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A B S T R A C T

This study examines the form-finding analysis of membrane structures and presents a new general method for
determining prestress called stress projection. This method addresses several deficiencies while performing the
form-finding analysis, especially in the case of conical membrane structures. A key feature of the proposed
stress projection procedure is the adoption of a generally oriented projection plane, where finite elements are
projected onto, and the determination of their stress states, which allows for a smooth adaptation of stresses
over the membrane structures. Deformation gradients are then evaluated with respect to this projection plane,
as opposed to the inertial reference frame used for the computation of stress tensors in subsequent form-finding
processes.

The proposed stress projection procedure efficiently modifies the stresses over the structures and signif-
icantly addresses intrinsic element distortion problems within the form-finding analysis. Thus, the proposed
method allows for the maintenance of regularized finite element shapes and the smooth changing of stress states
throughout form-finding iteration processes, especially for conical membrane shapes. Numerical experiments
demonstrate the efficiency of the implemented stress projection scheme compared with two well-known stress

adaptation schemes.
. Introduction

The design process of membrane structures is inherently connected
o a form-finding analysis that aims to identify the equilibrium shape
ased on the required prestress, loading, and boundary conditions. The
hapes of such structures are related to the equilibrium of tensile forces
n space. In addition to searching for the initial equilibrium positions of
embrane and cable structures, form-finding analysis can be utilized to

ptimize the shapes of shell and girder structures subjected to a given
oad.

The term ‘‘form-finding’’ emphasizes the search for final shapes.
owever, this is not the only task involved, as equilibrium states are
enerally unknown in advance. The form-finding analysis thus searches
or both the shape and the equilibrium state derived from the required
restress values. As mentioned in many studies, the only prestress that
an be prescribed in advance and is consequently reached is isotropic
restress, if the equilibrium shape can physically exist, as will be
iscussed later. Furthermore, as proven in a number of studies, constant
nisotropic prestress is not a viable choice to reach the equilibrium
hape within form-finding analysis.
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epublic.

E-mail addresses: lang.r@fce.vutbr.cz (R. Lang), nemec.i@fce.vutbr.cz (I. Němec), kcpark@colorado.edu (K.C. Park).

As a consequence of the above, the prestress, defined as a form-
finding input, must be adapted to reach the equilibrium shape. Without
a stress adaptation procedure, the form-finding procedure will not suc-
ceed. According to Linhard et al. [1], ‘‘It is possible to stabilize the form
finding process with the proposed stress adaptation scheme’’. Following
this, the terms ‘‘stress adaptation’’, ‘‘stress adaptation scheme’’, and
‘‘stress adaptation procedure’’ are utilized in this study. The aim of
this work is to introduce a new stress adaptation scheme called stress
projection and to present its benefits for conical membrane structures.

1.1. Motivation

Before the proposed stress projection scheme is described, well-
known stress adaptation schemes are reviewed. The most common
ones involve force density and stress density [2–6], hence the names
force density method (FDM) and stress density method (SDM). These
adaptations are based on push-forward operations between the original
and equilibrium configurations, as will be described later in this pa-
per. Furthermore, distortion control and element size control [1,7–10]
procedures are reviewed.
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A critical review of existing stress adaptation procedures identifies
the sources of an undesirable interconnection between the final equi-
librium shape and the initial position of the structure while performing
form-finding analysis. This unwanted interconnection, which is char-
acteristic of current stress adaptations, often leads to a compromise
between the required configuration and the final equilibrium state.
The proposed stress projection procedure efficiently prevents such a
deficiency, which makes this method unique compared to other stress
adaptation schemes.

The stress projection scheme removes the undesired dependency
by introducing a generally oriented projection plane. On this plane,
all elements are projected to determine their fictitious deformation
gradients and, subsequently, the stress state within the structure. The
equilibrium stress field in the projection plane is determined analyti-
cally, as presented in the derived formula. This stress field is further
utilized for the mapping process to determine the equilibrium stress
within the structure. The analytically determined stress field in the
projection plane is the first of the true sources of the discrepancy
removal mentioned above. The projection of particular finite elements
onto the projection plane generally changes, as will be presented later
on, and is the second true source of discrepancy removal. The objective
of the proposed stress projection procedure is to provide the possibility
of reaching smoothly changing and well-distributed prestress in conical
membrane structures.

From a finite element formulation perspective, the stress states
utilized in the proposed stress projection procedure may be viewed
as the regularized element shapes used. This is because the projected
element shapes yield the intermediate strain states between both ex-
treme configurations, that is, the total Lagrangian strain states and the
Eulerian strain states. In fact, the adoption of a common projection
plane is shown to eliminate the undesirable dependency between the
final equilibrium shape and the initial shape or the mesh discretization
used. The numerical experiments presented here confirm the desirable
properties of the proposed stress projection procedure.

1.2. Review of existing form-finding methods

Many form-finding methods have been proposed to date. Linkwitz
and Schek’s [2,3] well-known FDM was derived from the nodal equilib-
rium conditions for cable net structures. In its basic form, the method
linearizes the form-finding analysis. This is achieved by using the
assumption of a proportional relationship between the force and the
length of a cable, the so-called force density, which accounts for the
name of the form-finding method.

Haber and Abel proposed the assumed geometric stiffness method
(AGSM) [4,11], which is consistently derived from the linearized form
of the virtual work equation. In addition to cable net structures, this
method is applicable to membranes and other types of structures.
It assumes that form-finding analysis is basically independent of the
material used. Therefore, the material part of the linearized equation
of virtual work is completely removed from the process, leaving only
the part connected with the work of the nonlinear part of the Green–
Lagrange strain tensor increment. With the use of the standard formula
for the geometric stiffness matrix, the proportionality between the force
and the length, or the stress and the size, is incorporated, and the
resulting stress state can be calculated as a push-forward operation of
the initially prescribed prestress values. Therefore, the AGSM can be
perceived as a consistent generalization of the FDM.

The assumption of proportionality between the prestress and the
size is a strict stress adaptation scheme within form-finding analysis.
Managing the process of reaching the desirable smooth and rather
uniform prestress in a membrane structure is difficult using this pre-
condition. As described in the aforementioned articles, both FDM and
AGSM can be used in a nonlinear manner if the stress state is not
obtained by the push-forward operation between the initial and actual
2

configurations. However, this principally removes the essential stress
adaptation from the form-finding analysis, which must be replaced with
another one.

The updated reference strategy (URS) proposed by Bletzinger and
Ramm [12] is a form-finding method that incorporates the mixed for-
mulation of the reference and the actual configurations. As in the case
of the FDM and AGSM, the URS also assumes the essential form-finding
analysis independence of the material used. The stress adaptation pro-
cedures covered most frequently within the URS by Bletzinger et al. [1,
7,8] are distortion control and element size control. These techniques
use a stress-to-size ratio when a particular finite element exceeds
the allowed deformation without affecting the stress up to this limit.
Another stress adaptation scheme presented by Bletzinger et al. [7,13]
is the assumption of a relation between the prestress in the final
configuration of a membrane structure and the stress defined in the
related configuration, the so-called reference strip, which refers to the
production process of these structures. The force incompatibilities in
the positions of the common lines of the adjacent reference strips are
suggested to be avoided using distortion control or element size control.

Tabarrok and Qin [14] proposed a classical form of the linearized
equation of virtual work to be used for form-finding analysis. The stress
adaptation incorporated is based on the assumption of a very small
Young’s modulus. By including this fictitious material, the prescribed
unrealizable prestress is modified to reach the final equilibrium in a
standard way of structural analysis.

Barnes [15,16] proposed the use of dynamic relaxation (DR) within
form-finding analysis. An overview of various form-finding methods, in-
cluding their comparison, was presented by Veenendaal and Block [17]
and Tibert and Pellegrino [18] for tensegrity structures. Further related
literature by various authors can be found in [19–29].

1.3. Basic features of form-finding analysis

In theory, form-finding analysis is independent of both the material
used and the initial shape of the structure, provided it is possible
to predefine the equilibrium. In principle, the final shape depends
exclusively on the equilibrium of forces within the given boundary
conditions. However, predefining equilibrium prestress in advance is
generally impossible [4,19] except of a unique situation when using
isotropic prestress. Nevertheless, if the isotropic prestress does not meet
the engineering requirements for the structure, or if it cannot even
physically exist, as shown in Fig. 2, the use of general anisotropic
prestress is necessary. Using constant anisotropic prestress for double-
curved surfaces is not physically possible, as shown in Fig. 1. In fact, the
essential need to search for general anisotropic prestress in equilibrium
is the real reason why various stress adaptation schemes have been
formulated within form-finding analysis. General anisotropic prestress
is usually derived from a defined simple prestress input, which is only
given by two values: one in the warp direction and in the weft direction.
Thus, the stress adaptation procedures lead to the general anisotropic
prestress in equilibrium within a membrane structure and modify the
initially physically incompatible input values.

It is important to emphasize the idea above that the resulting
prestress distribution obtained within the form-finding analysis is prin-
cipally independent of the material. This is the consequence of the
essential fact that stress in a structure is not a response to deformation,
as in the case of a standard structural analysis. On the other hand,
the specified prestress is the basic shaping parameter of form-finding
analysis, as described extensively by Bletzinger et al. [1,7–9,12,13].

The demonstrative example below shows the utilization of con-
stant anisotropy in form-finding analysis, which is strictly required.
However, the corresponding equilibrium configuration with this re-
quirement cannot exist for a double-curved surface, as such a prestress
is in equilibrium for zero Gaussian curvature [1,19] only. Therefore,
such an input of form-finding analysis leads to a diverging process, as

shown in Fig. 1.
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Fig. 1. Initial configuration (left) and diverging form-finding analysis for constant anisotropy (middle, right).
Fig. 2. Initial configuration (left) and collapsing shape utilizing isotropy prestress (middle, right).
As mentioned above, the only equilibrium state that is possible to
predefine in advance is isotropic prestress. However, the feasibility
of such a prestress can be violated by external loading or the given
boundary conditions, which do not allow such a prestress to exist. A
typical example is conical membrane structures, which have a tendency
toward necking and collapsing. By using the isotropic prestress for these
membrane structures, the equilibrium configuration cannot usually be
physically reached, as proven by the collapsing shape in Fig. 2. This
collapse susceptibility is related to the proportion between the height
and the bases of the conical membrane structure, which is called the
critical height [19,30]. The structure collapses after exceeding this
critical height.

As most conical membrane structures are susceptible to collapse,
they require a general anisotropic prestress. As mentioned above, such
a prestress is practically impossible to predefine, which is why stress
adaptation schemes are needed to solve this situation and reach the
required equilibrium. The need for equilibrium searching is virtually
the main objective problem in form-finding analysis. This identifies the
essential requirements of stress adaptation schemes within form-finding
analysis, which are responsible for reaching equilibrium.

As already mentioned, different methods have been proposed, as
summarized in [17], which can be used to adapt stresses and thus
reach the equilibrium. The well-known force density [2,3,17] and stress
density [4], however, are highly strict stress adaptations when used
in their linear forms. They often lead to overstressed areas. Distortion
control and element size control [1,7–9] assume stress adaptations
after exceeding a predefined deformation or allowable configuration.
Although these techniques decrease the stress peaks, they also bring an
on–off switch into stress adaptation. They also lead to unnecessary in-
plane deformations of elements to start the needed stress adaptation. By
using reference strips as reference configurations for stress definition,
incompatibility problems may arise in the areas of the common seam
3

lines of a membrane structure [7,13]. Thus, combining methods is
necessary. Another possible option is the incorporation of a fictitious
soft material [14], but this also causes overstressed areas in some
parts. All these methods exhibit dependency on FE mesh discretization
or on the original shape when the equilibrium is to be searched.
Alternatively, interaction with such methods is needed when using
reference strips. Controlling the stress adaptations in different parts
of conical membrane structures is also difficult to reach smoothly
distributed prestress. For this reason, stress projection is proposed,
which is especially suitable for conical membrane structures. This stress
adaptation technique is independent of both FE mesh discretization and
the initial position of the structure, which is a unique quality of stress
adaptation schemes.

2. Formulation of form-finding analysis

Regarding the later utilization of stress adaptation procedures, the
applied implicit form-finding method is described first. Two well-
known stress adaptation procedures are described later. The stress
projection procedure is also described in detail, followed by a com-
parison given in tabular form. Continuum mechanics equations are
mentioned for the purpose of the form-finding method used.

2.1. Continuum mechanics equations

The governing equation of the virtual work variation of internal
forces 𝛿𝑊 𝑖𝑛𝑡 and external forces 𝛿𝑊 𝑒𝑥𝑡 is recalled below (1). The
parts are expressed in terms of the actual structure configurations.
This corresponds to the updated Lagrangian formulation, which was
utilized during the implementation of the form-finding analysis that
will be described later on. It is important to note that the total La-
grangian formulation or the utilization of the explicit formulation via
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DR would not change the physical meaning of the proposed stress
projection procedure. The proposed stress projection described later is
exclusively a stress adaptation procedure that is fully compatible with
any formulation mentioned here. Thus, the only reason for reviewing
the updated Lagrangian formulation is that this method was utilized
during the implementation work of the presented method.

∫𝑖𝑉

𝑖+1𝐒𝛿𝑖+1𝐄 𝑑𝑉 = ∫𝑖𝑉

𝑖+1𝐟𝛿𝑖+1𝐮 𝑑𝑉 , (1)

here 𝑖 and 𝑖 + 1 are the calculation step last performed and the
alculation step to be solved, respectively; 𝑖𝑉 is the actual configuration
f the structure, obtained in calculation step 𝑖; 𝑖+1𝐒 is the second
iola–Kirchhoff strain tensor; 𝛿𝑖+1𝐄 is the Green–Lagrange strain tensor
ariation in step 𝑖 + 1 to be solved; 𝑖+1𝐟 is the generalized forces in step
+ 1, expressed in terms of the actual configuration 𝑖𝑉 ; and 𝛿𝑖+1𝐮 is the
eformation variations.

The second Piola–Kirchhoff stress 𝑖+1𝐒 and the Green–Lagrange
train 𝑖+1𝐄 tensors are decomposed below. The already known expres-
ions 𝑖𝐒 and 𝑖𝐄, describing the state in the actual configuration in step
and the expressions for the unknown states of the structures 𝛥𝐒 and
𝐄, are separated. Note that the stress state in step 𝑖, described by the
econd Piola–Kirchhoff stress tensor 𝑖𝐒, expressed in terms of the actual
onfiguration 𝑖𝑉 , corresponds to the Cauchy stress tensor 𝝈, so 𝑖𝐒 = 𝝈.
urthermore, when decomposing the Green–Lagrange strain tensor 𝑖+1𝐄
nto parts 𝑖𝐄 and 𝛥𝐄, the strain tensor increment is related to the actual
onfiguration 𝑖𝐄 = 0. Thus, the following equations result:
+1𝐒 = 𝑖𝐒 + 𝛥𝐒 = 𝝈 + 𝛥𝐒, 𝑖+1𝐄 = 𝑖𝐄 + 𝛥𝐄 = 𝛥𝐄 = 𝛥𝝐 + 𝛥𝜼, (2)

here 𝛥𝝐 and 𝛥𝜼 correspond to the linear and nonlinear parts of the
reen–Lagrange strain tensor increment 𝛥𝐄, respectively.

When using the expressions of (2) within Eq. (1), the expression of
he virtual work variations written out in parts is obtained.

∫𝑖𝑉
𝛥𝐒𝛿𝛥𝝐 𝑑𝑉 + ∫𝑖𝑉

𝛥𝐒𝛿𝛥𝜼 𝑑𝑉 + ∫𝑖𝑉
𝝈𝛿𝛥𝝐 𝑑𝑉 + ∫𝑖𝑉

𝝈𝛿𝛥𝜼 𝑑𝑉

= ∫𝑖𝑉

𝑖+1𝐟𝛿𝑖+1𝐮 𝑑𝑉 . (3)

By modifying the increment of the second Piola–Kirchhoff stress ten-
or 𝛥𝐒 with the Taylor series and after assuming linear approximation,
e obtain the following:

𝐒 = 𝜕𝑖𝐒
𝜕𝑖𝐄

𝛥𝐄 +⋯ =̇ 𝜕𝑖𝐒
𝜕𝑖𝐄

(𝛥𝝐 + 𝛥𝜼)=̇𝐂𝛥𝝐, (4)

here 𝐂 denotes the constitutive material law. After substituting (4)
nto the first term of (3) and neglecting its second term, and then
ultiplying the second Piola–Kirchhoff stress tensor increment 𝛥𝐒 to

he nonlinear part of the Green–Lagrange strain tensor increment 𝛥𝜼,
e obtain the general linearized equation of virtual work, which is the
ssential basis of the form-finding method described in the following
hapter.

𝑖𝑉
𝐂𝛥𝝐𝛿𝛥𝝐 𝑑𝑉 + ∫𝑖𝑉

𝝈𝛿𝛥𝜼 𝑑𝑉 = ∫𝑖𝑉

𝑖+1𝐟𝛿𝑖+1𝐮 𝑑𝑉 − ∫𝑖𝑉
𝝈𝛿𝛥𝝐 𝑑𝑉 . (5)

Utilizing finite elements (FE) discretization, the strain components
𝝐 and 𝛥𝜼, corresponding to the linear and nonlinear parts of the
reen–Lagrange strain tensor, can be expressed as

𝝐 = 𝐁𝐿𝑘𝛥𝐮𝑘, 𝛥𝜼 = 𝐁𝑁𝐿𝑘𝛥𝐮𝑘, (6)

here 𝐁𝐿𝑘 and 𝐁𝑁𝐿𝑘 are the linear and nonlinear strain interpolation
atrices, respectively, which are each assembled for the actual config-
rations. After assuming discretization and substituting (6) into (5), as
ell as removing the displacement variations, the linearized equation
f the virtual work variations appears in the following discretized form:
𝑚
∑

𝑘
∫𝑖𝑉𝑘

𝐁𝑇
𝐿𝑘𝐂𝑘𝐁𝐿𝑘 𝑑𝑉𝑘𝛥𝐮𝑘 +

𝑚
∑

𝑘
∫𝑖𝑉𝑘

𝐁𝑇
𝑁𝐿𝑘𝝈𝑘𝐁𝑁𝐿𝑘 𝑑𝑉𝑘𝛥𝐮𝑘

=
𝑚
∑

𝑖+1𝐟𝑘 𝑑𝑉𝑘 −
𝑚
∑

𝐁𝑇
𝐿𝑘𝝈⃗𝑘 𝑑𝑉𝑘, (7)
4

𝑘
∫𝑖𝑉𝑘 𝑘

∫𝑖𝑉𝑘
u

here 𝑘 and 𝑚 denote the currently considered finite element and
he total number of finite elements, respectively, and 𝛥𝐮𝑘 represents

a vector of the discretized displacement increments.
Expressed in the matrix form, the material stiffness matrix 𝐊𝐿𝑘 and

the geometrical stiffness matrix 𝐊𝑁𝐿𝑘, as well as the vectors of the
external nodal forces 𝑖+1𝐅𝑒𝑥𝑡

𝑘 and the internal nodal forces 𝑖𝐅𝑖𝑛𝑡
𝑘 , are

btained, and Eq. (7) can be written in the following form:
𝑚

𝑘
𝐊𝐿𝑘𝛥𝐮𝑘 +

𝑚
∑

𝑘
𝐊𝑁𝐿𝑘𝛥𝐮𝑘 =

𝑚
∑

𝑘

𝑖+1𝐅𝑒𝑥𝑡
𝑘 −

𝑚
∑

𝑘

𝑖𝐅𝑖𝑛𝑡
𝑘 . (8)

The governing equations of the equilibrium for solving the nonlinear
nalysis are recalled in the continuum and the discretized form here.
hese equations are the bases for the general form-finding method
escribed in the following section.

.2. Form-finding method

The form-finding method utilized for the subsequent presentation
f stress adaptation techniques is derived from the general equation
f equilibrium described above. As the stress adaptation schemes pre-
ented in this study are mapping based and thus principally material
ndependent, the increment of the linear part of the Green–Lagrange
train tensor 𝛥𝝐 does not influence the equilibrium at all. This cor-
esponds with the assumptions of Haber and Abel [4] and with the
ategorization between geometric stiffness methods according to Vee-
endaal and Block [17]. Therefore, the following reduced forms of
qs. (5), (7), and (8) can be used in the form-finding analysis:

𝑖𝑉
𝝈𝛿𝛥𝜼 𝑑𝑉 = ∫𝑖𝑉

𝑖+1𝐟𝛿𝑖+1𝐮 𝑑𝑉 − ∫𝑖𝑉

𝑖𝝈𝛿𝛥𝝐 𝑑𝑉 , (9)

𝑚

𝑘
∫𝑖𝑉𝑘

𝐁𝑇
𝑁𝐿𝑘𝝈𝑘𝐁𝑁𝐿𝑘 𝑑𝑉𝑘𝛥𝐮𝑘 =

𝑚
∑

𝑘
∫𝑖𝑉𝑘

𝑖+1𝐟𝑘 𝑑𝑉𝑘 −
𝑚
∑

𝑘
∫𝑖𝑉𝑘

𝐁𝑇
𝐿𝑘𝝈⃗𝑘 𝑑𝑉𝑘,

(10)

𝑚

𝑘
𝐊𝑁𝐿𝑘𝛥𝐮𝑘 =

𝑚
∑

𝑘

𝑖+1𝐅𝑒𝑥𝑡
𝑘 −

𝑚
∑

𝑘

𝑖𝐅𝑖𝑛𝑡
𝑘 . (11)

The reduced equations are the convenient bases for a numerical
olution for the form-finding analysis. However, it is important to
mphasize that the stress projection procedure that will be presented
ater is not restricted to a particular form-finding method, but can be
tilized within any of the general methods mentioned in the intro-
uction without any problem. Generally, as already indicated above,
tress adaptation schemes are required to reach the equilibrium. Such
ethods will be discussed later in this paper.

.3. Mapping-based stress adaptation procedures

It must be emphasized that the applied stress adaptation procedure
s completely responsible for reaching the final equilibrium shape. The
esulting stress state is always artificial in principle because it is not a
esponse of the structure but a driving parameter of the form-finding
rocess. The objective task of the form-finding analysis is to reach the
quilibrium, while it is most desirable to have the resulting stresses well
istributed, thus smoothly changing and without any concentrations, if
hysically possible.

Several well-known stress adaptation procedures have been men-
ioned in the introduction. Two of them, stress density and distor-
ion control, are described in detail below. Both methods are prin-
ipally material independent and are also widely used within form-
inding analysis. This description will be used later for a comparison
ith the proposed stress projection. The comparison provides a deeper

nderstanding of and insight into the new method.
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2.3.1. Stress density
Under the presumption of a consistent linearization of form-finding

analysis, the resulting stress state is obtained using the push-forward
operation. This mapping process between the initial and actual con-
figurations introduces stress changes that are dependent on changes in
the finite element shape. Inspired by the nomenclature of force density
proposed by Linkwitz and Schek [2,3], the generalized concept for an
arbitrary finite element is called stress density.

Let us assume that the prestress is defined with respect to the initial
configuration of the structure, that is, in the step 𝑖 = 0. Thus, the second
Piola–Kirchhoff stress tensor 0𝐒 is prescribed as a form-finding input.

When assembling Eqs. (9)–(11) for the first form-finding step 𝑖 = 1,
he Cauchy stress tensor 0𝝈 related to configuration 0𝑉𝑘 corresponds
ith the second Piola–Kirchhoff stress tensor, as both refer to the

ame initial configuration. Thus, using the expression 0𝝈 = 0𝐒 for
he procedure described by Eqs. (9)–(11) is possible to obtain a new
onfiguration in step 𝑖 = 1. As there is no material constitutive law
ncluded, the second Piola–Kirchhoff stress tensor increment is zero 𝛥𝐒,

and it can be written as 𝑖𝐒 = 0𝐒. As the second Piola–Kirchhoff stress
ensor 𝑖𝐒 is known, it can be used further for stress estimation within
he actual configuration 𝑖𝑉𝑘. Therefore, the Cauchy stress tensor 𝑖𝝈 in
he actual configuration 𝑖𝑉𝑘 is given as

𝝈 = 𝑖𝐽−1𝑖𝐅𝑖𝐒𝑖𝐅𝑇 = 𝑖𝐽−1𝑖𝐅0𝐒𝑖𝐅𝑇 = 𝑖𝐽−1𝑖𝐅0𝝈𝑖𝐅𝑇 , (12)

here 𝑖𝐅 is the deformation gradient describing the relationship be-
ween the original 0𝐗 and the actual 𝑖𝐱 configurations, and 𝑖𝐽 is the
eterminant of the deformation gradient, so 𝑖𝐽 = 𝑑𝑒𝑡(𝑖𝐅).

𝐅 = 𝜕𝑖𝐱
𝜕0𝐗

. (13)

Because of the assumption of a zero increment of the second Piola–
irchhoff stress tensor 𝛥𝐒 = 0, the first and second terms of the general
quilibrium Eq. (3) are naturally zero, so the form-finding process
s essentially linear. Thus, Eqs. (9)–(11) derived from the linearized
orm of virtual work variations blend with (3) completely and do not
epresent an approximation of the solution; instead, it represents a
recise solution, as just proven theoretically. The form-finding problem
urns into a linear analysis because of the assumptions described above.

To express the stress state of a particular finite element within its
oordinate system, the co-rotational stress tensor 𝑖𝝈 can be written
own.

𝝈 = 𝑖𝐽−1𝑖𝐔𝑖𝐒𝑖𝐔 = 𝑖𝐽−1𝑖𝐔0𝐒𝑖𝐔 = 𝑖𝐑𝑇 0𝝈𝑖𝐑, (14)

where 𝑖𝐔 is the right stretch tensor, and 𝑖𝐑 is the rotation tensor,
obtained from the polar decomposition of the deformation gradient
𝑖𝐅 = 𝑖𝐑𝑖𝐔. When looking at the co-rotational stress tensor 𝑖𝝈, the
elationship between the resulting stress state and the finite element
tretching is obvious.

To demonstrate the results of the linear form-finding analysis uti-
izing stress density, the structure shown in Fig. 2 was calculated.
tress is defined in relation to the local coordinate systems of the finite
lements, denoted by the right subscript 𝑙. The prestress values are
𝝈𝑙 = {𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦}𝑇 = {1.00, 1.00, 0.00}𝑇 MPa, and the thickness of the
embrane is 𝑡 = 0.001𝑚, which is used as the form-finding input. The

tress transformation from the local to the global coordinate system
sed in Formula (12) is shown in Table 1. After solving the equilibrium
quations described in (9)–(11), the resulting shape shown in Fig. 3 is
btained.

In conclusion, stress density is a robust stress adaptation procedure.
t leads to a linearization of the form-finding analysis if stress densities
re not adapted. However, this method is too strict in its linear form.
he resulting stress state is obtained by mapping the initial stress
tate from the initial to the equilibrium configuration. As criticized in
arious studies [4,17], the resulting stress state is not usually feasible
n construction, as it changes considerably over the structure and leads
5

o stress concentrations, although in such cases, it is not physically
needed. This unjustified stress concentration can be observed in the
corners of the presented structure in Fig. 3. The stress concentra-
tion is necessary just near the hoop for conical membrane structures.
Therefore, the resulting stress state can be considered non-optimal.

Moreover, when defining the initial stress 0𝝈 in the initial config-
ration 0𝑉 , the resulting stress state 𝑖𝝈 in the actual configuration 𝑖𝑉
s dependent on the initial shape of the structure. On the other hand,
hen defining the relationship between stress and the element size,
hich are especially used as force densities for cable net structures,

he resulting stress 𝑖𝝈 in the actual configuration 𝑖𝑉 is dependent on
he FE discretization within the structure, which can be evaluated as
n undesirable feature.

A possible modification to decrease the stress concentrations over
he membrane structures is the application of stress density in nonlinear
orm [5,6,29]. If the nonlinear stress density concept is applied, then
he stress 0𝝈 is applied in a chosen number of iterations of form-finding
nalysis 𝑛. Therefore, while 𝑖 < 𝑛, 𝑖𝝈 = 0𝝈 is not obtained using the

push-forward operation. The resulting stress state over the structure
𝑖𝑉 for the iteration 𝑖 = 𝑛 is given by the push-forward operation
escribed in Formula (12). The important distinction is the fact that
he deformation gradient maps the deformation between the actual
onfiguration 𝑖𝑉 and the previous configuration 𝑖−1𝑉 of the structure.

−1𝐅 = 𝜕𝑖𝐱
𝜕𝑖−1𝐱

. (15)

Therefore, the difference between the linear and nonlinear SDMs
can be seen when comparing Formulas (13) and (15).

Although this procedure usually results in smoother stress distribu-
tion over the structures, it principally removes the stress adaptations
while performing iterations 𝑖 < 𝑛 of the form-finding analysis. Thus,
in the case of structures susceptible to shape diverging, collapsing, and
mesh distorting, form-finding analysis leads to unsatisfactory results.
To demonstrate the described behavior, a case study is shown in Fig. 4.
Nonlinear stress density application was performed in three cases: (a)
𝑛 = 2, (b) 𝑛 = 3, and (c) 𝑛 = 4. It can be observed that, although
the concentration in the corners is decreasing, the shape is collapsing.
According to Marbaniang et al. [29], ‘‘Iteratively updating the densities
for non-minimal shapes . . . causes convergence and mesh distortion
issues’’.

2.3.2. Distortion control
The second stress adaptation procedure described here is called

distortion control, which can be seen as a special case of element size
control. This method was introduced by Bletzinger et al. [1,7–9]. Ele-
ment size control introduces the maximal allowable configuration that
can be reached by a finite element, while distortion control introduces
the maximal allowable stretches instead. Recall the definition in [1]:
‘‘At the end of each form-finding step, the principal stretches, which are
caused by the total deformation from the very first starting geometry
to the actual intermediate solution, are evaluated for every point of
the structure. If at least one of these stretches has a value beyond
the allowed range, the target prestress is changed locally to enable
equilibrium’’.

While the distortion control stress adaptation scheme is used within
form-finding analysis, the prescribed stress is not modified until reach-
ing the maximum allowed stretch in step 𝑖 = 𝑙, where 𝑙 denotes the
configuration of reaching the limit value for a particular finite element.
Before exceeding the maximal allowable deformation 0 < 𝑖 < 𝑙, the

auchy stress tensor within the actual configuration is not obtained
sing the push-forward operation, as in the case of the linear SDM;
hus, the form-finding process is principally nonlinear. As soon as
he maximum allowed deformation is exceeded in step 𝑖 = 𝑙 for a
articular finite element, the push-forward operation applies to stress
odifications within the actual configuration of the particular finite

lement. Thus, stress density is adopted upon reaching this limit state.
t is important to emphasize that the step of exceeding the maximum
llowed deformation differs for individual finite elements in general.
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Fig. 3. Equilibrium shape (left) and vectors of principal forces 𝑛1 and 𝑛2 [kN/m] (right) for the linear stress density method.
Fig. 4. Equilibrium shape and vectors of principal forces 𝑛1 and 𝑛2 [kN/m] for the nonlinear stress density method (from the top: 𝑛 = 2, 𝑛 = 3, 𝑛 = 4).
During the form-finding analysis, the stress state prescribed by
an engineer in the local coordinate systems of the finite elements is
unchanged in step 𝑖 < 𝑙. When the critical stretch reaches 𝑖 = 𝑙, the
actual stress 𝑙𝝈𝑙 is obtained using the push-forward operation between
limit configuration 𝑙𝑉𝑘 and previous configuration 𝑙−1𝑉𝑘 [1]. To keep a
consistent notation within this study, we assume performing the trans-
formation of the stress tensor related to the local coordinate system
𝑙𝝈𝑙 to the global coordinate system, as described in Table 1. Thus,
the Cauchy stress tensor 𝑙𝝈 is given for the subsequent push-forward
operation. The Cauchy stress tensor 𝑖𝝈 in the actual configuration in
step 𝑖 > 𝑙 is given as
𝑖𝝈 = 𝑖

𝑙𝐽
−1𝑖

𝑙𝐅
𝑙𝝈𝑖

𝑙𝐅
𝑇 . (16)

where the deformation gradient 𝑖
𝑙𝐅 describes the relationship between

the actual configuration 𝑖𝐱 and the limit configuration 𝑙𝐱 in step 𝑙, as
denoted by the addition of the left subscript. Furthermore, 𝑖

𝑙𝐽 is the
determinant of the deformation gradient 𝑖

𝑙𝐅.

𝑖
𝑙𝐅 = 𝜕𝑖𝐱

𝜕𝑙𝐱
. (17)

To demonstrate the results of the stress adaptation procedure de-
scribed above, the structure shown in Fig. 2 was calculated. The same
definition of prestress in the local coordinate system applies 0𝝈𝑙 =
{𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦}𝑇 = {1.00, 1.00, 0.00}𝑇 MPa. Moreover, the ratio of the
maximum allowable main stretches is defined as 𝜆 = 1.05. Considering
𝑖𝑈 and 𝑖𝑈 as the main stretches of the right stretch tensor 𝑖𝐔,
6

𝑙 1 𝑙 2 𝑙
which correspond to the deformations of the membrane finite element,
the force modifications are introduced, provided that the condition
𝑖
𝑙𝑈1 ∨ 𝑖

𝑙𝑈2 ∉ ⟨1∕𝜆, 𝜆⟩ is valid [1]. The resulting equilibrium shape and
the final stresses are shown in Fig. 5. When comparing the results
presented in Figs. 3 and 5, we can see that a slightly smoother stress
distribution was obtained, which is closer to the predefined values over
the structure. While the maximal allowable stretch is increased, the
stress concentrations in the corners decrease and the mesh distortions
increase, manifesting by gradual collapsing of the cone-like membrane
structure.

The principal assumption of distortion control is described briefly
here. Further information can be found in the studies by Bletzinger
et al. [1,7–9], including other variations of this method formulation
but without changing the essential principle described above.

2.3.3. Further remarks on existing methods
Two mapping-based stress adaptation schemes that are independent

of the material are presented. They are used later for a comparison
with the proposed stress projection adaptation scheme to describe
their principal differences and to explain the reason for the unique
behavior of the proposed scheme. Both stress adaptation schemes lead
to reaching the equilibrium shapes within the form-finding analysis, so
the resulting stresses shown in Figs. 3 and 5 can be evaluated.

A justified requirement when performing form-finding analysis is
obtaining well-distributed stress over the membrane structure without
unnecessary concentrations. While stress density is applied in linear
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Fig. 5. Equilibrium shape and vectors of principal forces 𝑛1 and 𝑛2 [kN/m] for distortion control with 𝜆 = 1.05.
form, form-finding usually leads to the production of unnecessary
overstressed regions over the structures. While stress density is utilized
in a nonlinear manner or in distortion control, form-finding leads to
well-distributed prestresses for many membrane structures. However,
both methods suffer when conical shapes are solved.

Conical membrane structures differ fundamentally, as these shapes
require stress concentrations near the hoop, while stress concentrations
in the corners of the base are unnecessary. Strongly adapting the
prescribed prestress in the top area of such structures is required to
avoid necking. When stress density is applied in a nonlinear manner,
the conical membranes suffer from collapse, as presented above. When
distortion control is utilized, on–off switching, which is needed to de-
cide whether the stresses need to be modified, leads to an uncontrolled
sliding of nodes before stabilization is activated. This causes problems
in the top parts of the conical membrane structures, and the ratio of
the maximum allowable main stretches 𝜆 must be quite small.

Moreover, neither of the above methods automatically distinguish
between different parts of the structure. When these stress adaptation
schemes are applied to the conical membrane structure shown in
Fig. 2, undesirable concentrations in the corner parts of the struc-
ture appear (see Fig. 5). These concentrations are only physically
needed near the hoop, while a rather smooth distribution would be
more favorable in corner areas. To avoid this problem, stress projec-
tion is proposed, which is especially designed for the conical type of
membrane structure.

3. The proposed stress projection procedure

The proposed stress projection is a stress adaptation procedure
intended especially for conical membrane structures. Generally, the
process consists of three steps. First, a projection plane is defined, in
which the actual configuration of the structure is orthogonally pro-
jected onto. The selected projection plane is used as a fictitious plane,
as it is different from the inertial frame and the Eulerian frame. Second,
the stress state within the projection plane is determined.

Finally, the stress states in the actual configuration of the membrane
structure are derived using the composition quantity of the deformation
gradients, computed on the fictitious configuration and thus using the
coordination transformation operator from the projection plane to the
initial one. Note that the element shapes projected on the projection
plane usually change during iterations. It will be shown that the
proposed method significantly improves acute stress formation in the
top areas of the conical membranes, while stress formation in the flat
zones tends to be negligible. Thus, the proposed method avoids the
strangulation of conical membrane structures, as illustrated in Fig. 2,
and leads to a smoothly distributed general anisotropic prestress.

Furthermore, in case the equilibrium is defined within the projec-
tion plane, the proposed method features the total independence of the
final equilibrium shape and its FE discretization, as well as the shape
of the initial structure configuration, which is a unique behavior. Next,
a detailed description of the proposed stress projection is presented.
7

Fig. 6. Projection plane 𝜌 given by base 𝐨̃ and associated with axes 𝑥̃ and 𝑦̃ (left),
projection plane 𝜌 given by oriented line 𝐧⃗ and associated with axes 𝑟 and 𝑡 (right).

3.1. Kinematics relations within stress projection

First, the kinematics relations used in stress projection are de-
scribed, which are used later for the stress transformations. The arbi-
trarily oriented projection plane 𝜌 is determined by defining its base 𝐎̃
or an oriented line 𝐧⃗, as shown in Fig. 6. Note that the base 𝐎̃ applies
if an orthogonal stress arrangement within the projection plane is
required, while the oriented line 𝐧⃗ applies if a radial stress arrangement
within the projection plane is required, as will be described later.

Fig. 7 illustrates the actual configuration of the highlighted finite
element in the initial configuration 0𝑉 in step 𝑖 = 0 and then 𝑖𝑉 in step
𝑖. The prestresses in the spatial configurations 0𝑉 and 𝑖𝑉 are derived
based on the prestress defined in projection plane 𝜌. The fictitious con-
figurations 0𝑉 and 𝑖𝑉 within projection plane 𝜌 are obtained using an
orthogonal projection of the spatial configuration onto the projection
plane:

0𝑃 ∶ 0𝑉 → 0𝑉 , 𝑖𝑃 ∶ 𝑖𝑉 → 𝑖𝑉 , (18)

where {0𝑃 ∶} and {𝑖𝑃 ∶} indicate the orthogonal projection of 0𝑉 and
𝑖𝑉 onto the associated projection plane 𝜌, leading to their fictitious
reference configurations 0𝑉 and 𝑖𝑉 in steps 𝑖 = 0 and 𝑖, respectively.
Note that the fictitious quantities are always indicated by a tilde in the
text below.

The kinematic relations are derived based on the actual configu-
rations 0𝑉 and 𝑖𝑉 in step 𝑖 = 0 and the next step 𝑖, as well as on
the fictitious reference configurations 0𝑉 and 𝑖𝑉 . Thus, the fictitious
deformation gradient 0𝐅̃ and 𝑖𝐅̃ can be described as

0𝐅̃ = 𝜕0𝐗
𝜕0𝐗̃

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕0𝑥
𝜕0𝑋̃

𝜕0𝑥
𝜕0𝑌

𝜕0𝑥
𝜕0𝑍̃

𝜕0𝑦
𝜕0𝑋̃

𝜕0𝑦
𝜕0𝑌

𝜕0𝑦
𝜕0𝑍̃

𝜕0𝑧
𝜕0𝑋̃

𝜕0𝑧
𝜕0𝑌

𝜕0𝑧
𝜕0𝑍̃

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑖𝐅̃ = 𝜕𝑖𝐱
𝜕𝑖𝐗̃

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑖𝑥
𝜕𝑖𝑋̃

𝜕𝑖𝑥
𝜕𝑖𝑌

𝜕𝑖𝑥
𝜕𝑖𝑍̃

𝜕𝑖𝑦
𝜕𝑖𝑋̃

𝜕𝑖𝑦
𝜕𝑖𝑌

𝜕𝑖𝑦
𝜕𝑖𝑍̃

𝜕𝑖𝑧
𝜕𝑖𝑋̃

𝜕𝑖𝑧
𝜕𝑖𝑌

𝜕𝑖𝑧
𝜕𝑖𝑍̃

⎤

⎥

⎥

⎥

⎥

⎦

,

(19)

where 0𝐗 and 𝑖𝐱 describe the actual configurations 0𝑉 and 𝑖𝑉 in
the initial step 𝑖 = 0 and in step 𝑖, and 0𝐗̃ and 𝑖𝐗̃ describe the
fictitious configurations 0𝑉 and 𝑖𝑉 , which can be viewed as orthogonal
projections of 0𝑉 and 𝑖𝑉 according to Eq. (18).
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Fig. 7. Real and fictitious reference configurations in steps 𝑖 = 0 and 𝑖.
Fig. 8. Kinematics relations in steps 𝑖 = 0 (left) and 𝑖 (right).
Applying the chain rule, the relationships (19) can be modified into
the following form:

0𝐅̃ = 𝜕0𝐗
𝜕0𝐗̃

𝜕0𝐗
𝜕0𝐗

= 0𝐏𝑋→𝑋̃
0𝐅 = 0𝐏𝑋→𝑋̃𝐈 = 0𝐏𝑋→𝑋̃ ,

𝑖𝐅̃ = 𝜕0𝐗
𝜕𝑖𝐗̃

𝜕𝑖𝐱
𝜕0𝐗

= 𝑖𝐏𝑋→𝑋̃
𝑖𝐅,

(20)

where 0𝐅 and 𝑖𝐅 are the standard formulations of the deformation
gradient performed for steps 𝑖 = 0 and 𝑖, and 0𝐏𝑋→𝑋̃ and 𝑖𝐏𝑋→𝑋̃
are the projection operators that transform the standard deformation
gradient into the fictitious projection deformation gradients 0𝐅̃ and 𝑖𝐅̃,
as shown in Fig. 8. In the original configuration of the structure, the
deformation gradient 0𝐅 apparently corresponds to identity matrix 𝐈,
and the fictitious deformation gradient 0𝐅̃ corresponds to the projection
operator 0𝐏𝑋→𝑋̃ .

The projection operators 0𝐏𝑋→𝑋̃ and 𝑖𝐏𝑋→𝑋̃ change during the
analysis and are the true sources of the absolute independence between
fictitious deformation gradients 0𝐅̃ resp. 𝑖𝐅̃ and the original configu-
ration. This is why the proposed stress projection procedure results
in independence between the initial and equilibrium shapes. Instead,
the stress projection adaptation scheme defines the interdependence
between the chosen projection plane and the equilibrium shape.

In other words, the defined projection plane determines the shape
of the projected finite element, which is utilized to evaluate a fictitious
deformation gradient. This fictitious deformation gradient, which is no
longer related to the initial configuration but to the chosen projection
plane, is further applied to the stress mapping process, as described
above.

Note that the description above refers to the actual configurations
0𝑉 and 𝑖𝑉 in two different calculation steps 𝑖 = 0 and 𝑖. This was done
to emphasize that such a procedure is performed in every configuration
during the form-finding analysis 𝑖 = 0,… , 𝑖 − 1, 𝑖, 𝑖 + 1…, even for
the initial configuration 0𝑉 , which is associated with the fictitious
reference configuration 0𝑉 used for the stress state estimation. Having
8

emphasized this really important situation, only the generalized step 𝑖
is used in the following text, but the procedures are valid for step 𝑖 = 0
and every other step.

3.2. Equilibrium within the projection plane

An arbitrarily oriented projection plane 𝜌 is determined using its
base 𝐎̃ or an oriented line 𝐧⃗. Furthermore, equilibrium stress is deter-
mined within plane 𝜌. Note that there is no reference to the structure
now but only to the equilibrium stress field in unbounded projection
plane 𝜌.

If the orthogonal stress arrangement within the projection pane is
required, the base 𝐎̃ is needed to define the orientation and coordinate
system of such a plane. Furthermore, specifying prestress values is nec-
essary to determine the stationary stress state 𝐒̃𝜌 within the unbounded
projection plane 𝜌:

𝐒̃𝜌 = {𝑆̃𝑋̃ , 𝑆̃𝑌 , 𝑆̃𝑋𝑌 }
𝑇 , (21)

where 𝐒̃𝜌 is the stress field in vector form associated with the coor-
dinate system given by 𝐎̃. The stress field 𝐒̃𝜌 is generally given by
the definition of the prestress values 𝑆̃𝑋̃ , 𝑆̃𝑌 , and 𝑆̃𝑋𝑌 as input for
the form-finding analysis. Isotropic and constant orthogonal anisotropic
prestress can exist in projection plane 𝜌, as the requirement for a zero
Gaussian curvature is fulfilled. Fig. 9 shows an example of a segment
of the unbounded projection plane 𝜌 with 𝐒̃𝜌 = {1.50, 1.00, 0.00}𝑇 MPa
on the left side.

Furthermore, if a radial stress arrangement is required, specifying
an oriented line 𝐧⃗ is necessary. This oriented line defines both the
orientation of the projection plane 𝜌 and the center of the radially
arranged field of stresses in equilibrium. Again, it is necessary to
emphasize that the prestress over the unbounded projection plane is
assumed now, but not the structure. Moreover, a constant anisotropic
prestress cannot exist within such a prestress arrangement, so a general
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Fig. 9. Orthogonal (left) and radial (right) equilibrium stress states within the segment of the unbounded projection plane 𝜌. stress in spatial configurations derived from equilibrium
in projection plane 𝜌.
anisotropic prestress needs to be determined based on two defined
values:

𝐒̃𝜌 = 𝑓 (𝑆̃𝑟, 𝑆̃𝑡), (22)

where 𝑆̃𝑟 and 𝑆̃𝑡 are the input values of the form-finding analysis in
a specific distance 𝑑 from the oriented line 𝐧⃗ (see Fig. 9), which are
associated with the polar coordinate system axes 𝑟 and 𝑡. Assuming
that the values 𝑆̃𝑟 and 𝑆̃𝑡 are given, the equilibrium anisotropic stress
field 𝐒̃𝜌 within the unbounded projection plane can be determined
analytically, as will be presented later. While the implementation of
stress projection into the form-finding analysis it is not necessary to
enter a distance 𝑑. It could be determined automatically in such a
way that the defined stress values 𝑆̃𝑟 and 𝑆̃𝑡 are the mean values
within the area given by the projection of the membrane structure
onto the projection plane. Fig. 9 shows an example of a segment of the
projection plane 𝜌, where 𝐒̃𝜌 = 𝑓 (1.50, 1.00) MPa, and 𝑑 is determined
automatically.

An equilibrium stress 𝐒̃𝜌 within the unbounded projection plane 𝜌
is determined. Assuming this stress field is generally anisotropic, the
second Piola–Kirchhoff stress tensor 𝑖𝐒̃𝜌 associated with the fictitious
reference configuration 𝑖𝑉𝜌 of a particular finite element in step 𝑖 is not
constant, but it depends on the actual position within the projection
plane 𝜌 (see Fig. 7). Thus, it can be written as
𝑖𝐒̃𝜌 = 𝑓 (𝐒̃𝜌, 𝑖𝑉𝜌), (23)

where 𝐒̃𝜌 is the equilibrium in the unbounded projection plane, and 𝑖𝐒̃𝜌
is the second Piola–Kirchhoff stress tensor associated with the fictitious
reference configuration 𝑖𝑉𝜌 in step 𝑖. The quantities are described with
respect to the base 𝐎̃ of the projection plane 𝜌, as indicated by the
right subscript. The base 𝐎̃ can be specified directly or derived from
the defined oriented line 𝐧⃗.

To keep the equations consistent with the methods described above,
the procedure for estimating stresses within the structure is described
with regard to the global Cartesian coordinate system, which is used for
assembling the equilibrium equations described in Eqs. (9)–(11), as in-
dicated by the missing right subscript. Thus, the second Piola–Kirchhoff
stress tensor 𝑖𝐒̃𝜌 is transformed into 𝑖𝐒̃:

𝑖𝐒̃ = 𝐑𝑔
𝑖𝐒̃𝜌𝐑𝑇

𝑔 , (24)

𝐑𝑔 = 𝐎⊗ 𝐎̃ =
⎡

⎢

⎢

⎣

𝑐𝑋𝑋̃ 𝑐𝑋𝑌 𝑐𝑋𝑍̃
𝑐𝑌 𝑋̃ 𝑐𝑌 𝑌 𝑐𝑌 𝑍̃
𝑐𝑍𝑋̃ 𝑐𝑍𝑌 𝑐𝑍𝑍̃

⎤

⎥

⎥

⎦

, (25)

where 𝑐𝑋𝑋̃ denotes the cosine between the vectors 𝑋 and 𝑋̃ of the
global Cartesian coordinate system and the coordinate system of the
projection plane 𝜌. Furthermore, 𝐎 and 𝐎̃ are the bases of the global
Cartesian coordinate system and the coordinate system of the pro-
jection plane 𝜌, respectively. Thus, 𝐑𝑔 is the rotation matrix for the
transformation between both coordinate systems.
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3.3. Stress state within the structure

A stress state, described by the second Piola–Kirchhoff stress ten-
sor 𝑖𝐒̃ within the fictitious reference configuration 𝑖𝑉 in step 𝑖, was
obtained in Eq. (24). Utilizing the fictitious deformation gradient 𝑖𝐅̃
(Eq. (20)), the push-forward operation is performed to estimate the
Cauchy stress tensor 𝑖𝝈 within the actual configuration 𝑖𝑉 in step 𝑖:
𝑖𝝈 = 𝑖𝐽−1𝑖𝐅̃𝑖𝐒̃𝑖𝐅̃𝑇 , (26)

where 𝑖𝐽 is the determinant of the fictitious deformation gradient 𝑖𝐅̃.
The process is shown in Fig. 9.

Furthermore, the stress state within the highlighted finite element
is shown numerically in Fig. 9, presenting the estimation within pro-
jection plane 𝜌. The stress state shown is related to both the initial
configuration 0𝑉 and the actual configuration 𝑖𝑉 of a particular finite
element moving in the space within the form-finding analysis.

Using Eq. (26) for the solution of form-finding analysis described
in Eqs. (9)–(11) and considering the configuration 𝑖𝑉 in step 𝑖, a new
configuration 𝑖+1𝑉 of the structure is obtained. The same procedure
of the stress estimation is performed, which gives the fictitious refer-
ence configuration 𝑖+1𝑉 obtained by an orthogonal projection of 𝑖+1𝑉
onto the projection plane. Furthermore, a new fictitious deformation
gradient 𝑖+1𝐅̃ and the second Piola–Kirchhoff stress tensor 𝑖+1𝐒̃ are
determined. Thus, the Cauchy stress tensor in step 𝑖 + 1 is given as
𝑖+1𝝈 = 𝑖+1𝐽−1𝑖+1𝐅̃𝑖+1𝐒̃𝑖+1𝐅̃𝑇 . (27)

Following this procedure, the structure converges to the equilibrium
shape. There is no dependency between the stress state within steps 𝑖
and 𝑖+1 at all, and the resulting equilibrium shape does not depend on
the initial configuration or FE discretization.

3.4. Determining equilibrium within a polar coordinate system

For stress projection, determining the equilibrium in the projection
plane, as described above, is necessary. In addition to isotropic pre-
stress, a constant anisotropic prestress can be used because the Gaussian
curvature equals zero. For conical membrane structures, however, the
prestress defined in the polar coordinate system is of high importance.
In such an arrangement, constant anisotropic prestress cannot exist.
Therefore, determining a general anisotropic stress field 𝐒̃𝜌 based on
two input values is necessary. The oriented line 𝐧⃗ determines both the
orientation of the projection plane in space and the center of the polar
coordinate system.

To determine the equilibrium in the polar coordinate system, a
fictitious infinitesimal segment of the projection plane 𝜌 is assumed,
described by its length 𝛥𝑟 and angle 𝛥𝛼, as shown in Fig. 10. This
segment does not correspond to any finite element or its projection,
but it is just an imaginary segment used for the definition of general

̃
anisotropic equilibrium 𝐒𝜌.
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Fig. 10. Equilibrium of forces in the polar coordinate system within the projection
plane.

The following estimation of the equilibrium within the projection
plane uses index notation, so 𝑆̃𝑟𝑟 and 𝑆̃𝑡𝑡 represent the second Piola–
Kirchhoff stresses in the radial and tangential directions, respectively.
Assuming rotational symmetry, the shear stresses are equal to zero
𝑆̃𝑟𝑡 = 𝑆̃𝑡𝑟 = 0. In addition, the equilibrium in the tangential direction
is met because of rotational symmetry. Thus, it is only necessary to
satisfy the equilibrium in the radial direction, which is expressed by the
resultants of radial stresses 𝑟𝑅̃ and 𝑟+𝛥𝑟𝑅̃ in the positions 𝑟 and 𝑟 + 𝛥𝑟,
and the resultant of the radial components of tangential stresses 𝑇̃ .

𝑟𝑅̃ = ∫𝛥𝛼
𝑟𝑆̃𝑟𝑟𝑟 𝑑𝛼 = 𝑟𝑆̃𝑟𝑟𝑟𝛥𝛼, (28)

𝑟+𝛥𝑟𝑅̃ = ∫𝛥𝛼
𝑟+𝛥𝑟𝑆̃𝑟𝑟(𝑟 + 𝛥𝑟) 𝑑𝛼 = 𝑟+𝛥𝑟𝑆̃𝑟𝑟(𝑟 + 𝛥𝑟)𝛥𝛼, (29)

𝑇̃ = ∬𝛥𝛼𝛥𝑟
𝑆̃𝑡𝑡𝑘𝑟 𝑑𝑟 𝑑𝛼 = 𝛥𝛼 ∫𝛥𝑟

𝑆̃𝑡𝑡 𝑑𝑟, (30)

where 𝑘 is the curvature expressed as 𝑘 = 1∕𝑟. The equation of the
equilibrium in the radial direction to be satisfied over the fictitious
infinitesimal segment can be expressed as
𝑟+𝛥𝑟𝑅̃ = 𝑟𝑅̃ + 𝑇̃ . (31)

After substituting Eqs. (28)–(30) into Eq. (31), the following formula
is obtained:

∫𝛥𝑟
𝑆̃𝑡𝑡 𝑑𝑟 = 𝑟+𝛥𝑟𝑆̃𝑟𝑟(𝑟 + 𝛥𝑟) − 𝑟𝑆̃𝑟𝑟𝑟. (32)

Thus, the equation of equilibrium in the projection plane is de-
scribed. To fulfill Eq. (32), different prestress functions can be gener-
ated. A suitable choice when 𝑆̃𝑟𝑟 > 𝑆̃𝑡𝑡 is

𝑆̃𝑟𝑟 =
𝑎
𝑟
+ 𝑏, 𝑆̃𝑡𝑡 = 𝑏, (33)

where 𝑎 and 𝑏 are the constants of the functions. Assuming the required
stress values 𝑆̃𝑟𝑟 and 𝑆̃𝑡𝑡 in the position 𝑟 = 𝑑 are specified as an input
of the form-finding analysis, the constants 𝑎 and 𝑏 can be determined.
Moreover, by considering the defined prestress values 𝑆̃𝑟𝑟 and 𝑆̃𝑡𝑡 as
the mean values in the projection plane, the value of 𝑑 can also be
determined automatically. Thus, the only required input of the form-
finding analysis using the radial prestress arrangement is the standard
requirement for prestress definition 𝑆̃𝑟𝑟 and 𝑆̃𝑡𝑡, thus defining the
prestress in equilibrium in the radial arrangement 𝐒̃𝜌 = 𝑓 (𝑆̃𝑟𝑟, 𝑆̃𝑡𝑡) and
defining the oriented line 𝐧⃗.

3.5. Implementation considerations

The stress field within the projection plane is determined with
respect to the associated coordinate system, which is generally differ-
ent from the global coordinate system used for Eqs. (9)–(11). Thus,
performing the transformation, as mentioned above, is necessary.

Assuming the above-mentioned stress field 𝐒̃𝜌 is related to the polar
coordinate system and Eq. (24), the second Piola–Kirchhoff stress tensor
𝑖𝐒̃ related to the fictitious reference configuration 𝑖𝑉 in step 𝑖 can be
10

𝜌 𝜌
determined. The tensor 𝑖𝐒̃𝜌 consists of its main values in radial direction
𝑆̃𝑟𝑟 and tangential direction 𝑆̃𝑡𝑡. The rotation matrix 𝑖𝐑𝑔 is determined
as a tensor product of the base 𝐎 of the stationary global coordinate
system and the base 𝑖𝐎̃ of the polar coordinate system in the position
of a particular integration node of the solved finite element 𝑖𝑉 . Note
that the base of the coordinate system related to the projection plane
is not stationary 𝑖𝐎̃ for the radial arrangement

𝑖𝐑𝑔 = 𝐎⊗ 𝑖𝐎̃ =
⎡

⎢

⎢

⎣

𝑖𝑐𝑋𝑋̃
𝑖𝑐𝑋𝑌

𝑖𝑐𝑋𝑍̃
𝑖𝑐𝑌 𝑋̃ 𝑖𝑐𝑌 𝑌 𝑖𝑐𝑌 𝑍̃
𝑖𝑐𝑍𝑋̃

𝑖𝑐𝑍𝑌
𝑖𝑐𝑍𝑍̃

⎤

⎥

⎥

⎦

, (34)

where 𝑖𝑐𝑋𝑋̃ is the cosine between vectors 𝑋 and 𝑋̃ of the global and
polar coordinate systems. Although these systems are stationary in
general, the base 𝑖𝐎̃ within the actual integration node changes during
the form-finding analysis because of the changing position of fictitious
reference configurations 𝑖𝑉 , as shown in Fig. 7. The base 𝑖𝐎̃ in the
position of each integration point always fulfills both requirements; that
is, it points to the center of the polar coordinate system and complies
with oriented line 𝐧⃗.

Eventually, the second Piola–Kirchhoff stress tensor 𝑖𝐒̃𝜌 related
to the polar coordinate system is transformed to the second Piola–
Kirchhoff stress tensor 𝑖𝐒̃ related to the global coordinate system:
𝑖𝐒̃ = 𝑖𝐑𝑔

𝑖𝐒̃𝜌𝑖𝐑𝑇
𝑔 , (35)

The second Piola–Kirchhoff stress tensor 𝑖𝐒̃ obtained in this way is
further used to determine the Cauchy stress tensor 𝑖𝝈 within the actual
configuration 𝑖𝑉 of the particular finite element according to Eq. (26).

3.6. Comparisons with two existing stress adaptation procedures

In the following table, a comparison of the proposed stress pro-
jection with the stress density and distortion control stress adapta-
tion procedures is provided. Essential differences between particular
assumptions can be observed.

The variables included in Table 1 can be described as follows. 𝑆̃𝑟 and
𝑆̃𝑡 are the stress values related to the polar coordinate system within
the given projection plane 𝜌, determined by oriented line 𝐧⃗; 𝑆̃𝑋̃ , 𝑆̃𝑌 and
𝑆̃𝑋𝑌 are the stress values related to the Cartesian coordinate system of
the given projection plane, determined by base 𝐎̃; 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦 are
the required prestress values related to the local coordinate system of
particular finite elements; and 𝜆 is the ratio of the maximal allowable
stretching.

In the case of stress densities applied in linear form, the resulting
stress state refers to the initial configurations 0𝐗 in step 𝑖 = 0.
When distortion control is used, the resulting stress state refers to
the intermediate limit configuration 𝑙𝐗 in step 𝑖 = 𝑙. When stress
projection is considered, the stress state refers to fictitious configuration
𝑖𝐗̃, which continuously changes during the form-finding analysis and is
independent of the initial configuration of the structure. Therefore, the
resulting stress state is derived exclusively from the predefined stress
state within the projection plane.

3.7. Further remarks on the proposed stress projection

After a closer inspection, the following observations can be made for
the stress projection. If the actual configuration 𝑖𝑉 of the particular fi-
nite element is parallel to projection plane 𝜌, the orthogonal projection
{𝑖𝑃 ∶} leads to a fictitious reference configuration 𝑖𝑉 that coincides
with the rigid body motion of the actual configuration. Therefore,
virtual deformation gradient 𝑖𝐅̃ is a unit matrix; 𝑖𝐅̃ = 𝐈. The stress
state 𝑖𝝈 within the actual configuration 𝑖𝑉 is equal to the stress state
𝑖𝐒̃ within the fictitious reference configuration 𝑖𝑉 .

On the other hand, if the inclination of the particular finite ele-
ment 𝑖𝑉 is significant, the orthogonal projection {𝑖𝑃 ∶} leads to the
virtual reference configuration 𝑖𝑉 , which differs considerably from the
actual configuration 𝑖𝑉 . Using the virtual deformation gradient 𝑖𝐅̃, the
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Table 1
Comparison of stress adaptation procedures.

Stress adaptation procedure Stress projection Stress density Distortion control
(SP) (SD) (DC)

Required input 𝑎)𝑆̃𝑟 , 𝑆̃𝑡 , n⃗ 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , 𝜆
𝑏)𝑆̃𝑋̃ , 𝑆̃𝑌 , 𝑆̃𝑋𝑌 , 𝑂̃

Input stress 𝑎)𝑖𝑆̃𝜌 = 𝑓 (𝑆̃𝜌 , 𝑖𝑉𝜌) 0𝝈𝑙 = {𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦}𝑇 𝑙𝝈𝑙 = {𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦}𝑇

𝑏)𝑖𝑆̃𝜌 = {𝑆̃𝑋̃ , 𝑆̃𝑌 , 𝑆̃𝑋𝑌 }𝑇

Stress transformation 𝑖𝑆̃ = 𝑖𝐑𝑔
𝑖𝑆̃𝜌

𝑖𝐑𝑇
𝑔

0𝝈 = 0𝐑𝑔
0𝝈𝑙

0𝐑𝑇
𝑔

𝑙𝝈 = 𝑙𝐑𝑔
𝑙𝝈𝑙

𝑙𝐑𝑇
𝑔

Deformation gradient 𝑖𝐹 = 𝜕𝑖x∕𝜕𝑖𝑋̃ 𝑖𝐹 = 𝜕𝑖x∕𝜕0𝑋 𝑖𝐹 = 𝜕𝑖x∕𝜕𝑙x
Resulting stress 𝑖𝝈 = 𝑖𝐽−1 𝑖𝐹 𝑖𝑆̃ 𝑖𝐹𝑇 𝑖𝝈 = 𝑖𝐽−1𝑖𝐹 0𝝈𝑖𝐅𝑇 𝑖𝝈 = 𝑖

𝑙𝐽
−1 𝑖

𝑙𝐹
𝑙𝝈𝑖

𝑙𝐅
𝑇

𝑛

changes between the stress state 𝑖𝐒̃ within the projection plane and
𝝈 within the actual configuration are substantial. Basically, the stress
daptations of the stress projection lead to an increase in the prestress
n the slope direction and to a decrease in the prestress in the direction
f the contour lines.

The preceding observations explain why stress projection is an
fficient stress adaptation procedure for the form-finding analysis of
onical membrane structures—it avoids the undesirable strangulation
ear the hoop, while the stress in flat areas is scarcely affected. More-
ver, the proposed stress adaptation procedure can be utilized for
he shape optimization of shell structures subjected to self-weight be-
ause the projection plane can be perpendicular to the gravitational
cceleration direction.

The proposed method also leads to equilibrium shapes that are
ndependent of the initial configuration and the FE discretization of the
tructure, which is a unique feature lacking in existing stress adaptation
chemes.

. Numerical examples

The following section presents numerical examples to demonstrate
he efficiency of the proposed stress projection procedure. This stress
daptation scheme was proposed and developed within the company
EM consulting and implemented in its FEA calculation core [31]. As
art of the FEA calculation core, this stress adaptation scheme was
onsequently implemented into the RF-FORM-FINDING add-on module
f the widely used structural engineering software RFEM by Dlubal
oftware [32]. The following examples were carried out within this
oftware; interested readers may find and download many other exam-
les on the Dlubal Software website [33] for subsequent analysis and
tudy, as well as other examples created to investigate the abilities of
he proposed stress projection. There are also various customer projects
vailable on the website [34].

.1. Conical membrane structure

The first example deals with the conical membrane structure shown
n Fig. 2, as presented above. Stress projection, distortion control, and
tress density were utilized as the stress adaptation schemes. Prestress
s defined in terms of a force per unit width 𝐧̃𝜌 = 𝑡𝐒̃𝜌, 0𝐧𝑙 = 𝑡0𝝈𝑙,
nd 𝑙𝐧𝑙 = 𝑡𝑙𝝈𝑙, where 𝑡 is the thickness of the surface, rather than the
tress values 𝐒̃𝜌, 0𝝈𝑙, and 𝑙𝝈𝑙, because this is the more common input
anner for membrane structures. This, of course, does not change any

f the above-mentioned relations, and the only intention of using this
nput is to apply the standardized way of work when performing the
orm-finding analysis.

An isotropic prestress was specified. The values 𝑛̃𝑟 = 𝑛̃𝑡 = 1.00 kN/m
nd 𝑛̃𝑟𝑡 = 0.00 kN/m, or 𝐧̃𝜌 = {1.00, 1.00, 0.00}𝑇 kN/m in a vector form
ere defined for the stress projection. The values 𝑛𝑥 = 𝑛𝑦 = 1.00 kN/m

and 𝑛𝑥𝑦 = 0.00 kN/m or 0𝐧𝑙 = 𝑙𝐧𝑙 = {1.00, 1.00, 0.00}𝑇 kN/m in a vector
form were defined for both distortion control and stress density. The
oriented line 𝐧⃗ = {0, 0, 1}𝑇 coincides with the 𝑍 axis of the global
coordinate system and the middle of the hoop. For the parameter
𝜆 = 1.05, such a value is defined to avoid necking and in-plane
11

mesh distortion over the conical membrane structure. By increasing the
magnitude of 𝜆, the resistance against the necking process decreases
consequently. For stress density, utilization in linear form is considered
to avoid necking, as presented in Fig. 4.

The initial shape of the membrane structure is defined by the base
of the square shape with a side length of 𝑙 = 10.00 m, supported by
cables with the required resulting sag 𝑠 = 10.0 % of their lengths at the
end of the form-finding analysis. The cables are simply supported in the
corners of the base. The hoop with a radius of 𝑟 = 0.60 m is situated
on the top of the cantilevered column with a height of ℎ = 3.00 m. The
resulting equilibrium shapes are shown in Fig. 11, and the principal
internal forces are shown in Figs. 12–14.

Based on the presented results, the following can be concluded.
All stress adaptation schemes led to equilibrium shapes. Incorpora-
tion of the stress projection resulted in a considerably different stress
distribution over the structure, which exhibits no concentrations in
the corners and generally a smoother distribution of stresses, which
is highly desirable. The results when applying stress density exhibit a
similar stress distribution as distortion control, as presented in Fig. 3.

Table 2 summarizes the prestress distributions over the example
structure. The results are presented for all methods mentioned.

The values 𝑛1𝑘 and 𝑛2𝑘 are the principal forces in the finite ele-
ments, m is the total number of 2D finite elements over the membrane
structure, and 𝑛̄1 and 𝑛̄2 are the average values of the principal forces.

̄1 =
1
𝑚

𝑚
∑

𝑘=1
𝑛1𝑘, 𝑛̄2 =

1
𝑚

𝑚
∑

𝑘=1
𝑛2𝑘 (36)

The uniform distribution would correspond with |𝛥𝑛̄1| = 0.00 kN/m
and |𝛥𝑛̄2| = 0.00 kN/m; therefore, a lower sum of the absolute val-
ues of stress differences corresponds with a desirable lower level of
stress concentrations. The values 𝛥𝑛∗1 and 𝛥𝑛∗2 express the deviation
of the resulting average principal forces 𝑛̄1 and 𝑛̄2 from the input
values described above, hence the difference from the intended values
represented by the principal forces 1.00 kN/m. It is important to note
that it is impossible for these structures to reach a uniform prestress
distribution because the concentrations are inherent in the final shape
around the hoop.

Stress density, distortion control, and other standard stress adapta-
tion schemes modify the forces according to the deformations within
the form-finding analysis and generally do not distinguish between
different areas of the structure. On the other hand, the stress pro-
jection exhibits somewhat favorable smoother modifications because
the resulting equilibrium is independent of the calculation path dur-
ing the form-finding analysis; the equilibrium is derived exclusively
from the predefined equilibrium in the projection plane. Therefore,
stretching the finite elements in the corner parts does not lead to stress
concentrations when using stress projection.

Stress concentration near the hoop is natural, where further stress
increases emerge under loading cycles during the service duration of
the structure. Therefore, these areas are often double layered. However,
the concentrations in the corner parts are not physically needed and
should be avoided, so the prestress redistribution shown in the figures
above is indeed the most important benefit of the proposed stress
projection.
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Fig. 11. Equilibrium Shapes using stress projection (left) and distortion control (right).
Fig. 12. First principal internal forces 𝑛1 [kN/m] using stress projection (left) and distortion control (right).
Fig. 13. Second principal internal forces 𝑛2 [kN/m] using stress projection (left) and distortion control (right).
Fig. 14. Vectors of principal internal forces 𝑛1 and 𝑛2 [kN/m] using stress projection (left) and distortion control (right).
Table 2
Comparison of the utilized stress adaptation procedures.

Evaluated quantities Unit Stress projection Distortion control Stress density
(SP) (DC) (SD)

𝑛̄1 kN/m 1.14570 1.30518 1.37417
𝑛̄2 kN/m 0.89174 0.78255 0.74977
|𝛥𝑛̄1| =

1
𝑚

∑𝑚
𝑘 = 1 |𝑛1𝑘 − 𝑛̄1| kN/m 0.12399 (≈ 10.82%) 0.15632 (≈ 11.98%) 0.19738 (≈ 14.36%)

|𝛥𝑛̄2| =
1
𝑚

∑𝑚
𝑖 = 𝑘 |𝑛2𝑘 − 𝑛̄2| kN/m 0.07722 (≈ 8.66%) 0.08324 (≈ 10.64%) 0.09651 (≈ 12.87%)

𝛥𝑛∗1 = 𝑛̄1 − 1.00 kN/m 0.14570 (≈ 14.57%) 0.30518 (≈ 30.52%) 0.37417 (≈ 37.42%)
𝛥𝑛∗2 = 𝑛̄2 − 1.00 kN/m −0.10826 (≈ −10.83%) −0.21745 (≈ −21.75%) −0.25023 (≈ −25.02%)
4.2. Initial shape independence of the stress projection algorithm

As claimed above, the proposed stress projection leads to inde-
pendence between the initial and equilibrium configurations of the
structure. This unique feature is a natural consequence of using the pro-
jected fictitious configuration within the form-finding analysis. Other
existing stress adaptation schemes refer to a real deformation gradi-
ent, which implies the dependency of the final shape on its initial
approximation or the intermediate configuration, as mentioned above.
The behavior described is demonstrated in an example of the conical
membrane structure used earlier, in which the initial configuration is
12
modified quite strongly. In the following figures, the initial and final
configurations can be observed (see Figs. 15–17). The prestress and
boundary conditions are the same as in the previous example.

The projection plane in the example above is defined via the ori-
ented line 𝐧⃗ = {0, 0, 1}𝑇 , which coincides with the 𝑍 axis of the global
coordinate system. Naturally, it is possible to use any definition of
the oriented line, so the projection plane can be arbitrarily inclined,
which has a significant impact on the resulting equilibrium within
the structure designed in the form-finding analysis. This allows the
structural engineer and architect to adapt the prestress distribution
for the intended structure, which can be arbitrarily arranged in space.
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Fig. 15. Two different initial configurations of the conical membrane structure.
Fig. 16. Equilibrium shapes for stress projection.
Fig. 17. Equilibrium shapes for the stress density method.
Regardless of the projection plane inclination selected, the above-
mentioned independence between the final equilibrium state and the
initial structure configuration resp. FE mesh discretization is valid in
the stress projection procedure.

4.3. Shell structure

In the second example, form-finding analysis is used for the shape
optimization of a shell structure to reach the membrane state of
stresses under the applied self-weight. The compression forces specified
for stress projection are defined as 𝑛̃𝑋̃ = −10.00 kN/m and 𝑛̃𝑌 =
−5.00 kN/m, or 𝐧̃𝜌 = {−10.00,−5.00, 0.00}𝑇 kN/m in vector form. For
stress density and distortion control, the forces are 𝑛𝑥 = −10.00 kN/m
and 𝑛𝑦 = −5.00 kN/m, or 0𝐧𝑙 = 𝑙𝐧𝑙 = {−10.00,−5.00, 0.00}𝑇 kN/m in
vector form. The base 𝐎̃ coincides with the global coordinate system
and, in fact, also with the local coordinate system of the surface in
its initial position. Therefore, 𝐎̃ coincides with the unit matrix 𝐎̃ = 𝐈.
In this case, the parameter 𝜆 = 1.25 can be higher compared to the
previous example, as the shape does not tend to collapse or neck.

The initial planar configuration is shown in Fig. 18, consisting of
two square shell surfaces with a side length of 𝑙 = 10.00 m. Both
shorter external sides of the shell structure are simply supported, and
both longer sides are supported by two beams with the form-finding
analysis requirement for a resulting length of 𝑙𝑏𝑒 = 11.22 m. The four
beams are simply supported in the middle of the longer sides and in the
corners. The fifth beam is situated between the two square shells, with
the form-finding requirement for a resulting length of 𝑙𝑏𝑖 = 10.55 m.

The equilibrium shapes are shown in Fig. 19, and the resulting state
of the internal forces can be observed in Fig. 20.

The comparison of the resulting stress state is summarized in Ta-
ble 3. It is again assumed that the ratio of the intended and the reached
forces will be measured in terms of the resulting principal forces and
the given input values, as the input values represent the initial principal
13
Fig. 18. Initial configurations of the shell structure.

forces. Moreover, the mesh quality in the equilibrium shape can be
inspected and evaluated in terms of changes in element areas and
angles between their sides. Therefore, the table also covers the results
related to mesh quality.

In Table 3, 𝑎𝑘 is the area of a particular finite element, while 𝑎̄
and |𝛥𝑎̄| represent the average element area within the structure and
the average difference between the particular element size and this
average value in an absolute value within the equilibrium position of
the structure. Furthermore, |𝛥𝛼̄| represents the average angle deviation
in an absolute value from the angle 𝛼 = 90 deg, measured between the
two adjacent sides of the quadrangle elements. Lower values are better.

Compared with the previously performed form-finding analysis of
the conical membrane structure, the differences recorded in Table 3
and Fig. 20 are not considerable. The most significant difference can be
observed in the changes in finite element size. The essential reason for
the lower in-plane movement of FE nodes when using stress projection
lies in the orthogonality between the equilibrium within the horizontal
projection plane and the vertical direction of gravitational acceleration,
which is thus orthogonal to this projection plane. The stress projection
does not require sliding the FE nodes in the in-plane direction of the
shells to adapt the forces and reach the equilibrium, as is the case
with the other methods. Interestingly, the only essential reason for the
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Table 3
Comparison of the three stress adaptation procedures.

Evaluated quantities Unit Stress projection Distortion control Stress density
(SP) (DC) (SD)

𝑛̄1 kN/m −4.84683 −4.61431 −3.79883
𝑛̄2 kN/m −10.39443 −10.91452 −13.37611
|𝛥𝑛̄1| =

1𝑚
∑

𝑚
𝑘 = 1

|𝑛1𝑘 − 𝑛̄1| kN/m 0.44862 (≈ 9.26%) 0.37445 (≈ 8.11%) 0.38444 (≈ 10.12%)

|𝛥𝑛̄2| =
1
𝑚

∑𝑚
𝑘 = 1 |𝑛2𝑘 − 𝑛̄2| kN/m 1.02505 (≈ 9.86%) 0.78366 (≈ 7.18%) 1.23595 (≈ 9.24%)

𝛥𝑛∗1 = 𝑛̄1 − (−5.00) kN/m 0.15317 (≈ −3.06%) 0.38569 (≈ −7.71%) 1.20117 (≈ −24.02%)
𝛥𝑛∗2 = 𝑛̄2 − (−10.00) kN/m −0.39443 (≈ 3.94%) −0.91452 (≈ 9.15%) −3.37611 (≈ 33.76%)
𝑎̄ m2 0.8844 0.9007 0.9153
|𝛥𝑎̄| = 1

𝑚
∑𝑚
𝑘 = 1 |𝑎𝑖 − 𝑎̄| m2 0.0831 (≈ 9.40%) 0.2587 (≈ 28.72%) 0.1430 (≈ 15.62%)

|𝛥𝛼̄| = 1
4𝑚

∑𝑚
𝑘 = 1(

∑4
𝑗 = 1 |𝛼𝑗 − 90|)𝑘 deg 7.86978 7.04290 15.09133
Fig. 19. Equilibrium shapes using stress projection (top), distortion control (middle),
and stress density (bottom).

need to change the finite element sizes and shapes when using stress
projection is to satisfy changes in the geometry itself between the initial
and final equilibrium positions.

4.4. Complex membrane structure

The final example is a demonstrative complex membrane structure
consisting of four conical parts and eight hyperbolic paraboloid parts.
The conical membrane parts apply the proposed stress projection, while
the hyperbolic parts apply the distortion control method. Generally, the
proposed stress projection is especially suitable for the shape optimiza-
tion of conical membrane and shell structures subjected to a permanent
load. However, the stress projection is not intended for hyperbolic
membrane structures or membranes on arches that are not susceptible
to necking and collapsing during the form-finding analysis. In this
case, the stress projection does not lead to a smoother distribution
of prestress over the membrane structure compared to other stress
adaptation schemes. For such shapes of membrane structures, other
stress adaptation schemes can be utilized. Moreover, it is possible
to combine different stress adaptation schemes without any problems
14
when designing a complex structure, as shown in this last example.
Such a combination allows structural engineers and architects to choose
a suitable stress adaptation scheme for particular parts of a structure.

The example below presents a possible interaction between the
proposed stress projection and other methods. The structural model of
the membrane structure can be downloaded from the website of Dlubal
Software in the section Downloads and Info, subsection Structural Anal-
ysis Models to Download, category Tensile Membrane Structures [33].
Here, the dimensions of the structure and the form-finding input and
settings, as well as other details and information, can be found to verify
the calculations. Interested readers are also encouraged to do their own
evaluations by downloading the software [32], through which they can
model any other structure, perform a form-finding analysis, and make
the final evaluation.

In the following, the results of the form-finding analysis utilizing
a combination of stress adaptation schemes are presented. A well-
distributed prestress over the membrane structure can be observed in
Figs. 21–23.

5. Discussion

Form-finding analysis deals with searching for the equilibrium
shape of membrane and cable structures, and it can also be utilized
for the shape optimization of shell and girder structures. However,
the incompatibility between the analysis input, usually defined by two
prestress values, and the difficulty of achieving the final double-curved
surface shapes remains a challenge. Principally, the form-finding anal-
ysis needs to use a suitable stress adaptation scheme that is crucial for
reaching the equilibrium, leading to the desirable final shape.

The proposed stress projection procedure is indeed a new stress
adaptation scheme that allows for the calculation of equilibrium in
space from the analytically predefined equilibrium in a selected pro-
jection plane. The stress state in the actual configuration is determined
using a fictitious reference configuration obtained by the orthogonal
projection. In a nutshell, the resulting shape is independent of the
initial configuration or FE discretization of the structure. Numerical
experiments demonstrate that the proposed stress projection can avoid
undesirable stress concentrations in the flat areas of structures while
leading to significant stress adaptations if the inclination is substantial.
Considering the conical membrane structures, the stress concentrations
are located near the hoop, where such a stress modification is in-
evitable. We believe that the proposed method can be utilized for the
shape optimization of shell structures, which will be investigated in the
near future.

Form-finding analysis is a delicate process, and there is no unique
stress adaptation scheme that prevails over the others for general
applications. The proposed stress projection has been proven to be
powerful, especially for the form-finding analysis of conical membrane
structures and the shape optimization of shell structures.
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Fig. 20. Vectors of principal internal forces 𝑛1 and 𝑛2 [kN/m] using stress projection (top), distortion control (middle), and stress density (bottom).

Fig. 21. Initial configurations of a complex membrane structure.

Fig. 22. Equilibrium shapes using a combination of stress projection and distortion control.
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Fig. 23. First principal internal forces 𝑛1 [kN/m].
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