

Structural Analysis and Design Software

Dipl.-Ing. (FH) Andreas Hörold Organizer

Marketing & Public Relations
Dlubal Software GmbH

Dipl.-Ing. (BA) Markus Baumgärtel Co-Organizer

Customer Support Dlubal Software GmbH

Dipl.-Ing. (FH) Adrian Langhammer Co-Organizer

Product Engineering & Customer Support Dlubal Software GmbH Webinar

Soil-Structure Interaction in RFEM

Questions During the Presentation

GoToWebinar Control Panel **Desktop**

E-mail: info@dlubal.com

CONTENT

- O1 Presenting different soil models
- **02** Utilizing soil models in RFEM
- O3 Designing a floor slab

炭

炭

Soil Models

Subgrade reaction modulus method

Modified subgrade reaction modulus method

Modified two-parametric soil model (with foundation overlaps)

Modified two-parametric soil model (with additional springs)

3D half-space analysis

炭

Subgrade Reaction Modulus Method

$$k_s = \frac{\sigma_0}{s}$$

k_s Winkler's foundation constant

 σ_0 Soil contact stresses

s Settlement

Modified Subgrade Reaction Modulus Method

Acc. to Dörken and Dehne [2]

 Linear increasement of the subgrade reaction modulus at the edges

Acc. to Bellmann and Katz [3]

 Increasing the subgrade reaction modulus by the factor 4 at the edges (one finite element row)

Evaluating the Subgrade Reaction Modulus Method

Advantages

- Easy input
- Short computation time (no iterative calculation)
- Extension to modified subgrade reaction modulus method possible

Disadvantages

- Inadequate soil modeling
- No consideration of adjacent soil areas
- No consideration of the soil's shear resistance
- No definition of soil layers
- No definition of structures' interaction
- Few realistic results

Modified Two-Parametric Soil Model (with Foundation Overlaps)

- Foundation overlap should be sufficiently large so that the settlements at the edge are close to zero
- Foundation overlap having only a small stiffness

Acc. to Pasternak [5]

Modulus of subgrade reaction

$$c_{1,z} = \frac{E_0}{H \cdot (1 - 2 \cdot \mu^2)}$$

Shear resistance

$$c_{2,v} = E_0 \cdot \frac{H}{6 \cdot (1+\mu)}$$

Acc. to Barwaschow [5]

Modulus of subgrade reaction

$$c_{1,z} = \frac{E_0}{H \cdot (1 - \mu^2)}$$

Shear resistance

$$c_{2,v} = E_0 \cdot \frac{H}{20 \cdot (1-\mu^2)}$$

$$E_0$$
 Modulus of elasticity $= E_S \cdot \frac{1 - \mu - 2 \cdot \mu^2}{1 - \mu}$

H Elastic foundation depth

μ Poisson's ratio

bingr

춨

Modified Two-Parametric Soil Model with Additional Springs

Shear resistance

$$c_{2,v} = c_{1,z} \cdot s^2$$

$$s = \frac{s_0}{4 \text{ bis } 5}$$

s₀ Range of subsidence basin (distance from the slab edge where settlements drop under 1 % of the foundation edge values)

Reference value for c_{2 v}

$$0.1 \cdot c_{1,z} < c_{2,v} < 1.0 \cdot c_{1,z}$$

Loose sand: $c_{2,v}$ towards 0

Solid rocks: $c_{2,v}$ towards 1

Average shear capacity: $c_{2,v} = 0.5 \cdot c_{1,z}$

Modified Two-Parametric Soil Model with Additional Springs

"Effective Soil Model" method according to Kolar and Nemec [4]

Line springs

$$k = \sqrt{c_{1,z} \cdot c_{2,v}}$$

Single springs at the outer edges

$$K = \frac{c_{2,v}}{2}$$

Evaluating Two-Parametric Soil Models

Advantages

- Realistic results if used properly
- Consideration of adjacent soil areas
- Consideration of the soil's shear resistance
- Short computation time (no iterative calculation)
- Definition of structures' interaction possible when utilizing the soil model with foundation overlaps

Disadvantages

- Additional considerations and inputs necessary
- No definition of structures' interaction possible when utilizing the soil model with additional springs
- Definition of soil layers only approximately

$\overset{}{\approx}$

Stiffness Modulus Approach

- When utilizing the FE option, a stiffness matrix of the soil surface related to the contact surface between structure and soil is created
- Discrete nodal points are reference points in this contact surface
- FE program determines the structure's stiffness related to the support settlement in these reference points
- Support settlements of the slab model and surface settlements of the soil are aligned by iterative calculation $(w_{Slab} = w_{Soil})$
- Stiffness of the structural system and the soil modeled as elastic half-space are now one unit

$\not \precsim$

Evaluating Stiffness Modulus Approach

Advantages

- Usually realistic results
- Realistic soil modeling
- Consideration of adjacent soil areas
- Definition of soil layers and interaction between structures

Disadvantages

 Increased computation time caused by iterative caluclation

binar

3D Half-Space Analysis

- Elastic half-space of the soil is modeled with displaying the soil layers as
 3D model with FE solid elements
- Leads to a good connection between soil and structure
- Soil modeling until the settlement decreases
- 3D half-space analysis shows the complex modeling of the soil-structure system most clearly

Structure

Soil

Evaluating 3D Half-Space Analysis

Advantages

- Very realistic soil modeling
- Consideration of adjacent soil areas
- Definition of soil layers and interaction between structures works very well
- No iterative calculation

Disadvantages

- The software system must have 3D solid elements
- By utilizing the 3D modeling of the soil, very large system matrices might occur which leads to high memory requirements and long computation times (increased computer system requirements)

Example: Modified Two-Parametric Soil Model with Foundation Overlap

Input values

Modulus of elasticity $E_0 = 10000 \text{ kN/m}^2$

Elastic foundation depth H = 5 m

Poisson's ratio $\mu = 0.2$

Soil parameters

(acc. to Barwaschow [5])

Modulus of subgrade reaction

$$c_{1,z} = \frac{E_0}{H \cdot (1 - \mu^2)}$$

$$c_{1,z} = 2083.33 \text{ kN/m}^3$$

Shear resistance

$$c_{2,v} = E_0 \cdot \frac{H}{20 \cdot (1-\mu^2)}$$

$$c_{2v} = 2604.17 \text{ kN/m}$$

Example: Modified Two-Parametric Soil

Model with Additional Springs

Soil parameters

Modulus of subgrade reaction

$$c_{1,z} = 2083.33 \text{ kN/m}^3$$

Shear resistance

Assumption: average shear capacity

$$c_{2,v} = 0.5 \cdot c_{1,z}$$

$$c_{2,v} = 1041.67 \text{ kN/m}$$

Additional springs

Line springs

$$k = \sqrt{c_{1,z} \cdot c_{2,v}}$$

$$k = \sqrt{2083.33 \cdot 1041.67}$$

$$k = 1473.14 \text{ kN/m}^2$$

$$K = \frac{c_{2,v}}{2}$$

$$K = \frac{1041.67 \text{ kN/m}}{2}$$

$$K = 520.84 \text{ kN/m}$$

Bibliography

- [1] Barth, C.; Rustler, W.: Finite Elemente in der Baustatik-Praxis, 2. Auflage. Berlin: Beuth, 2013
- [2] Dörken, W.; Dehne, E.: Grundbau in Beispielen Teil 2. Nach neuer DIN 1054:2005, 4. Auflage. Köln: Werner, 2007
- [3] Bellmann, J.; Katz, C.: Bauwerk-Boden Wechselwirkungen, 3. FEM-Tagung Darmstadt, TH Darmstadt, 1994
- [4] Kolar, V.; Nemec, I.: Modelling of Soil-Structure Interaction. Amsterdam: Elsevier Science Publishers, 1989

[5] Barwaschow, W. A.: Setzungsberechnungen von unterschiedlichen Modellen, Osnowania, fundamenti i mechanika gruntow, Heft 4/77, Moskau 1977 (russisch)

淤

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

Dlubal

Cross-Section Properties

With this free online tool, you can select standardized sections from an extensive section library, define parametrized crosssections and calculate its crosssection properties.

FAQs & Knowledge Base

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to Download

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.

Free Online Services

Youtube Channel webinars, videos

Videos and webinars about the structural engineering software.

Webshop with prices

Configure your individual program package and get all prices online!

Trial Licenses

The best way how to learn using our programs

We offer free

and chat

support via email

Get further details about Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Download free trial license

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com