

Dlubal Webinar

Designing Cold-Formed Steel Sections According to Eurocode 3

Dipl.-Ing. (FH) Andreas HöroldMarketing & Public Relations
Dlubal Software GmbH

Sonja von Bloh, M.Sc.Product Engineering & Customer Support
Dlubal Software GmbH

Questions During the Presentation

Webinar Content

Agenda

- Basics to determine effective cross-section properties
- Modeling general cold-formed sections in SHAPE-THIN 9
- Designing cold-formed sections in STEEL Cold-Formed Sections

Used Programs/Modules

RSTAB 8

3D structural frame analysis program RSTAB for the design of structures consisting of steel, reinforced concrete, timber, aluminum etc.

STEEL EC3

Add-on module for the design of steel members according to Eurocode 3

STEEL Cold-Formed Sections

Module extension for STEEL EC3: Design of cold-formed cross-sections according to EN 1993-1-3

STEEL Warping Torsion

Module extension for STEEL EC3: Warping torsion analysis according to the second-order theory with 7 degrees of freedom

SHAPE THIN 9

Stand-alone program for properties and stresses of thin-walled and cold-formed cross-sections

www.dlubal.com

Workflow Design of Cold-Formed Sections

Effective Cross-Section Properties

- 1 Checking the geometric conditions according to EN 1993-1-3, Section 5.2
- 2 Considering local plate buckling by determining the effective cross-section with $K = \infty$ according to the method of effective widths
- 3 Considering flexural buckling of the stiffener (distortional buckling)
 - 3.1 Displaying the stiffener as member with elastic foundation with spring stiffness K

Effective Cross-Section Properties

3.2 Calculating the critical buckling stress

Effective Cross-Section Properties

3.3 Calculating the reduced ultimate limit state

$$\chi_{d} = \begin{cases} 1.0 & \text{for } \overline{\lambda}_{d} \leq 0.65 \\ 1.47 - 0.723 \cdot \overline{\lambda}_{d} & \text{for } 0.65 < \overline{\lambda}_{d} < 1.38 \\ 0.66 / \overline{\lambda}_{d} & \text{for } \overline{\lambda}_{d} \geq 1.38 \end{cases}$$

3.4 Calculating the reduced stiffener thickness

$$t_{red} = \chi_d \cdot t \cdot f_{yb} / (\sigma_{com,Ed} \cdot \gamma_{MO})$$

Purlin Suspension

Thank you for your attention!

