ratio [-]
RFEM 5 - RF-FE-LTB		0.955	0.995
RSTAB 8 - FE-LTB		0.955	0.995
RFEM 5, Postcritical Analysis*	0.960	0.940	0.979
RSTAB 8, Postcritical Analysis*		0.980	1.021

* Remark: The postcritical analysis (modified Newton-Raphson method) is used as a variant to the solution in add-on modules for lateral torsional buckling (RF-FE-LTB and FE-LTB). The critical force or the load factor can be approximately determined from the beam deflection behaviour.

Figure 2: Buckled shape in RFEM 5 / RSTAB 8 – Postcritical Analysis

References

[1] TIMOSHENKO, S. and GERE, J. Theory of Elastic Stability. McGraw-Hill Book Company, 1963.

