Kanifi Cation Examole

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Geometrically Linear Analysis, Dynamics, Member

Verification Example: 0117 – Double Mass Oscillator

0117 – Double Mass Oscillator

Description

A double–mass oscillator consists of two linear springs with stiffness k_1 , k_2 and masses m_1 , m_2 , which are concentrated at the nodes. The self-weight of the springs is neglected. Determine the natural frequencies of the system. The problem is shown in **Figure 1** and is described by the following set of parameters.

System Properties	Mass	<i>m</i> ₁	50.000	kg
		<i>m</i> ₂	20.000	kg
	Spring Stiffness	<i>k</i> ₁	10.000	kN/m
		k ₂	20.000	kN/m

Figure 1: Problem Sketch

Analytical Solution

Natural oscillations of the double-mass system are described by the following system of second-order differential equations

$$m_1\ddot{u}_{x1} + k_1u_{x1} - k_2(u_{x2} - u_{x1}) = 0, \qquad (117 - 1)$$

$$m_2\ddot{u}_{x2} + k_2(u_{x2} - u_{x1}) = 0, \qquad (117 - 2)$$

or in matrix form

$$\boldsymbol{M}\ddot{\boldsymbol{u}}_{x}+\boldsymbol{K}\boldsymbol{u}_{x}=\boldsymbol{0}, \tag{117-3}$$

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{u}_{x1} \\ \ddot{u}_{x2} \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{x2} \end{bmatrix} = 0.$$
(117-4)

The eigenvalue problem

$$\det\left(\boldsymbol{K}-\boldsymbol{\varOmega}^{2}\boldsymbol{M}\right)=\mathbf{0}\tag{117-5}$$

then yields the angular frequencies Ω_1 and Ω_2 , whence the natural frequencies f_1, f_2 are, in turn, calculated.

Verification Example - 0117 © Dlubal Software 2017

$$f_1 = \frac{\Omega_1}{2\pi} \approx 1.861 \,\mathrm{Hz}$$
 (117 - 6)

$$f_2 = \frac{\Omega_2}{2\pi} \approx 6.088 \,\mathrm{Hz}$$
 (117 - 7)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.10.00 and RSTAB 8.10.00
- Subspace iteration method is used

Results

Structure Files	Program
0117.01	RFEM 5 – RF-DYNAM Pro
0117.02	RSTAB 8 – DYNAM Pro

Model	Analytical Solution	RFEM 5 /	RSTAB 8
	f ₁ [Hz]	f ₁ [Hz]	Ratio [-]
RFEM 5	1.861	1.861	1.000
RFEM 8		1.862	1.000

Model	Analytical Solution	RFEM 5 / RSTAB 8	
	f ₂ [Hz]	f ₂ [Hz]	Ratio [-]
RFEM 5	6.000	6.088	1.000
RSTAB 8	0.088	6.088	1.000

